1 //===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains functions (and a class) useful for working with scaled
11 // numbers -- in particular, pairs of integers where one represents digits and
12 // another represents a scale.  The functions are helpers and live in the
13 // namespace ScaledNumbers.  The class ScaledNumber is useful for modelling
14 // certain cost metrics that need simple, integer-like semantics that are easy
15 // to reason about.
16 //
17 // These might remind you of soft-floats.  If you want one of those, you're in
18 // the wrong place.  Look at include/llvm/ADT/APFloat.h instead.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #ifndef LLVM_SUPPORT_SCALEDNUMBER_H
23 #define LLVM_SUPPORT_SCALEDNUMBER_H
24 
25 #include "llvm/Support/MathExtras.h"
26 #include <algorithm>
27 #include <cstdint>
28 #include <limits>
29 #include <string>
30 #include <tuple>
31 #include <utility>
32 
33 namespace llvm {
34 namespace ScaledNumbers {
35 
36 /// \brief Maximum scale; same as APFloat for easy debug printing.
37 const int32_t MaxScale = 16383;
38 
39 /// \brief Maximum scale; same as APFloat for easy debug printing.
40 const int32_t MinScale = -16382;
41 
42 /// \brief Get the width of a number.
getWidth()43 template <class DigitsT> inline int getWidth() { return sizeof(DigitsT) * 8; }
44 
45 /// \brief Conditionally round up a scaled number.
46 ///
47 /// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true.
48 /// Always returns \c Scale unless there's an overflow, in which case it
49 /// returns \c 1+Scale.
50 ///
51 /// \pre adding 1 to \c Scale will not overflow INT16_MAX.
52 template <class DigitsT>
getRounded(DigitsT Digits,int16_t Scale,bool ShouldRound)53 inline std::pair<DigitsT, int16_t> getRounded(DigitsT Digits, int16_t Scale,
54                                               bool ShouldRound) {
55   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
56 
57   if (ShouldRound)
58     if (!++Digits)
59       // Overflow.
60       return std::make_pair(DigitsT(1) << (getWidth<DigitsT>() - 1), Scale + 1);
61   return std::make_pair(Digits, Scale);
62 }
63 
64 /// \brief Convenience helper for 32-bit rounding.
getRounded32(uint32_t Digits,int16_t Scale,bool ShouldRound)65 inline std::pair<uint32_t, int16_t> getRounded32(uint32_t Digits, int16_t Scale,
66                                                  bool ShouldRound) {
67   return getRounded(Digits, Scale, ShouldRound);
68 }
69 
70 /// \brief Convenience helper for 64-bit rounding.
getRounded64(uint64_t Digits,int16_t Scale,bool ShouldRound)71 inline std::pair<uint64_t, int16_t> getRounded64(uint64_t Digits, int16_t Scale,
72                                                  bool ShouldRound) {
73   return getRounded(Digits, Scale, ShouldRound);
74 }
75 
76 /// \brief Adjust a 64-bit scaled number down to the appropriate width.
77 ///
78 /// \pre Adding 64 to \c Scale will not overflow INT16_MAX.
79 template <class DigitsT>
80 inline std::pair<DigitsT, int16_t> getAdjusted(uint64_t Digits,
81                                                int16_t Scale = 0) {
82   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
83 
84   const int Width = getWidth<DigitsT>();
85   if (Width == 64 || Digits <= std::numeric_limits<DigitsT>::max())
86     return std::make_pair(Digits, Scale);
87 
88   // Shift right and round.
89   int Shift = 64 - Width - countLeadingZeros(Digits);
90   return getRounded<DigitsT>(Digits >> Shift, Scale + Shift,
91                              Digits & (UINT64_C(1) << (Shift - 1)));
92 }
93 
94 /// \brief Convenience helper for adjusting to 32 bits.
95 inline std::pair<uint32_t, int16_t> getAdjusted32(uint64_t Digits,
96                                                   int16_t Scale = 0) {
97   return getAdjusted<uint32_t>(Digits, Scale);
98 }
99 
100 /// \brief Convenience helper for adjusting to 64 bits.
101 inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits,
102                                                   int16_t Scale = 0) {
103   return getAdjusted<uint64_t>(Digits, Scale);
104 }
105 
106 /// \brief Multiply two 64-bit integers to create a 64-bit scaled number.
107 ///
108 /// Implemented with four 64-bit integer multiplies.
109 std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS);
110 
111 /// \brief Multiply two 32-bit integers to create a 32-bit scaled number.
112 ///
113 /// Implemented with one 64-bit integer multiply.
