1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// This header defines various interfaces for pass management in LLVM. There
12 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
13 /// which supports a method to 'run' it over a unit of IR can be used as
14 /// a pass. A pass manager is generally a tool to collect a sequence of passes
15 /// which run over a particular IR construct, and run each of them in sequence
16 /// over each such construct in the containing IR construct. As there is no
17 /// containing IR construct for a Module, a manager for passes over modules
18 /// forms the base case which runs its managed passes in sequence over the
19 /// single module provided.
20 ///
21 /// The core IR library provides managers for running passes over
22 /// modules and functions.
23 ///
24 /// * FunctionPassManager can run over a Module, runs each pass over
25 ///   a Function.
26 /// * ModulePassManager must be directly run, runs each pass over the Module.
27 ///
28 /// Note that the implementations of the pass managers use concept-based
29 /// polymorphism as outlined in the "Value Semantics and Concept-based
30 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
31 /// Class of Evil") by Sean Parent:
32 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
33 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
34 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
35 ///
36 //===----------------------------------------------------------------------===//
37 
38 #ifndef LLVM_IR_PASSMANAGER_H
39 #define LLVM_IR_PASSMANAGER_H
40 
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/STLExtras.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManagerInternal.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Support/type_traits.h"
51 #include <list>
52 #include <memory>
53 #include <vector>
54 
55 namespace llvm {
56 
57 class Module;
58 class Function;
59 
60 /// \brief An abstract set of preserved analyses following a transformation pass
61 /// run.
62 ///
63 /// When a transformation pass is run, it can return a set of analyses whose
64 /// results were preserved by that transformation. The default set is "none",
65 /// and preserving analyses must be done explicitly.
66 ///
67 /// There is also an explicit all state which can be used (for example) when
68 /// the IR is not mutated at all.
69 class PreservedAnalyses {
70 public:
71   // We have to explicitly define all the special member functions because MSVC
72   // refuses to generate them.
PreservedAnalyses()73   PreservedAnalyses() {}
PreservedAnalyses(const PreservedAnalyses & Arg)74   PreservedAnalyses(const PreservedAnalyses &Arg)
75       : PreservedPassIDs(Arg.PreservedPassIDs) {}
PreservedAnalyses(PreservedAnalyses && Arg)76   PreservedAnalyses(PreservedAnalyses &&Arg)
77       : PreservedPassIDs(std::move(Arg.PreservedPassIDs)) {}
swap(PreservedAnalyses & LHS,PreservedAnalyses & RHS)78   friend void swap(PreservedAnalyses &LHS, PreservedAnalyses &RHS) {
79     using std::swap;
80     swap(LHS.PreservedPassIDs, RHS.PreservedPassIDs);
81   }
82   PreservedAnalyses &operator=(PreservedAnalyses RHS) {
83     swap(*this, RHS);
84     return *this;
85   }
86 
87   /// \brief Convenience factory function for the empty preserved set.
none()88   static PreservedAnalyses none() { return PreservedAnalyses(); }
89 
90   /// \brief Construct a special preserved set that preserves all passes.
all()91   static PreservedAnalyses all() {
92     PreservedAnalyses PA;
93     PA.PreservedPassIDs.insert((void *)AllPassesID);
94     return PA;
95   }
96 
97   /// \brief Mark a particular pass as preserved, adding it to the set.
preserve()98   template <typename PassT> void preserve() { preserve(PassT::ID()); }
99 
100   /// \brief Mark an abstract PassID as preserved, adding it to the set.
preserve(void * PassID)101   void preserve(void *PassID) {
102     if (!areAllPreserved())
103       PreservedPassIDs.insert(PassID);
104   }
105 
106   /// \brief Intersect this set with another in place.
107   ///
108   /// This is a mutating operation on this preserved set, removing all
109   /// preserved passes which are not also preserved in the argument.
intersect(const PreservedAnalyses & Arg)110   void intersect(const PreservedAnalyses &Arg) {
111     if (Arg.areAllPreserved())
112       return;
113     if (areAllPreserved()) {
114       PreservedPassIDs = Arg.PreservedPassIDs;
115       return;
116     }
117     for (void *P : PreservedPassIDs)
118       if (!Arg.PreservedPassIDs.count(P))
119         PreservedPassIDs.erase(P);
120   }
121 
122   /// \brief Intersect this set with a temporary other set in place.
