1 /*
2 **********************************************************************
3 * Copyright (c) 2003-2013, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 **********************************************************************
6 * Author: Alan Liu
7 * Created: July 21 2003
8 * Since: ICU 2.8
9 **********************************************************************
10 */
11
12 #include "utypeinfo.h" // for 'typeid' to work
13
14 #include "olsontz.h"
15
16 #if !UCONFIG_NO_FORMATTING
17
18 #include "unicode/ures.h"
19 #include "unicode/simpletz.h"
20 #include "unicode/gregocal.h"
21 #include "gregoimp.h"
22 #include "cmemory.h"
23 #include "uassert.h"
24 #include "uvector.h"
25 #include <float.h> // DBL_MAX
26 #include "uresimp.h" // struct UResourceBundle
27 #include "zonemeta.h"
28 #include "umutex.h"
29
30 #ifdef U_DEBUG_TZ
31 # include <stdio.h>
32 # include "uresimp.h" // for debugging
33
debug_tz_loc(const char * f,int32_t l)34 static void debug_tz_loc(const char *f, int32_t l)
35 {
36 fprintf(stderr, "%s:%d: ", f, l);
37 }
38
debug_tz_msg(const char * pat,...)39 static void debug_tz_msg(const char *pat, ...)
40 {
41 va_list ap;
42 va_start(ap, pat);
43 vfprintf(stderr, pat, ap);
44 fflush(stderr);
45 }
46 // must use double parens, i.e.: U_DEBUG_TZ_MSG(("four is: %d",4));
47 #define U_DEBUG_TZ_MSG(x) {debug_tz_loc(__FILE__,__LINE__);debug_tz_msg x;}
48 #else
49 #define U_DEBUG_TZ_MSG(x)
50 #endif
51
arrayEqual(const void * a1,const void * a2,int32_t size)52 static UBool arrayEqual(const void *a1, const void *a2, int32_t size) {
53 if (a1 == NULL && a2 == NULL) {
54 return TRUE;
55 }
56 if ((a1 != NULL && a2 == NULL) || (a1 == NULL && a2 != NULL)) {
57 return FALSE;
58 }
59 if (a1 == a2) {
60 return TRUE;
61 }
62
63 return (uprv_memcmp(a1, a2, size) == 0);
64 }
65
66 U_NAMESPACE_BEGIN
67
68 #define kTRANS "trans"
69 #define kTRANSPRE32 "transPre32"
70 #define kTRANSPOST32 "transPost32"
71 #define kTYPEOFFSETS "typeOffsets"
72 #define kTYPEMAP "typeMap"
73 #define kLINKS "links"
74 #define kFINALRULE "finalRule"
75 #define kFINALRAW "finalRaw"
76 #define kFINALYEAR "finalYear"
77
78 #define SECONDS_PER_DAY (24*60*60)
79
80 static const int32_t ZEROS[] = {0,0};
81
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(OlsonTimeZone)82 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(OlsonTimeZone)
83
84 /**
85 * Default constructor. Creates a time zone with an empty ID and
86 * a fixed GMT offset of zero.
87 */
88 /*OlsonTimeZone::OlsonTimeZone() : finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0), transitionRulesInitialized(FALSE) {
89 clearTransitionRules();
90 constructEmpty();
91 }*/
92
93 /**
94 * Construct a GMT+0 zone with no transitions. This is done when a
95 * constructor fails so the resultant object is well-behaved.
96 */
97 void OlsonTimeZone::constructEmpty() {
98 canonicalID = NULL;
99
100 transitionCountPre32 = transitionCount32 = transitionCountPost32 = 0;
101 transitionTimesPre32 = transitionTimes32 = transitionTimesPost32 = NULL;
102
103 typeMapData = NULL;
104
105 typeCount = 1;
106 typeOffsets = ZEROS;
107
108 finalZone = NULL;
109 }
110
111 /**
112 * Construct from a resource bundle
113 * @param top the top-level zoneinfo resource bundle. This is used
114 * to lookup the rule that `res' may refer to, if there is one.