114 template <class DigitsT>
getProduct(DigitsT LHS,DigitsT RHS)115 inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) {
116   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
117 
118   if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX))
119     return getAdjusted<DigitsT>(uint64_t(LHS) * RHS);
120 
121   return multiply64(LHS, RHS);
122 }
123 
124 /// \brief Convenience helper for 32-bit product.
getProduct32(uint32_t LHS,uint32_t RHS)125 inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) {
126   return getProduct(LHS, RHS);
127 }
128 
129 /// \brief Convenience helper for 64-bit product.
getProduct64(uint64_t LHS,uint64_t RHS)130 inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) {
131   return getProduct(LHS, RHS);
132 }
133 
134 /// \brief Divide two 64-bit integers to create a 64-bit scaled number.
135 ///
136 /// Implemented with long division.
137 ///
138 /// \pre \c Dividend and \c Divisor are non-zero.
139 std::pair<uint64_t, int16_t> divide64(uint64_t Dividend, uint64_t Divisor);
140 
141 /// \brief Divide two 32-bit integers to create a 32-bit scaled number.
142 ///
143 /// Implemented with one 64-bit integer divide/remainder pair.
144 ///
145 /// \pre \c Dividend and \c Divisor are non-zero.
146 std::pair<uint32_t, int16_t> divide32(uint32_t Dividend, uint32_t Divisor);
147 
148 /// \brief Divide two 32-bit numbers to create a 32-bit scaled number.
149 ///
150 /// Implemented with one 64-bit integer divide/remainder pair.
151 ///
152 /// Returns \c (DigitsT_MAX, MaxScale) for divide-by-zero (0 for 0/0).
153 template <class DigitsT>
getQuotient(DigitsT Dividend,DigitsT Divisor)154 std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) {
155   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
156   static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8,
157                 "expected 32-bit or 64-bit digits");
158 
159   // Check for zero.
160   if (!Dividend)
161     return std::make_pair(0, 0);
162   if (!Divisor)
163     return std::make_pair(std::numeric_limits<DigitsT>::max(), MaxScale);
164 
165   if (getWidth<DigitsT>() == 64)
166     return divide64(Dividend, Divisor);
167   return divide32(Dividend, Divisor);
168 }
169 
170 /// \brief Convenience helper for 32-bit quotient.
getQuotient32(uint32_t Dividend,uint32_t Divisor)171 inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend,
172                                                   uint32_t Divisor) {
173   return getQuotient(Dividend, Divisor);
174 }
175 
176 /// \brief Convenience helper for 64-bit quotient.
getQuotient64(uint64_t Dividend,uint64_t Divisor)177 inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend,
178                                                   uint64_t Divisor) {
179   return getQuotient(Dividend, Divisor);
180 }
181 
182 /// \brief Implementation of getLg() and friends.
183 ///
184 /// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether
185 /// this was rounded up (1), down (-1), or exact (0).
186 ///
187 /// Returns \c INT32_MIN when \c Digits is zero.
188 template <class DigitsT>
getLgImpl(DigitsT Digits,int16_t Scale)189 inline std::pair<int32_t, int> getLgImpl(DigitsT Digits, int16_t Scale) {
190   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
191 
192   if (!Digits)
193     return std::make_pair(INT32_MIN, 0);
194 
195   // Get the floor of the lg of Digits.
196   int32_t LocalFloor = sizeof(Digits) * 8 - countLeadingZeros(Digits) - 1;
197 
198   // Get the actual floor.
199   int32_t Floor = Scale + LocalFloor;
200   if (Digits == UINT64_C(1) << LocalFloor)
201     return std::make_pair(Floor, 0);
202 
203   // Round based on the next digit.
204   assert(LocalFloor >= 1);
205   bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
206   return std::make_pair(Floor + Round, Round ? 1 : -1);
207 }
208 
209 /// \brief Get the lg (rounded) of a scaled number.
210 ///
211 /// Get the lg of \c Digits*2^Scale.
212 ///
213 /// Returns \c INT32_MIN when \c Digits is zero.
getLg(DigitsT Digits,int16_t Scale)214 template <class DigitsT> int32_t getLg(DigitsT Digits, int16_t Scale) {
215   return getLgImpl(Digits, Scale).first;
216 }
217 
218 /// \brief Get the lg floor of a scaled number.
219 ///
220 /// Get the floor of the lg of \c Digits*2^Scale.
221 ///
222 /// Returns \c INT32_MIN when \c Digits is zero.
getLgFloor(DigitsT Digits,int16_t Scale)223 template <class DigitsT> int32_t getLgFloor(DigitsT Digits, int16_t Scale) {
224   auto Lg = getLgImpl(Digits, Scale);
225   return Lg.first - (Lg.second > 0);
226 }
227 
228 /// \brief Get the lg ceiling of a scaled number.