123   ///
124   /// This is a mutating operation on this preserved set, removing all
125   /// preserved passes which are not also preserved in the argument.
intersect(PreservedAnalyses && Arg)126   void intersect(PreservedAnalyses &&Arg) {
127     if (Arg.areAllPreserved())
128       return;
129     if (areAllPreserved()) {
130       PreservedPassIDs = std::move(Arg.PreservedPassIDs);
131       return;
132     }
133     for (void *P : PreservedPassIDs)
134       if (!Arg.PreservedPassIDs.count(P))
135         PreservedPassIDs.erase(P);
136   }
137 
138   /// \brief Query whether a pass is marked as preserved by this set.
preserved()139   template <typename PassT> bool preserved() const {
140     return preserved(PassT::ID());
141   }
142 
143   /// \brief Query whether an abstract pass ID is marked as preserved by this
144   /// set.
preserved(void * PassID)145   bool preserved(void *PassID) const {
146     return PreservedPassIDs.count((void *)AllPassesID) ||
147            PreservedPassIDs.count(PassID);
148   }
149 
150   /// \brief Test whether all passes are preserved.
151   ///
152   /// This is used primarily to optimize for the case of no changes which will
153   /// common in many scenarios.
areAllPreserved()154   bool areAllPreserved() const {
155     return PreservedPassIDs.count((void *)AllPassesID);
156   }
157 
158 private:
159   // Note that this must not be -1 or -2 as those are already used by the
160   // SmallPtrSet.
161   static const uintptr_t AllPassesID = (intptr_t)(-3);
162 
163   SmallPtrSet<void *, 2> PreservedPassIDs;
164 };
165 
166 // Forward declare the analysis manager template.
167 template <typename IRUnitT> class AnalysisManager;
168 
169 /// \brief Manages a sequence of passes over units of IR.
170 ///
171 /// A pass manager contains a sequence of passes to run over units of IR. It is
172 /// itself a valid pass over that unit of IR, and when over some given IR will
173 /// run each pass in sequence. This is the primary and most basic building
174 /// block of a pass pipeline.
175 ///
176 /// If it is run with an \c AnalysisManager<IRUnitT> argument, it will propagate
177 /// that analysis manager to each pass it runs, as well as calling the analysis
178 /// manager's invalidation routine with the PreservedAnalyses of each pass it
179 /// runs.
180 template <typename IRUnitT> class PassManager {
181 public:
182   /// \brief Construct a pass manager.
183   ///
184   /// It can be passed a flag to get debug logging as the passes are run.
DebugLogging(DebugLogging)185   PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
186   // We have to explicitly define all the special member functions because MSVC
187   // refuses to generate them.
PassManager(PassManager && Arg)188   PassManager(PassManager &&Arg)
189       : Passes(std::move(Arg.Passes)),
190         DebugLogging(std::move(Arg.DebugLogging)) {}
191   PassManager &operator=(PassManager &&RHS) {
192     Passes = std::move(RHS.Passes);
193     DebugLogging = std::move(RHS.DebugLogging);
194     return *this;
195   }
196 
197   /// \brief Run all of the passes in this manager over the IR.
198   PreservedAnalyses run(IRUnitT &IR, AnalysisManager<IRUnitT> *AM = nullptr) {
199     PreservedAnalyses PA = PreservedAnalyses::all();
200 
201     if (DebugLogging)
202       dbgs() << "Starting pass manager run.\n";
203 
204     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
205       if (DebugLogging)
206         dbgs() << "Running pass: " << Passes[Idx]->name() << "\n";
207 
208       PreservedAnalyses PassPA = Passes[Idx]->run(IR, AM);
209 
210       // If we have an active analysis manager at this level we want to ensure
211       // we update it as each pass runs and potentially invalidates analyses.
212       // We also update the preserved set of analyses based on what analyses we
213       // have already handled the invalidation for here and don't need to
214       // invalidate when finished.
215       if (AM)
216         PassPA = AM->invalidate(IR, std::move(PassPA));
217 
218       // Finally, we intersect the final preserved analyses to compute the
219       // aggregate preserved set for this pass manager.
220       PA.intersect(std::move(PassPA));
221 
222       // FIXME: Historically, the pass managers all called the LLVM context's
223       // yield function here. We don't have a generic way to acquire the
224       // context and it isn't yet clear what the right pattern is for yielding
225       // in the new pass manager so it is currently omitted.
226       //IR.getContext().yield();
227     }
228 
229     if (DebugLogging)
230       dbgs() << "Finished pass manager run.\n";
231 
232     return PA;
233   }
234 
addPass(PassT Pass)235   template <typename PassT> void addPass(PassT Pass) {
236     typedef detail::PassModel<IRUnitT, PassT> PassModelT;
237     Passes.emplace_back(new PassModelT(std::move(Pass)));
238   }
239 
name()240   static StringRef name() { return "PassManager"; }
241 
242 private:
243   typedef detail::PassConcept<IRUnitT> PassConceptT;
244 
245   PassManager(const PassManager &) = delete;
246   PassManager &operator=(const PassManager &) = delete;
247 
248   std::vector<std::unique_ptr<PassConceptT>> Passes;
249 
250   /// \brief Flag indicating whether we should do debug logging.
251   bool DebugLogging;
252 };
253 
254 /// \brief Convenience typedef for a pass manager over modules.
255 typedef PassManager<Module> ModulePassManager;
256 
257 /// \brief Convenience typedef for a pass manager over functions.