115 * @param res the resource bundle of the zone to be constructed
116 * @param ec input-output error code
117 */
OlsonTimeZone(const UResourceBundle * top,const UResourceBundle * res,const UnicodeString & tzid,UErrorCode & ec)118 OlsonTimeZone::OlsonTimeZone(const UResourceBundle* top,
119 const UResourceBundle* res,
120 const UnicodeString& tzid,
121 UErrorCode& ec) :
122 BasicTimeZone(tzid), finalZone(NULL)
123 {
124 clearTransitionRules();
125 U_DEBUG_TZ_MSG(("OlsonTimeZone(%s)\n", ures_getKey((UResourceBundle*)res)));
126 if ((top == NULL || res == NULL) && U_SUCCESS(ec)) {
127 ec = U_ILLEGAL_ARGUMENT_ERROR;
128 }
129 if (U_SUCCESS(ec)) {
130 // TODO -- clean up -- Doesn't work if res points to an alias
131 // // TODO remove nonconst casts below when ures_* API is fixed
132 // setID(ures_getKey((UResourceBundle*) res)); // cast away const
133
134 int32_t len;
135 UResourceBundle r;
136 ures_initStackObject(&r);
137
138 // Pre-32bit second transitions
139 ures_getByKey(res, kTRANSPRE32, &r, &ec);
140 transitionTimesPre32 = ures_getIntVector(&r, &len, &ec);
141 transitionCountPre32 = len >> 1;
142 if (ec == U_MISSING_RESOURCE_ERROR) {
143 // No pre-32bit transitions
144 transitionTimesPre32 = NULL;
145 transitionCountPre32 = 0;
146 ec = U_ZERO_ERROR;
147 } else if (U_SUCCESS(ec) && (len < 0 || len > 0x7FFF || (len & 1) != 0) /* len must be even */) {
148 ec = U_INVALID_FORMAT_ERROR;
149 }
150
151 // 32bit second transitions
152 ures_getByKey(res, kTRANS, &r, &ec);
153 transitionTimes32 = ures_getIntVector(&r, &len, &ec);
154 transitionCount32 = len;
155 if (ec == U_MISSING_RESOURCE_ERROR) {
156 // No 32bit transitions
157 transitionTimes32 = NULL;
158 transitionCount32 = 0;
159 ec = U_ZERO_ERROR;
160 } else if (U_SUCCESS(ec) && (len < 0 || len > 0x7FFF)) {
161 ec = U_INVALID_FORMAT_ERROR;
162 }
163
164 // Post-32bit second transitions
165 ures_getByKey(res, kTRANSPOST32, &r, &ec);
166 transitionTimesPost32 = ures_getIntVector(&r, &len, &ec);
167 transitionCountPost32 = len >> 1;
168 if (ec == U_MISSING_RESOURCE_ERROR) {
169 // No pre-32bit transitions
170 transitionTimesPost32 = NULL;
171 transitionCountPost32 = 0;
172 ec = U_ZERO_ERROR;
173 } else if (U_SUCCESS(ec) && (len < 0 || len > 0x7FFF || (len & 1) != 0) /* len must be even */) {
174 ec = U_INVALID_FORMAT_ERROR;
175 }
176
177 // Type offsets list must be of even size, with size >= 2
178 ures_getByKey(res, kTYPEOFFSETS, &r, &ec);
179 typeOffsets = ures_getIntVector(&r, &len, &ec);
180 if (U_SUCCESS(ec) && (len < 2 || len > 0x7FFE || (len & 1) != 0)) {
181 ec = U_INVALID_FORMAT_ERROR;
182 }
183 typeCount = (int16_t) len >> 1;
184
185 // Type map data must be of the same size as the transition count
186 typeMapData = NULL;
187 if (transitionCount() > 0) {
188 ures_getByKey(res, kTYPEMAP, &r, &ec);
189 typeMapData = ures_getBinary(&r, &len, &ec);
190 if (ec == U_MISSING_RESOURCE_ERROR) {
191 // no type mapping data
192 ec = U_INVALID_FORMAT_ERROR;
193 } else if (U_SUCCESS(ec) && len != transitionCount()) {
194 ec = U_INVALID_FORMAT_ERROR;
195 }
196 }
197
198 // Process final rule and data, if any
199 const UChar *ruleIdUStr = ures_getStringByKey(res, kFINALRULE, &len, &ec);
200 ures_getByKey(res, kFINALRAW, &r, &ec);