229 ///
230 /// Get the ceiling of the lg of \c Digits*2^Scale.
231 ///
232 /// Returns \c INT32_MIN when \c Digits is zero.
getLgCeiling(DigitsT Digits,int16_t Scale)233 template <class DigitsT> int32_t getLgCeiling(DigitsT Digits, int16_t Scale) {
234   auto Lg = getLgImpl(Digits, Scale);
235   return Lg.first + (Lg.second < 0);
236 }
237 
238 /// \brief Implementation for comparing scaled numbers.
239 ///
240 /// Compare two 64-bit numbers with different scales.  Given that the scale of
241 /// \c L is higher than that of \c R by \c ScaleDiff, compare them.  Return -1,
242 /// 1, and 0 for less than, greater than, and equal, respectively.
243 ///
244 /// \pre 0 <= ScaleDiff < 64.
245 int compareImpl(uint64_t L, uint64_t R, int ScaleDiff);
246 
247 /// \brief Compare two scaled numbers.
248 ///
249 /// Compare two scaled numbers.  Returns 0 for equal, -1 for less than, and 1
250 /// for greater than.
251 template <class DigitsT>
compare(DigitsT LDigits,int16_t LScale,DigitsT RDigits,int16_t RScale)252 int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) {
253   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
254 
255   // Check for zero.
256   if (!LDigits)
257     return RDigits ? -1 : 0;
258   if (!RDigits)
259     return 1;
260 
261   // Check for the scale.  Use getLgFloor to be sure that the scale difference
262   // is always lower than 64.
263   int32_t lgL = getLgFloor(LDigits, LScale), lgR = getLgFloor(RDigits, RScale);
264   if (lgL != lgR)
265     return lgL < lgR ? -1 : 1;
266 
267   // Compare digits.
268   if (LScale < RScale)
269     return compareImpl(LDigits, RDigits, RScale - LScale);
270 
271   return -compareImpl(RDigits, LDigits, LScale - RScale);
272 }
273 
274 /// \brief Match scales of two numbers.
275 ///
276 /// Given two scaled numbers, match up their scales.  Change the digits and
277 /// scales in place.  Shift the digits as necessary to form equivalent numbers,
278 /// losing precision only when necessary.
279 ///
280 /// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of
281 /// \c LScale (\c RScale) is unspecified.
282 ///
283 /// As a convenience, returns the matching scale.  If the output value of one
284 /// number is zero, returns the scale of the other.  If both are zero, which
285 /// scale is returned is unspecifed.
286 template <class DigitsT>
matchScales(DigitsT & LDigits,int16_t & LScale,DigitsT & RDigits,int16_t & RScale)287 int16_t matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits,
288                     int16_t &RScale) {
289   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
290 
291   if (LScale < RScale)
292     // Swap arguments.
293     return matchScales(RDigits, RScale, LDigits, LScale);
294   if (!LDigits)
295     return RScale;
296   if (!RDigits || LScale == RScale)
297     return LScale;
298 
299   // Now LScale > RScale.  Get the difference.
300   int32_t ScaleDiff = int32_t(LScale) - RScale;
301   if (ScaleDiff >= 2 * getWidth<DigitsT>()) {
302     // Don't bother shifting.  RDigits will get zero-ed out anyway.
303     RDigits = 0;
304     return LScale;
305   }
306 
307   // Shift LDigits left as much as possible, then shift RDigits right.
308   int32_t ShiftL = std::min<int32_t>(countLeadingZeros(LDigits), ScaleDiff);
309   assert(ShiftL < getWidth<DigitsT>() && "can't shift more than width");
310 
311   int32_t ShiftR = ScaleDiff - ShiftL;
312   if (ShiftR >= getWidth<DigitsT>()) {
313     // Don't bother shifting.  RDigits will get zero-ed out anyway.
314     RDigits = 0;
315     return LScale;
316   }
317 
318   LDigits <<= ShiftL;
319   RDigits >>= ShiftR;
320 
321   LScale -= ShiftL;
322   RScale += ShiftR;
323   assert(LScale == RScale && "scales should match");
324   return LScale;
325 }
326 
327 /// \brief Get the sum of two scaled numbers.
328 ///
329 /// Get the sum of two scaled numbers with as much precision as possible.
330 ///
331 /// \pre Adding 1 to \c LScale (or \c RScale) will not overflow INT16_MAX.