258 typedef PassManager<Function> FunctionPassManager;
259 
260 namespace detail {
261 
262 /// \brief A CRTP base used to implement analysis managers.
263 ///
264 /// This class template serves as the boiler plate of an analysis manager. Any
265 /// analysis manager can be implemented on top of this base class. Any
266 /// implementation will be required to provide specific hooks:
267 ///
268 /// - getResultImpl
269 /// - getCachedResultImpl
270 /// - invalidateImpl
271 ///
272 /// The details of the call pattern are within.
273 ///
274 /// Note that there is also a generic analysis manager template which implements
275 /// the above required functions along with common datastructures used for
276 /// managing analyses. This base class is factored so that if you need to
277 /// customize the handling of a specific IR unit, you can do so without
278 /// replicating *all* of the boilerplate.
279 template <typename DerivedT, typename IRUnitT> class AnalysisManagerBase {
derived_this()280   DerivedT *derived_this() { return static_cast<DerivedT *>(this); }
derived_this()281   const DerivedT *derived_this() const {
282     return static_cast<const DerivedT *>(this);
283   }
284 
285   AnalysisManagerBase(const AnalysisManagerBase &) = delete;
286   AnalysisManagerBase &
287   operator=(const AnalysisManagerBase &) = delete;
288 
289 protected:
290   typedef detail::AnalysisResultConcept<IRUnitT> ResultConceptT;
291   typedef detail::AnalysisPassConcept<IRUnitT> PassConceptT;
292 
293   // FIXME: Provide template aliases for the models when we're using C++11 in
294   // a mode supporting them.
295 
296   // We have to explicitly define all the special member functions because MSVC
297   // refuses to generate them.
AnalysisManagerBase()298   AnalysisManagerBase() {}
AnalysisManagerBase(AnalysisManagerBase && Arg)299   AnalysisManagerBase(AnalysisManagerBase &&Arg)
300       : AnalysisPasses(std::move(Arg.AnalysisPasses)) {}
301   AnalysisManagerBase &operator=(AnalysisManagerBase &&RHS) {
302     AnalysisPasses = std::move(RHS.AnalysisPasses);
303     return *this;
304   }
305 
306 public:
307   /// \brief Get the result of an analysis pass for this module.
308   ///
309   /// If there is not a valid cached result in the manager already, this will
310   /// re-run the analysis to produce a valid result.
getResult(IRUnitT & IR)311   template <typename PassT> typename PassT::Result &getResult(IRUnitT &IR) {
312     assert(AnalysisPasses.count(PassT::ID()) &&
313            "This analysis pass was not registered prior to being queried");
314 
315     ResultConceptT &ResultConcept =
316         derived_this()->getResultImpl(PassT::ID(), IR);
317     typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
318         ResultModelT;
319     return static_cast<ResultModelT &>(ResultConcept).Result;
320   }
321 
322   /// \brief Get the cached result of an analysis pass for this module.
323   ///
324   /// This method never runs the analysis.
325   ///
326   /// \returns null if there is no cached result.
327   template <typename PassT>
getCachedResult(IRUnitT & IR)328   typename PassT::Result *getCachedResult(IRUnitT &IR) const {
329     assert(AnalysisPasses.count(PassT::ID()) &&
330            "This analysis pass was not registered prior to being queried");
331 
332     ResultConceptT *ResultConcept =
333         derived_this()->getCachedResultImpl(PassT::ID(), IR);
334     if (!ResultConcept)
335       return nullptr;
336 
337     typedef detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result>
338         ResultModelT;
339     return &static_cast<ResultModelT *>(ResultConcept)->Result;
340   }
341 
342   /// \brief Register an analysis pass with the manager.
343   ///
344   /// This provides an initialized and set-up analysis pass to the analysis
345   /// manager. Whomever is setting up analysis passes must use this to populate
346   /// the manager with all of the analysis passes available.
registerPass(PassT Pass)347   template <typename PassT> void registerPass(PassT Pass) {
348     assert(!AnalysisPasses.count(PassT::ID()) &&
349            "Registered the same analysis pass twice!");
350     typedef detail::AnalysisPassModel<IRUnitT, PassT> PassModelT;
351     AnalysisPasses[PassT::ID()].reset(new PassModelT(std::move(Pass)));
352   }
353 
354   /// \brief Invalidate a specific analysis pass for an IR module.
355   ///
356   /// Note that the analysis result can disregard invalidation.
invalidate(IRUnitT & IR)357   template <typename PassT> void invalidate(IRUnitT &IR) {
358     assert(AnalysisPasses.count(PassT::ID()) &&
359            "This analysis pass was not registered prior to being invalidated");
360     derived_this()->invalidateImpl(PassT::ID(), IR);
361   }
362 
363   /// \brief Invalidate analyses cached for an IR unit.