201 int32_t ruleRaw = ures_getInt(&r, &ec);
202 ures_getByKey(res, kFINALYEAR, &r, &ec);
203 int32_t ruleYear = ures_getInt(&r, &ec);
204 if (U_SUCCESS(ec)) {
205 UnicodeString ruleID(TRUE, ruleIdUStr, len);
206 UResourceBundle *rule = TimeZone::loadRule(top, ruleID, NULL, ec);
207 const int32_t *ruleData = ures_getIntVector(rule, &len, &ec);
208 if (U_SUCCESS(ec) && len == 11) {
209 UnicodeString emptyStr;
210 finalZone = new SimpleTimeZone(
211 ruleRaw * U_MILLIS_PER_SECOND,
212 emptyStr,
213 (int8_t)ruleData[0], (int8_t)ruleData[1], (int8_t)ruleData[2],
214 ruleData[3] * U_MILLIS_PER_SECOND,
215 (SimpleTimeZone::TimeMode) ruleData[4],
216 (int8_t)ruleData[5], (int8_t)ruleData[6], (int8_t)ruleData[7],
217 ruleData[8] * U_MILLIS_PER_SECOND,
218 (SimpleTimeZone::TimeMode) ruleData[9],
219 ruleData[10] * U_MILLIS_PER_SECOND, ec);
220 if (finalZone == NULL) {
221 ec = U_MEMORY_ALLOCATION_ERROR;
222 } else {
223 finalStartYear = ruleYear;
224
225 // Note: Setting finalStartYear to the finalZone is problematic. When a date is around
226 // year boundary, SimpleTimeZone may return false result when DST is observed at the
227 // beginning of year. We could apply safe margin (day or two), but when one of recurrent
228 // rules falls around year boundary, it could return false result. Without setting the
229 // start year, finalZone works fine around the year boundary of the start year.
230
231 // finalZone->setStartYear(finalStartYear);
232
233
234 // Compute the millis for Jan 1, 0:00 GMT of the finalYear
235
236 // Note: finalStartMillis is used for detecting either if
237 // historic transition data or finalZone to be used. In an
238 // extreme edge case - for example, two transitions fall into
239 // small windows of time around the year boundary, this may
240 // result incorrect offset computation. But I think it will
241 // never happen practically. Yoshito - Feb 20, 2010
242 finalStartMillis = Grego::fieldsToDay(finalStartYear, 0, 1) * U_MILLIS_PER_DAY;
243 }
244 } else {
245 ec = U_INVALID_FORMAT_ERROR;
246 }
247 ures_close(rule);
248 } else if (ec == U_MISSING_RESOURCE_ERROR) {
249 // No final zone
250 ec = U_ZERO_ERROR;
251 }
252 ures_close(&r);
253
254 // initialize canonical ID
255 canonicalID = ZoneMeta::getCanonicalCLDRID(tzid, ec);
256 }
257
258 if (U_FAILURE(ec)) {
259 constructEmpty();
260 }
261 }
262
263 /**
264 * Copy constructor
265 */
OlsonTimeZone(const OlsonTimeZone & other)266 OlsonTimeZone::OlsonTimeZone(const OlsonTimeZone& other) :
267 BasicTimeZone(other), finalZone(0) {
268 *this = other;
269 }
270
271 /**
272 * Assignment operator
273 */
operator =(const OlsonTimeZone & other)274 OlsonTimeZone& OlsonTimeZone::operator=(const OlsonTimeZone& other) {
275 canonicalID = other.canonicalID;
276
277 transitionTimesPre32 = other.transitionTimesPre32;
278 transitionTimes32 = other.transitionTimes32;
279 transitionTimesPost32 = other.transitionTimesPost32;
280
281 transitionCountPre32 = other.transitionCountPre32;
282 transitionCount32 = other.transitionCount32;
283 transitionCountPost32 = other.transitionCountPost32;
284
285 typeCount = other.typeCount;
286 typeOffsets = other.typeOffsets;
287 typeMapData = other.typeMapData;
288
289 delete finalZone;
290 finalZone = (other.finalZone != 0) ?