332 template <class DigitsT>
getSum(DigitsT LDigits,int16_t LScale,DigitsT RDigits,int16_t RScale)333 std::pair<DigitsT, int16_t> getSum(DigitsT LDigits, int16_t LScale,
334                                    DigitsT RDigits, int16_t RScale) {
335   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
336 
337   // Check inputs up front.  This is only relevent if addition overflows, but
338   // testing here should catch more bugs.
339   assert(LScale < INT16_MAX && "scale too large");
340   assert(RScale < INT16_MAX && "scale too large");
341 
342   // Normalize digits to match scales.
343   int16_t Scale = matchScales(LDigits, LScale, RDigits, RScale);
344 
345   // Compute sum.
346   DigitsT Sum = LDigits + RDigits;
347   if (Sum >= RDigits)
348     return std::make_pair(Sum, Scale);
349 
350   // Adjust sum after arithmetic overflow.
351   DigitsT HighBit = DigitsT(1) << (getWidth<DigitsT>() - 1);
352   return std::make_pair(HighBit | Sum >> 1, Scale + 1);
353 }
354 
355 /// \brief Convenience helper for 32-bit sum.
getSum32(uint32_t LDigits,int16_t LScale,uint32_t RDigits,int16_t RScale)356 inline std::pair<uint32_t, int16_t> getSum32(uint32_t LDigits, int16_t LScale,
357                                              uint32_t RDigits, int16_t RScale) {
358   return getSum(LDigits, LScale, RDigits, RScale);
359 }
360 
361 /// \brief Convenience helper for 64-bit sum.
getSum64(uint64_t LDigits,int16_t LScale,uint64_t RDigits,int16_t RScale)362 inline std::pair<uint64_t, int16_t> getSum64(uint64_t LDigits, int16_t LScale,
363                                              uint64_t RDigits, int16_t RScale) {
364   return getSum(LDigits, LScale, RDigits, RScale);
365 }
366 
367 /// \brief Get the difference of two scaled numbers.
368 ///
369 /// Get LHS minus RHS with as much precision as possible.
370 ///
371 /// Returns \c (0, 0) if the RHS is larger than the LHS.
372 template <class DigitsT>
getDifference(DigitsT LDigits,int16_t LScale,DigitsT RDigits,int16_t RScale)373 std::pair<DigitsT, int16_t> getDifference(DigitsT LDigits, int16_t LScale,
374                                           DigitsT RDigits, int16_t RScale) {
375   static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
376 
377   // Normalize digits to match scales.
378   const DigitsT SavedRDigits = RDigits;
379   const int16_t SavedRScale = RScale;
380   matchScales(LDigits, LScale, RDigits, RScale);
381 
382   // Compute difference.
383   if (LDigits <= RDigits)
384     return std::make_pair(0, 0);
385   if (RDigits || !SavedRDigits)
386     return std::make_pair(LDigits - RDigits, LScale);
387 
388   // Check if RDigits just barely lost its last bit.  E.g., for 32-bit:
389   //
390   //   1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
391   const auto RLgFloor = getLgFloor(SavedRDigits, SavedRScale);
392   if (!compare(LDigits, LScale, DigitsT(1), RLgFloor + getWidth<DigitsT>()))
393     return std::make_pair(std::numeric_limits<DigitsT>::max(), RLgFloor);
394 
395   return std::make_pair(LDigits, LScale);
396 }
397 
398 /// \brief Convenience helper for 32-bit difference.
getDifference32(uint32_t LDigits,int16_t LScale,uint32_t RDigits,int16_t RScale)399 inline std::pair<uint32_t, int16_t> getDifference32(uint32_t LDigits,
400                                                     int16_t LScale,
401                                                     uint32_t RDigits,
402                                                     int16_t RScale) {
403   return getDifference(LDigits, LScale, RDigits, RScale);
404 }
405 
406 /// \brief Convenience helper for 64-bit difference.