364   ///
365   /// Walk through all of the analyses pertaining to this unit of IR and
366   /// invalidate them unless they are preserved by the PreservedAnalyses set.
367   /// We accept the PreservedAnalyses set by value and update it with each
368   /// analyis pass which has been successfully invalidated and thus can be
369   /// preserved going forward. The updated set is returned.
invalidate(IRUnitT & IR,PreservedAnalyses PA)370   PreservedAnalyses invalidate(IRUnitT &IR, PreservedAnalyses PA) {
371     return derived_this()->invalidateImpl(IR, std::move(PA));
372   }
373 
374 protected:
375   /// \brief Lookup a registered analysis pass.
lookupPass(void * PassID)376   PassConceptT &lookupPass(void *PassID) {
377     typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(PassID);
378     assert(PI != AnalysisPasses.end() &&
379            "Analysis passes must be registered prior to being queried!");
380     return *PI->second;
381   }
382 
383   /// \brief Lookup a registered analysis pass.
lookupPass(void * PassID)384   const PassConceptT &lookupPass(void *PassID) const {
385     typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(PassID);
386     assert(PI != AnalysisPasses.end() &&
387            "Analysis passes must be registered prior to being queried!");
388     return *PI->second;
389   }
390 
391 private:
392   /// \brief Map type from module analysis pass ID to pass concept pointer.
393   typedef DenseMap<void *, std::unique_ptr<PassConceptT>> AnalysisPassMapT;
394 
395   /// \brief Collection of module analysis passes, indexed by ID.
396   AnalysisPassMapT AnalysisPasses;
397 };
398 
399 } // End namespace detail
400 
401 /// \brief A generic analysis pass manager with lazy running and caching of
402 /// results.
403 ///
404 /// This analysis manager can be used for any IR unit where the address of the
405 /// IR unit sufficies as its identity. It manages the cache for a unit of IR via
406 /// the address of each unit of IR cached.
407 template <typename IRUnitT>
408 class AnalysisManager
409     : public detail::AnalysisManagerBase<AnalysisManager<IRUnitT>, IRUnitT> {
410   friend class detail::AnalysisManagerBase<AnalysisManager<IRUnitT>, IRUnitT>;
411   typedef detail::AnalysisManagerBase<AnalysisManager<IRUnitT>, IRUnitT> BaseT;
412   typedef typename BaseT::ResultConceptT ResultConceptT;
413   typedef typename BaseT::PassConceptT PassConceptT;
414 
415 public:
416   // Most public APIs are inherited from the CRTP base class.
417 
418   /// \brief Construct an empty analysis manager.
419   ///
420   /// A flag can be passed to indicate that the manager should perform debug
421   /// logging.
DebugLogging(DebugLogging)422   AnalysisManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
423 
424   // We have to explicitly define all the special member functions because MSVC
425   // refuses to generate them.
AnalysisManager(AnalysisManager && Arg)426   AnalysisManager(AnalysisManager &&Arg)
427       : BaseT(std::move(static_cast<BaseT &>(Arg))),
428         AnalysisResults(std::move(Arg.AnalysisResults)),
429         DebugLogging(std::move(Arg.DebugLogging)) {}
430   AnalysisManager &operator=(AnalysisManager &&RHS) {
431     BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
432     AnalysisResults = std::move(RHS.AnalysisResults);
433     DebugLogging = std::move(RHS.DebugLogging);
434     return *this;
435   }
436 
437   /// \brief Returns true if the analysis manager has an empty results cache.
empty()438   bool empty() const {
439     assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
440            "The storage and index of analysis results disagree on how many "
441            "there are!");
442     return AnalysisResults.empty();
443   }
444 
445   /// \brief Clear the analysis result cache.
446   ///
447   /// This routine allows cleaning up when the set of IR units itself has
448   /// potentially changed, and thus we can't even look up a a result and
449   /// invalidate it directly. Notably, this does *not* call invalidate functions
450   /// as there is nothing to be done for them.
clear()451   void clear() {
452     AnalysisResults.clear();
453     AnalysisResultLists.clear();
454   }
455 
456 private:
457   AnalysisManager(const AnalysisManager &) = delete;
458   AnalysisManager &operator=(const AnalysisManager &) = delete;
459 
460   /// \brief Get an analysis result, running the pass if necessary.
getResultImpl(void * PassID,IRUnitT & IR)461   ResultConceptT &getResultImpl(void *PassID, IRUnitT &IR) {
462     typename AnalysisResultMapT::iterator RI;
463     bool Inserted;
464     std::tie(RI, Inserted) = AnalysisResults.insert(std::make_pair(
465         std::make_pair(PassID, &IR), typename AnalysisResultListT::iterator()));
466 
467     // If we don't have a cached result for this function, look up the pass and
468     // run it to produce a result, which we then add to the cache.