291 (SimpleTimeZone*) other.finalZone->clone() : 0;
292
293 finalStartYear = other.finalStartYear;
294 finalStartMillis = other.finalStartMillis;
295
296 clearTransitionRules();
297
298 return *this;
299 }
300
301 /**
302 * Destructor
303 */
~OlsonTimeZone()304 OlsonTimeZone::~OlsonTimeZone() {
305 deleteTransitionRules();
306 delete finalZone;
307 }
308
309 /**
310 * Returns true if the two TimeZone objects are equal.
311 */
operator ==(const TimeZone & other) const312 UBool OlsonTimeZone::operator==(const TimeZone& other) const {
313 return ((this == &other) ||
314 (typeid(*this) == typeid(other) &&
315 TimeZone::operator==(other) &&
316 hasSameRules(other)));
317 }
318
319 /**
320 * TimeZone API.
321 */
clone() const322 TimeZone* OlsonTimeZone::clone() const {
323 return new OlsonTimeZone(*this);
324 }
325
326 /**
327 * TimeZone API.
328 */
getOffset(uint8_t era,int32_t year,int32_t month,int32_t dom,uint8_t dow,int32_t millis,UErrorCode & ec) const329 int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month,
330 int32_t dom, uint8_t dow,
331 int32_t millis, UErrorCode& ec) const {
332 if (month < UCAL_JANUARY || month > UCAL_DECEMBER) {
333 if (U_SUCCESS(ec)) {
334 ec = U_ILLEGAL_ARGUMENT_ERROR;
335 }
336 return 0;
337 } else {
338 return getOffset(era, year, month, dom, dow, millis,
339 Grego::monthLength(year, month),
340 ec);
341 }
342 }
343
344 /**
345 * TimeZone API.
346 */
getOffset(uint8_t era,int32_t year,int32_t month,int32_t dom,uint8_t dow,int32_t millis,int32_t monthLength,UErrorCode & ec) const347 int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month,
348 int32_t dom, uint8_t dow,
349 int32_t millis, int32_t monthLength,
350 UErrorCode& ec) const {
351 if (U_FAILURE(ec)) {
352 return 0;
353 }
354
355 if ((era != GregorianCalendar::AD && era != GregorianCalendar::BC)
356 || month < UCAL_JANUARY
357 || month > UCAL_DECEMBER
358 || dom < 1
359 || dom > monthLength
360 || dow < UCAL_SUNDAY
361 || dow > UCAL_SATURDAY
362 || millis < 0
363 || millis >= U_MILLIS_PER_DAY
364 || monthLength < 28
365 || monthLength > 31) {
366 ec = U_ILLEGAL_ARGUMENT_ERROR;
367 return 0;
368 }
369
370 if (era == GregorianCalendar::BC) {
371 year = -year;
372 }
373
374 if (finalZone != NULL && year >= finalStartYear) {
375 return finalZone->getOffset(era, year, month, dom, dow,
376 millis, monthLength, ec);
377 }
378
379 // Compute local epoch millis from input fields
380 UDate date = (UDate)(Grego::fieldsToDay(year, month, dom) * U_MILLIS_PER_DAY + millis);
381 int32_t rawoff, dstoff;
382 getHistoricalOffset(date, TRUE, kDaylight, kStandard, rawoff, dstoff);
383 return rawoff + dstoff;
384 }
385
386 /**
387 * TimeZone API.