getDifference64(uint64_t LDigits,int16_t LScale,uint64_t RDigits,int16_t RScale)407 inline std::pair<uint64_t, int16_t> getDifference64(uint64_t LDigits,
408                                                     int16_t LScale,
409                                                     uint64_t RDigits,
410                                                     int16_t RScale) {
411   return getDifference(LDigits, LScale, RDigits, RScale);
412 }
413 
414 } // end namespace ScaledNumbers
415 } // end namespace llvm
416 
417 namespace llvm {
418 
419 class raw_ostream;
420 class ScaledNumberBase {
421 public:
422   static const int DefaultPrecision = 10;
423 
424   static void dump(uint64_t D, int16_t E, int Width);
425   static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
426                             unsigned Precision);
427   static std::string toString(uint64_t D, int16_t E, int Width,
428                               unsigned Precision);
countLeadingZeros32(uint32_t N)429   static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
countLeadingZeros64(uint64_t N)430   static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
getHalf(uint64_t N)431   static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
432 
splitSigned(int64_t N)433   static std::pair<uint64_t, bool> splitSigned(int64_t N) {
434     if (N >= 0)
435       return std::make_pair(N, false);
436     uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
437     return std::make_pair(Unsigned, true);
438   }
joinSigned(uint64_t U,bool IsNeg)439   static int64_t joinSigned(uint64_t U, bool IsNeg) {
440     if (U > uint64_t(INT64_MAX))
441       return IsNeg ? INT64_MIN : INT64_MAX;
442     return IsNeg ? -int64_t(U) : int64_t(U);
443   }
444 };
445 
446 /// \brief Simple representation of a scaled number.
447 ///
448 /// ScaledNumber is a number represented by digits and a scale.  It uses simple
449 /// saturation arithmetic and every operation is well-defined for every value.
450 /// It's somewhat similar in behaviour to a soft-float, but is *not* a
451 /// replacement for one.  If you're doing numerics, look at \a APFloat instead.
452 /// Nevertheless, we've found these semantics useful for modelling certain cost
453 /// metrics.
454 ///
455 /// The number is split into a signed scale and unsigned digits.  The number
456 /// represented is \c getDigits()*2^getScale().  In this way, the digits are
457 /// much like the mantissa in the x87 long double, but there is no canonical
458 /// form so the same number can be represented by many bit representations.
459 ///
460 /// ScaledNumber is templated on the underlying integer type for digits, which
461 /// is expected to be unsigned.
462 ///
463 /// Unlike APFloat, ScaledNumber does not model architecture floating point
464 /// behaviour -- while this might make it a little faster and easier to reason
465 /// about, it certainly makes it more dangerous for general numerics.
466 ///
467 /// ScaledNumber is totally ordered.  However, there is no canonical form, so
468 /// there are multiple representations of most scalars.  E.g.:
469 ///
470 ///     ScaledNumber(8u, 0) == ScaledNumber(4u, 1)
471 ///     ScaledNumber(4u, 1) == ScaledNumber(2u, 2)
472 ///     ScaledNumber(2u, 2) == ScaledNumber(1u, 3)
473 ///
474 /// ScaledNumber implements most arithmetic operations.  Precision is kept
475 /// where possible.  Uses simple saturation arithmetic, so that operations
476 /// saturate to 0.0 or getLargest() rather than under or overflowing.  It has
477 /// some extra arithmetic for unit inversion.  0.0/0.0 is defined to be 0.0.
478 /// Any other division by 0.0 is defined to be getLargest().
479 ///
480 /// As a convenience for modifying the exponent, left and right shifting are
481 /// both implemented, and both interpret negative shifts as positive shifts in
482 /// the opposite direction.
483 ///
484 /// Scales are limited to the range accepted by x87 long double.  This makes
485 /// it trivial to add functionality to convert to APFloat (this is already
486 /// relied on for the implementation of printing).
487 ///
488 /// Possible (and conflicting) future directions:
489 ///
490 ///  1. Turn this into a wrapper around \a APFloat.
491 ///  2. Share the algorithm implementations with \a APFloat.
492 ///  3. Allow \a ScaledNumber to represent a signed number.
493 template <class DigitsT> class ScaledNumber : ScaledNumberBase {
494 public:
495   static_assert(!std::numeric_limits<DigitsT>::is_signed,
496                 "only unsigned floats supported");
497 
498   typedef DigitsT DigitsType;
499 
500 private:
501   typedef std::numeric_limits<DigitsType> DigitsLimits;
502 
503   static const int Width = sizeof(DigitsType) * 8;
504   static_assert(Width <= 64, "invalid integer width for digits");
505 
506 private:
507   DigitsType Digits;
508   int16_t Scale;
509 
510 public:
ScaledNumber()511   ScaledNumber() : Digits(0), Scale(0) {}
512 
ScaledNumber(DigitsType Digits,int16_t Scale)513   ScaledNumber(DigitsType Digits, int16_t Scale)
514       : Digits(Digits), Scale(Scale) {}
515 
516 private:
ScaledNumber(const std::pair<uint64_t,int16_t> & X)517   ScaledNumber(const std::pair<uint64_t, int16_t> &X)
518       : Digits(X.first), Scale(X.second) {}
519 
520 public:
getZero()521   static ScaledNumber getZero() { return ScaledNumber(0, 0); }
getOne()522   static ScaledNumber getOne() { return ScaledNumber(1, 0); }
getLargest()523   static ScaledNumber getLargest() {
524     return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale);
525   }
get(uint64_t N)526   static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); }
getInverse(uint64_t N)527   static ScaledNumber getInverse(uint64_t N) {
528     return get(N).invert();
529   }
getFraction(DigitsType N,DigitsType D)530   static ScaledNumber getFraction(DigitsType N, DigitsType D) {
531     return getQuotient(N, D);
532   }
533 
getScale()534   int16_t getScale() const { return Scale; }
getDigits()535   DigitsType getDigits() const { return Digits; }
536 
537   /// \brief Convert to the given integer type.