469     if (Inserted) {
470       auto &P = this->lookupPass(PassID);
471       if (DebugLogging)
472         dbgs() << "Running analysis: " << P.name() << "\n";
473       AnalysisResultListT &ResultList = AnalysisResultLists[&IR];
474       ResultList.emplace_back(PassID, P.run(IR, this));
475 
476       // P.run may have inserted elements into AnalysisResults and invalidated
477       // RI.
478       RI = AnalysisResults.find(std::make_pair(PassID, &IR));
479       assert(RI != AnalysisResults.end() && "we just inserted it!");
480 
481       RI->second = std::prev(ResultList.end());
482     }
483 
484     return *RI->second->second;
485   }
486 
487   /// \brief Get a cached analysis result or return null.
getCachedResultImpl(void * PassID,IRUnitT & IR)488   ResultConceptT *getCachedResultImpl(void *PassID, IRUnitT &IR) const {
489     typename AnalysisResultMapT::const_iterator RI =
490         AnalysisResults.find(std::make_pair(PassID, &IR));
491     return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
492   }
493 
494   /// \brief Invalidate a function pass result.
invalidateImpl(void * PassID,IRUnitT & IR)495   void invalidateImpl(void *PassID, IRUnitT &IR) {
496     typename AnalysisResultMapT::iterator RI =
497         AnalysisResults.find(std::make_pair(PassID, &IR));
498     if (RI == AnalysisResults.end())
499       return;
500 
501     if (DebugLogging)
502       dbgs() << "Invalidating analysis: " << this->lookupPass(PassID).name()
503              << "\n";
504     AnalysisResultLists[&IR].erase(RI->second);
505     AnalysisResults.erase(RI);
506   }
507 
508   /// \brief Invalidate the results for a function..
invalidateImpl(IRUnitT & IR,PreservedAnalyses PA)509   PreservedAnalyses invalidateImpl(IRUnitT &IR, PreservedAnalyses PA) {
510     // Short circuit for a common case of all analyses being preserved.
511     if (PA.areAllPreserved())
512       return std::move(PA);
513 
514     if (DebugLogging)
515       dbgs() << "Invalidating all non-preserved analyses for: "
516              << IR.getName() << "\n";
517 
518     // Clear all the invalidated results associated specifically with this
519     // function.
520     SmallVector<void *, 8> InvalidatedPassIDs;
521     AnalysisResultListT &ResultsList = AnalysisResultLists[&IR];
522     for (typename AnalysisResultListT::iterator I = ResultsList.begin(),
523                                                 E = ResultsList.end();
524          I != E;) {
525       void *PassID = I->first;
526 
527       // Pass the invalidation down to the pass itself to see if it thinks it is
528       // necessary. The analysis pass can return false if no action on the part
529       // of the analysis manager is required for this invalidation event.
530       if (I->second->invalidate(IR, PA)) {
531         if (DebugLogging)
532           dbgs() << "Invalidating analysis: " << this->lookupPass(PassID).name()
533                  << "\n";
534 
535         InvalidatedPassIDs.push_back(I->first);
536         I = ResultsList.erase(I);
537       } else {
538         ++I;
539       }
540 
541       // After handling each pass, we mark it as preserved. Once we've
542       // invalidated any stale results, the rest of the system is allowed to
543       // start preserving this analysis again.
544       PA.preserve(PassID);
545     }
546     while (!InvalidatedPassIDs.empty())
547       AnalysisResults.erase(
548           std::make_pair(InvalidatedPassIDs.pop_back_val(), &IR));
549     if (ResultsList.empty())
550       AnalysisResultLists.erase(&IR);
551 
552     return std::move(PA);
553   }
554 
555   /// \brief List of function analysis pass IDs and associated concept pointers.
556   ///
557   /// Requires iterators to be valid across appending new entries and arbitrary
558   /// erases. Provides both the pass ID and concept pointer such that it is
559   /// half of a bijection and provides storage for the actual result concept.
560   typedef std::list<std::pair<
561       void *, std::unique_ptr<detail::AnalysisResultConcept<IRUnitT>>>>
562       AnalysisResultListT;
563 
564   /// \brief Map type from function pointer to our custom list type.
565   typedef DenseMap<IRUnitT *, AnalysisResultListT> AnalysisResultListMapT;
566 
567   /// \brief Map from function to a list of function analysis results.
568   ///
569   /// Provides linear time removal of all analysis results for a function and
570   /// the ultimate storage for a particular cached analysis result.
571   AnalysisResultListMapT AnalysisResultLists;
572 
573   /// \brief Map type from a pair of analysis ID and function pointer to an
574   /// iterator into a particular result list.
575   typedef DenseMap<std::pair<void *, IRUnitT *>,
576                    typename AnalysisResultListT::iterator> AnalysisResultMapT;
577 
578   /// \brief Map from an analysis ID and function to a particular cached
579   /// analysis result.
580   AnalysisResultMapT AnalysisResults;
581 
582   /// \brief A flag indicating whether debug logging is enabled.
583   bool DebugLogging;
584 };
585 
586 /// \brief Convenience typedef for the Module analysis manager.
587 typedef AnalysisManager<Module> ModuleAnalysisManager;
588 
589 /// \brief Convenience typedef for the Function analysis manager.
590 typedef AnalysisManager<Function> FunctionAnalysisManager;
591 
592 /// \brief A module analysis which acts as a proxy for a function analysis
593 /// manager.
594 ///
595 /// This primarily proxies invalidation information from the module analysis
596 /// manager and module pass manager to a function analysis manager. You should
597 /// never use a function analysis manager from within (transitively) a module
598 /// pass manager unless your parent module pass has received a proxy result
599 /// object for it.
600 class FunctionAnalysisManagerModuleProxy {
601 public:
602   class Result;
603 
ID()604   static void *ID() { return (void *)&PassID; }
605 
name()606   static StringRef name() { return "FunctionAnalysisManagerModuleProxy"; }
607 
FunctionAnalysisManagerModuleProxy(FunctionAnalysisManager & FAM)608   explicit FunctionAnalysisManagerModuleProxy(FunctionAnalysisManager &FAM)
609       : FAM(&FAM) {}
610   // We have to explicitly define all the special member functions because MSVC
611   // refuses to generate them.
FunctionAnalysisManagerModuleProxy(const FunctionAnalysisManagerModuleProxy & Arg)612   FunctionAnalysisManagerModuleProxy(
613       const FunctionAnalysisManagerModuleProxy &Arg)
614       : FAM(Arg.FAM) {}
FunctionAnalysisManagerModuleProxy(FunctionAnalysisManagerModuleProxy && Arg)615   FunctionAnalysisManagerModuleProxy(FunctionAnalysisManagerModuleProxy &&Arg)
616       : FAM(std::move(Arg.FAM)) {}
617   FunctionAnalysisManagerModuleProxy &
618   operator=(FunctionAnalysisManagerModuleProxy RHS) {
619     std::swap(FAM, RHS.FAM);
620     return *this;
621   }
622 
623   /// \brief Run the analysis pass and create our proxy result object.
624   ///
625   /// This doesn't do any interesting work, it is primarily used to insert our
626   /// proxy result object into the module analysis cache so that we can proxy
627   /// invalidation to the function analysis manager.
628   ///
629   /// In debug builds, it will also assert that the analysis manager is empty
630   /// as no queries should arrive at the function analysis manager prior to
631   /// this analysis being requested.
632   Result run(Module &M);
633 
634 private:
635   static char PassID;
636 
637   FunctionAnalysisManager *FAM;
638 };
639 
640 /// \brief The result proxy object for the
641 /// \c FunctionAnalysisManagerModuleProxy.
642 ///
643 /// See its documentation for more information.
644 class FunctionAnalysisManagerModuleProxy::Result {
645 public:
Result(FunctionAnalysisManager & FAM)646   explicit Result(FunctionAnalysisManager &FAM) : FAM(&FAM) {}
647   // We have to explicitly define all the special member functions because MSVC
648   // refuses to generate them.
Result(const Result & Arg)649   Result(const Result &Arg) : FAM(Arg.FAM) {}
Result(Result && Arg)650   Result(Result &&Arg) : FAM(std::move(Arg.FAM)) {}
651   Result &operator=(Result RHS) {
652     std::swap(FAM, RHS.FAM);
653     return *this;
654   }
655   ~Result();
656 
657   /// \brief Accessor for the \c FunctionAnalysisManager.
getManager()658   FunctionAnalysisManager &getManager() { return *FAM; }
659 
660   /// \brief Handler for invalidation of the module.
661   ///
662   /// If this analysis itself is preserved, then we assume that the set of \c
663   /// Function objects in the \c Module hasn't changed and thus we don't need
664   /// to invalidate *all* cached data associated with a \c Function* in the \c
665   /// FunctionAnalysisManager.
666   ///
667   /// Regardless of whether this analysis is marked as preserved, all of the
668   /// analyses in the \c FunctionAnalysisManager are potentially invalidated
669   /// based on the set of preserved analyses.
670   bool invalidate(Module &M, const PreservedAnalyses &PA);
671 
672 private:
673   FunctionAnalysisManager *FAM;
674 };
675 
676 /// \brief A function analysis which acts as a proxy for a module analysis
677 /// manager.
678 ///
679 /// This primarily provides an accessor to a parent module analysis manager to
680 /// function passes. Only the const interface of the module analysis manager is
681 /// provided to indicate that once inside of a function analysis pass you
682 /// cannot request a module analysis to actually run. Instead, the user must
683 /// rely on the \c getCachedResult API.
684 ///
685 /// This proxy *doesn't* manage the invalidation in any way. That is handled by
686 /// the recursive return path of each layer of the pass manager and the
687 /// returned PreservedAnalysis set.
688 class ModuleAnalysisManagerFunctionProxy {
689 public:
690   /// \brief Result proxy object for \c ModuleAnalysisManagerFunctionProxy.