538   ///
539   /// Convert to \c IntT using simple saturating arithmetic, truncating if
540   /// necessary.
541   template <class IntT> IntT toInt() const;
542 
isZero()543   bool isZero() const { return !Digits; }
isLargest()544   bool isLargest() const { return *this == getLargest(); }
isOne()545   bool isOne() const {
546     if (Scale > 0 || Scale <= -Width)
547       return false;
548     return Digits == DigitsType(1) << -Scale;
549   }
550 
551   /// \brief The log base 2, rounded.
552   ///
553   /// Get the lg of the scalar.  lg 0 is defined to be INT32_MIN.
lg()554   int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); }
555 
556   /// \brief The log base 2, rounded towards INT32_MIN.
557   ///
558   /// Get the lg floor.  lg 0 is defined to be INT32_MIN.
lgFloor()559   int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); }
560 
561   /// \brief The log base 2, rounded towards INT32_MAX.
562   ///
563   /// Get the lg ceiling.  lg 0 is defined to be INT32_MIN.
lgCeiling()564   int32_t lgCeiling() const {
565     return ScaledNumbers::getLgCeiling(Digits, Scale);
566   }
567 
568   bool operator==(const ScaledNumber &X) const { return compare(X) == 0; }
569   bool operator<(const ScaledNumber &X) const { return compare(X) < 0; }
570   bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; }
571   bool operator>(const ScaledNumber &X) const { return compare(X) > 0; }
572   bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; }
573   bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; }
574 
575   bool operator!() const { return isZero(); }
576 
577   /// \brief Convert to a decimal representation in a string.
578   ///
579   /// Convert to a string.  Uses scientific notation for very large/small
580   /// numbers.  Scientific notation is used roughly for numbers outside of the
581   /// range 2^-64 through 2^64.
582   ///
583   /// \c Precision indicates the number of decimal digits of precision to use;
584   /// 0 requests the maximum available.
585   ///
586   /// As a special case to make debugging easier, if the number is small enough
587   /// to convert without scientific notation and has more than \c Precision
588   /// digits before the decimal place, it's printed accurately to the first
589   /// digit past zero.  E.g., assuming 10 digits of precision:
590   ///
591   ///     98765432198.7654... => 98765432198.8
592   ///      8765432198.7654... =>  8765432198.8
593   ///       765432198.7654... =>   765432198.8
594   ///        65432198.7654... =>    65432198.77
595   ///         5432198.7654... =>     5432198.765
596   std::string toString(unsigned Precision = DefaultPrecision) {
597     return ScaledNumberBase::toString(Digits, Scale, Width, Precision);
598   }
599 
600   /// \brief Print a decimal representation.
601   ///
602   /// Print a string.  See toString for documentation.
603   raw_ostream &print(raw_ostream &OS,
604                      unsigned Precision = DefaultPrecision) const {
605     return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision);
606   }
dump()607   void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); }
608 
609   ScaledNumber &operator+=(const ScaledNumber &X) {
610     std::tie(Digits, Scale) =
611         ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale);
612     // Check for exponent past MaxScale.
613     if (Scale > ScaledNumbers::MaxScale)
614       *this = getLargest();
615     return *this;
616   }
617   ScaledNumber &operator-=(const ScaledNumber &X) {
618     std::tie(Digits, Scale) =
619         ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale);
620     return *this;
621   }
622   ScaledNumber &operator*=(const ScaledNumber &X);
623   ScaledNumber &operator/=(const ScaledNumber &X);
624   ScaledNumber &operator<<=(int16_t Shift) {
625     shiftLeft(Shift);
626     return *this;
627   }
628   ScaledNumber &operator>>=(int16_t Shift) {
629     shiftRight(Shift);
630     return *this;
631   }
632 
633 private:
634   void shiftLeft(int32_t Shift);
635   void shiftRight(int32_t Shift);
636 
637   /// \brief Adjust two floats to have matching exponents.