691   class Result {
692   public:
Result(const ModuleAnalysisManager & MAM)693     explicit Result(const ModuleAnalysisManager &MAM) : MAM(&MAM) {}
694     // We have to explicitly define all the special member functions because
695     // MSVC refuses to generate them.
Result(const Result & Arg)696     Result(const Result &Arg) : MAM(Arg.MAM) {}
Result(Result && Arg)697     Result(Result &&Arg) : MAM(std::move(Arg.MAM)) {}
698     Result &operator=(Result RHS) {
699       std::swap(MAM, RHS.MAM);
700       return *this;
701     }
702 
getManager()703     const ModuleAnalysisManager &getManager() const { return *MAM; }
704 
705     /// \brief Handle invalidation by ignoring it, this pass is immutable.
invalidate(Function &)706     bool invalidate(Function &) { return false; }
707 
708   private:
709     const ModuleAnalysisManager *MAM;
710   };
711 
ID()712   static void *ID() { return (void *)&PassID; }
713 
name()714   static StringRef name() { return "ModuleAnalysisManagerFunctionProxy"; }
715 
ModuleAnalysisManagerFunctionProxy(const ModuleAnalysisManager & MAM)716   ModuleAnalysisManagerFunctionProxy(const ModuleAnalysisManager &MAM)
717       : MAM(&MAM) {}
718   // We have to explicitly define all the special member functions because MSVC
719   // refuses to generate them.
ModuleAnalysisManagerFunctionProxy(const ModuleAnalysisManagerFunctionProxy & Arg)720   ModuleAnalysisManagerFunctionProxy(
721       const ModuleAnalysisManagerFunctionProxy &Arg)
722       : MAM(Arg.MAM) {}
ModuleAnalysisManagerFunctionProxy(ModuleAnalysisManagerFunctionProxy && Arg)723   ModuleAnalysisManagerFunctionProxy(ModuleAnalysisManagerFunctionProxy &&Arg)
724       : MAM(std::move(Arg.MAM)) {}
725   ModuleAnalysisManagerFunctionProxy &
726   operator=(ModuleAnalysisManagerFunctionProxy RHS) {
727     std::swap(MAM, RHS.MAM);
728     return *this;
729   }
730 
731   /// \brief Run the analysis pass and create our proxy result object.
732   /// Nothing to see here, it just forwards the \c MAM reference into the
733   /// result.
run(Function &)734   Result run(Function &) { return Result(*MAM); }
735 
736 private:
737   static char PassID;
738 
739   const ModuleAnalysisManager *MAM;
740 };
741 
742 /// \brief Trivial adaptor that maps from a module to its functions.
743 ///
744 /// Designed to allow composition of a FunctionPass(Manager) and
745 /// a ModulePassManager. Note that if this pass is constructed with a pointer
746 /// to a \c ModuleAnalysisManager it will run the
747 /// \c FunctionAnalysisManagerModuleProxy analysis prior to running the function
748 /// pass over the module to enable a \c FunctionAnalysisManager to be used
749 /// within this run safely.
750 ///
751 /// Function passes run within this adaptor can rely on having exclusive access
752 /// to the function they are run over. They should not read or modify any other
753 /// functions! Other threads or systems may be manipulating other functions in
754 /// the module, and so their state should never be relied on.
755 /// FIXME: Make the above true for all of LLVM's actual passes, some still
756 /// violate this principle.
757 ///
758 /// Function passes can also read the module containing the function, but they
759 /// should not modify that module outside of the use lists of various globals.
760 /// For example, a function pass is not permitted to add functions to the
761 /// module.
762 /// FIXME: Make the above true for all of LLVM's actual passes, some still
763 /// violate this principle.
764 template <typename FunctionPassT> class ModuleToFunctionPassAdaptor {
765 public:
ModuleToFunctionPassAdaptor(FunctionPassT Pass)766   explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
767       : Pass(std::move(Pass)) {}
768   // We have to explicitly define all the special member functions because MSVC
769   // refuses to generate them.
ModuleToFunctionPassAdaptor(const ModuleToFunctionPassAdaptor & Arg)770   ModuleToFunctionPassAdaptor(const ModuleToFunctionPassAdaptor &Arg)
771       : Pass(Arg.Pass) {}
ModuleToFunctionPassAdaptor(ModuleToFunctionPassAdaptor && Arg)772   ModuleToFunctionPassAdaptor(ModuleToFunctionPassAdaptor &&Arg)
773       : Pass(std::move(Arg.Pass)) {}
swap(ModuleToFunctionPassAdaptor & LHS,ModuleToFunctionPassAdaptor & RHS)774   friend void swap(ModuleToFunctionPassAdaptor &LHS,
775                    ModuleToFunctionPassAdaptor &RHS) {
776     using std::swap;
777     swap(LHS.Pass, RHS.Pass);
778   }
779   ModuleToFunctionPassAdaptor &operator=(ModuleToFunctionPassAdaptor RHS) {
780     swap(*this, RHS);
781     return *this;
782   }
783 
784   /// \brief Runs the function pass across every function in the module.
run(Module & M,ModuleAnalysisManager * AM)785   PreservedAnalyses run(Module &M, ModuleAnalysisManager *AM) {
786     FunctionAnalysisManager *FAM = nullptr;
787     if (AM)
788       // Setup the function analysis manager from its proxy.
789       FAM = &AM->getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
790 
791     PreservedAnalyses PA = PreservedAnalyses::all();
792     for (Function &F : M) {
793       if (F.isDeclaration())
794         continue;
795 
796       PreservedAnalyses PassPA = Pass.run(F, FAM);
797 
798       // We know that the function pass couldn't have invalidated any other
799       // function's analyses (that's the contract of a function pass), so
800       // directly handle the function analysis manager's invalidation here and
801       // update our preserved set to reflect that these have already been
802       // handled.
803       if (FAM)
804         PassPA = FAM->invalidate(F, std::move(PassPA));
805 
806       // Then intersect the preserved set so that invalidation of module
807       // analyses will eventually occur when the module pass completes.
808       PA.intersect(std::move(PassPA));
809     }
810 
811     // By definition we preserve the proxy. This precludes *any* invalidation
812     // of function analyses by the proxy, but that's OK because we've taken
813     // care to invalidate analyses in the function analysis manager
814     // incrementally above.
815     PA.preserve<FunctionAnalysisManagerModuleProxy>();
816     return PA;
817   }
818 
name()819   static StringRef name() { return "ModuleToFunctionPassAdaptor"; }
820 
821 private:
822   FunctionPassT Pass;
823 };
824 
825 /// \brief A function to deduce a function pass type and wrap it in the
826 /// templated adaptor.
827 template <typename FunctionPassT>
828 ModuleToFunctionPassAdaptor<FunctionPassT>
createModuleToFunctionPassAdaptor(FunctionPassT Pass)829 createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
830   return std::move(ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass)));
831 }
832 
833 /// \brief A template utility pass to force an analysis result to be available.
834 ///
835 /// This is a no-op pass which simply forces a specific analysis pass's result
836 /// to be available when it is run.
837 template <typename AnalysisT> struct RequireAnalysisPass {
838   /// \brief Run this pass over some unit of IR.
839   ///
840   /// This pass can be run over any unit of IR and use any analysis manager
841   /// provided they satisfy the basic API requirements. When this pass is
842   /// created, these methods can be instantiated to satisfy whatever the
843   /// context requires.
844   template <typename IRUnitT>
runRequireAnalysisPass845   PreservedAnalyses run(IRUnitT &Arg, AnalysisManager<IRUnitT> *AM) {
846     if (AM)
847       (void)AM->template getResult<AnalysisT>(Arg);
848 
849     return PreservedAnalyses::all();
850   }
851 
nameRequireAnalysisPass852   static StringRef name() { return "RequireAnalysisPass"; }
853 };
854 
855 /// \brief A template utility pass to force an analysis result to be
856 /// invalidated.
857 ///
858 /// This is a no-op pass which simply forces a specific analysis result to be
859 /// invalidated when it is run.
860 template <typename AnalysisT> struct InvalidateAnalysisPass {
861   /// \brief Run this pass over some unit of IR.
862   ///
863   /// This pass can be run over any unit of IR and use any analysis manager
864   /// provided they satisfy the basic API requirements. When this pass is
865   /// created, these methods can be instantiated to satisfy whatever the
866   /// context requires.
867   template <typename IRUnitT>
runInvalidateAnalysisPass868   PreservedAnalyses run(IRUnitT &Arg, AnalysisManager<IRUnitT> *AM) {
869     if (AM)
870       // We have to directly invalidate the analysis result as we can't
871       // enumerate all other analyses and use the preserved set to control it.
872       (void)AM->template invalidate<AnalysisT>(Arg);
873 
874     return PreservedAnalyses::all();
875   }
876 
nameInvalidateAnalysisPass877   static StringRef name() { return "InvalidateAnalysisPass"; }
878 };
879 
880 /// \brief A utility pass that does nothing but preserves no analyses.
881 ///
882 /// As a consequence fo not preserving any analyses, this pass will force all
883 /// analysis passes to be re-run to produce fresh results if any are needed.
884 struct InvalidateAllAnalysesPass {
885   /// \brief Run this pass over some unit of IR.
runInvalidateAllAnalysesPass886   template <typename IRUnitT> PreservedAnalyses run(IRUnitT &Arg) {
887     return PreservedAnalyses::none();
888   }
889 
nameInvalidateAllAnalysesPass890   static StringRef name() { return "InvalidateAllAnalysesPass"; }
891 };
892 
893 }
894 
895 #endif
896