638   ///
639   /// Adjust \c this and \c X to have matching exponents.  Returns the new \c X
640   /// by value.  Does nothing if \a isZero() for either.
641   ///
642   /// The value that compares smaller will lose precision, and possibly become
643   /// \a isZero().
matchScales(ScaledNumber X)644   ScaledNumber matchScales(ScaledNumber X) {
645     ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale);
646     return X;
647   }
648 
649 public:
650   /// \brief Scale a large number accurately.
651   ///
652   /// Scale N (multiply it by this).  Uses full precision multiplication, even
653   /// if Width is smaller than 64, so information is not lost.
654   uint64_t scale(uint64_t N) const;
scaleByInverse(uint64_t N)655   uint64_t scaleByInverse(uint64_t N) const {
656     // TODO: implement directly, rather than relying on inverse.  Inverse is
657     // expensive.
658     return inverse().scale(N);
659   }
scale(int64_t N)660   int64_t scale(int64_t N) const {
661     std::pair<uint64_t, bool> Unsigned = splitSigned(N);
662     return joinSigned(scale(Unsigned.first), Unsigned.second);
663   }
scaleByInverse(int64_t N)664   int64_t scaleByInverse(int64_t N) const {
665     std::pair<uint64_t, bool> Unsigned = splitSigned(N);
666     return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
667   }
668 
compare(const ScaledNumber & X)669   int compare(const ScaledNumber &X) const {
670     return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale);
671   }
compareTo(uint64_t N)672   int compareTo(uint64_t N) const {
673     ScaledNumber Scaled = get(N);
674     int Compare = compare(Scaled);
675     if (Width == 64 || Compare != 0)
676       return Compare;
677 
678     // Check for precision loss.  We know *this == RoundTrip.
679     uint64_t RoundTrip = Scaled.template toInt<uint64_t>();
680     return N == RoundTrip ? 0 : RoundTrip < N ? -1 : 1;
681   }
compareTo(int64_t N)682   int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
683 
invert()684   ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; }
inverse()685   ScaledNumber inverse() const { return ScaledNumber(*this).invert(); }
686 
687 private:
getProduct(DigitsType LHS,DigitsType RHS)688   static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) {
689     return ScaledNumbers::getProduct(LHS, RHS);
690   }
getQuotient(DigitsType Dividend,DigitsType Divisor)691   static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) {
692     return ScaledNumbers::getQuotient(Dividend, Divisor);
693   }
694 
countLeadingZerosWidth(DigitsType Digits)695   static int countLeadingZerosWidth(DigitsType Digits) {
696     if (Width == 64)
697       return countLeadingZeros64(Digits);
698     if (Width == 32)
699       return countLeadingZeros32(Digits);
700     return countLeadingZeros32(Digits) + Width - 32;
701   }
702 
703   /// \brief Adjust a number to width, rounding up if necessary.
704   ///
705   /// Should only be called for \c Shift close to zero.
706   ///
707   /// \pre Shift >= MinScale && Shift + 64 <= MaxScale.
adjustToWidth(uint64_t N,int32_t Shift)708   static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) {
709     assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0");
710     assert(Shift <= ScaledNumbers::MaxScale - 64 &&
711            "Shift should be close to 0");
712     auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift);
713     return Adjusted;
714   }
715 
getRounded(ScaledNumber P,bool Round)716   static ScaledNumber getRounded(ScaledNumber P, bool Round) {
717     // Saturate.
718     if (P.isLargest())
719       return P;
720 
721     return ScaledNumbers::getRounded(P.Digits, P.Scale, Round);
722   }
723 };
724 
725 #define SCALED_NUMBER_BOP(op, base)                                            \
726   template <class DigitsT>                                                     \
727   ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L,            \
728                                     const ScaledNumber<DigitsT> &R) {          \
729     return ScaledNumber<DigitsT>(L) base R;                                    \
730   }
731 SCALED_NUMBER_BOP(+, += )
732 SCALED_NUMBER_BOP(-, -= )
733 SCALED_NUMBER_BOP(*, *= )
734 SCALED_NUMBER_BOP(/, /= )
735 SCALED_NUMBER_BOP(<<, <<= )
736 SCALED_NUMBER_BOP(>>, >>= )
737 #undef SCALED_NUMBER_BOP
738 
739 template <class DigitsT>
740 raw_ostream &operator<<(raw_ostream &OS, const ScaledNumber<DigitsT> &X) {
741   return X.print(OS, 10);
742 }
743 
744 #define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2)                              \
745   template <class DigitsT>                                                     \
746   bool operator op(const ScaledNumber<DigitsT> &L, T1 R) {                     \
747     return L.compareTo(T2(R)) op 0;                                            \
748   }                                                                            \
749   template <class DigitsT>                                                     \
750   bool operator op(T1 L, const ScaledNumber<DigitsT> &R) {                     \
751     return 0 op R.compareTo(T2(L));                                            \
752   }
753 #define SCALED_NUMBER_COMPARE_TO(op)                                           \
754   SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t)                        \
755   SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t)                        \
756   SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t)                          \
757   SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t)
758 SCALED_NUMBER_COMPARE_TO(< )
759 SCALED_NUMBER_COMPARE_TO(> )
760 SCALED_NUMBER_COMPARE_TO(== )
761 SCALED_NUMBER_COMPARE_TO(!= )
762 SCALED_NUMBER_COMPARE_TO(<= )
763 SCALED_NUMBER_COMPARE_TO(>= )
764 #undef SCALED_NUMBER_COMPARE_TO
765 #undef SCALED_NUMBER_COMPARE_TO_TYPE
766 
767 template <class DigitsT>
scale(uint64_t N)768 uint64_t ScaledNumber<DigitsT>::scale(uint64_t N) const {
769   if (Width == 64 || N <= DigitsLimits::max())
770     return (get(N) * *this).template toInt<uint64_t>();
771 
772   // Defer to the 64-bit version.
773   return ScaledNumber<uint64_t>(Digits, Scale).scale(N);
774 }
775 
776 template <class DigitsT>
777 template <class IntT>
toInt()778 IntT ScaledNumber<DigitsT>::toInt() const {
779   typedef std::numeric_limits<IntT> Limits;
780   if (*this < 1)
781     return 0;
782   if (*this >= Limits::max())
783     return Limits::max();
784 
785   IntT N = Digits;
786   if (Scale > 0) {
787     assert(size_t(Scale) < sizeof(IntT) * 8);
788     return N << Scale;
789   }
790   if (Scale < 0) {
791     assert(size_t(-Scale) < sizeof(IntT) * 8);
792     return N >> -Scale;
793   }
794   return N;
795 }
796 
797 template <class DigitsT>
798 ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
799 operator*=(const ScaledNumber &X) {
800   if (isZero())
801     return *this;
802   if (X.isZero())
803     return *this = X;
804 
805   // Save the exponents.
806   int32_t Scales = int32_t(Scale) + int32_t(X.Scale);
807 
808   // Get the raw product.
809   *this = getProduct(Digits, X.Digits);
810 
811   // Combine with exponents.
812   return *this <<= Scales;
813 }
814 template <class DigitsT>
815 ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
816 operator/=(const ScaledNumber &X) {
817   if (isZero())
818     return *this;
819   if (X.isZero())
820     return *this = getLargest();
821 
822   // Save the exponents.
823   int32_t Scales = int32_t(Scale) - int32_t(X.Scale);
824 
825   // Get the raw quotient.
826   *this = getQuotient(Digits, X.Digits);
827 
828   // Combine with exponents.
829   return *this <<= Scales;
830 }
shiftLeft(int32_t Shift)831 template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) {
832   if (!Shift || isZero())
833     return;
834   assert(Shift != INT32_MIN);
835   if (Shift < 0) {
836     shiftRight(-Shift);
837     return;
838   }
839 
840   // Shift as much as we can in the exponent.
841   int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale);
842   Scale += ScaleShift;
843   if (ScaleShift == Shift)
844     return;
845 
846   // Check this late, since it's rare.
847   if (isLargest())
848     return;
849 
850   // Shift the digits themselves.
851   Shift -= ScaleShift;
852   if (Shift > countLeadingZerosWidth(Digits)) {
853     // Saturate.
854     *this = getLargest();
855     return;
856   }
857 
858   Digits <<= Shift;
859   return;
860 }
861 
shiftRight(int32_t Shift)862 template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) {
863   if (!Shift || isZero())
864     return;
865   assert(Shift != INT32_MIN);
866   if (Shift < 0) {
867     shiftLeft(-Shift);
868     return;
869   }
870 
871   // Shift as much as we can in the exponent.
872   int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale);
873   Scale -= ScaleShift;
874   if (ScaleShift == Shift)
875     return;
876 
877   // Shift the digits themselves.
878   Shift -= ScaleShift;
879   if (Shift >= Width) {
880     // Saturate.
881     *this = getZero();
882     return;
883   }
884 
885   Digits >>= Shift;
886   return;
887 }
888 
889 template <typename T> struct isPodLike;
890 template <typename T> struct isPodLike<ScaledNumber<T>> {
891   static const bool value = true;
892 };
893 
894 } // end namespace llvm
895 
896 #endif
897