388 */
getOffset(UDate date,UBool local,int32_t & rawoff,int32_t & dstoff,UErrorCode & ec) const389 void OlsonTimeZone::getOffset(UDate date, UBool local, int32_t& rawoff,
390 int32_t& dstoff, UErrorCode& ec) const {
391 if (U_FAILURE(ec)) {
392 return;
393 }
394 if (finalZone != NULL && date >= finalStartMillis) {
395 finalZone->getOffset(date, local, rawoff, dstoff, ec);
396 } else {
397 getHistoricalOffset(date, local, kFormer, kLatter, rawoff, dstoff);
398 }
399 }
400
401 void
getOffsetFromLocal(UDate date,int32_t nonExistingTimeOpt,int32_t duplicatedTimeOpt,int32_t & rawoff,int32_t & dstoff,UErrorCode & ec) const402 OlsonTimeZone::getOffsetFromLocal(UDate date, int32_t nonExistingTimeOpt, int32_t duplicatedTimeOpt,
403 int32_t& rawoff, int32_t& dstoff, UErrorCode& ec) const {
404 if (U_FAILURE(ec)) {
405 return;
406 }
407 if (finalZone != NULL && date >= finalStartMillis) {
408 finalZone->getOffsetFromLocal(date, nonExistingTimeOpt, duplicatedTimeOpt, rawoff, dstoff, ec);
409 } else {
410 getHistoricalOffset(date, TRUE, nonExistingTimeOpt, duplicatedTimeOpt, rawoff, dstoff);
411 }
412 }
413
414
415 /**
416 * TimeZone API.
417 */
setRawOffset(int32_t)418 void OlsonTimeZone::setRawOffset(int32_t /*offsetMillis*/) {
419 // We don't support this operation, since OlsonTimeZones are
420 // immutable (except for the ID, which is in the base class).
421
422 // Nothing to do!
423 }
424
425 /**
426 * TimeZone API.
427 */
getRawOffset() const428 int32_t OlsonTimeZone::getRawOffset() const {
429 UErrorCode ec = U_ZERO_ERROR;
430 int32_t raw, dst;
431 getOffset((double) uprv_getUTCtime() * U_MILLIS_PER_SECOND,
432 FALSE, raw, dst, ec);
433 return raw;
434 }
435
436 #if defined U_DEBUG_TZ
printTime(double ms)437 void printTime(double ms) {
438 int32_t year, month, dom, dow;
439 double millis=0;
440 double days = ClockMath::floorDivide(((double)ms), (double)U_MILLIS_PER_DAY, millis);
441
442 Grego::dayToFields(days, year, month, dom, dow);
443 U_DEBUG_TZ_MSG((" getHistoricalOffset: time %.1f (%04d.%02d.%02d+%.1fh)\n", ms,
444 year, month+1, dom, (millis/kOneHour)));
445 }
446 #endif
447
448 int64_t
transitionTimeInSeconds(int16_t transIdx) const449 OlsonTimeZone::transitionTimeInSeconds(int16_t transIdx) const {
450 U_ASSERT(transIdx >= 0 && transIdx < transitionCount());
451
452 if (transIdx < transitionCountPre32) {
453 return (((int64_t)((uint32_t)transitionTimesPre32[transIdx << 1])) << 32)
454 | ((int64_t)((uint32_t)transitionTimesPre32[(transIdx << 1) + 1]));
455 }
456
457 transIdx -= transitionCountPre32;
458 if (transIdx < transitionCount32) {
459 return (int64_t)transitionTimes32[transIdx];
460 }
461
462 transIdx -= transitionCount32;
463 return (((int64_t)((uint32_t)transitionTimesPost32[transIdx << 1])) << 32)
464 | ((int64_t)((uint32_t)transitionTimesPost32[(transIdx << 1) + 1]));
465 }
466
467 // Maximum absolute offset in seconds (86400 seconds = 1 day)
468 // getHistoricalOffset uses this constant as safety margin of
469 // quick zone transition checking.
470 #define MAX_OFFSET_SECONDS 86400
471
472 void
getHistoricalOffset(UDate date,UBool local,int32_t NonExistingTimeOpt,int32_t DuplicatedTimeOpt,int32_t & rawoff,int32_t & dstoff) const473 OlsonTimeZone::getHistoricalOffset(UDate date, UBool local,
474 int32_t NonExistingTimeOpt, int32_t DuplicatedTimeOpt,
475 int32_t& rawoff, int32_t& dstoff) const {
476 U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst)\n",
477 date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt));
478 #if defined U_DEBUG_TZ
479 printTime(date*1000.0);
480 #endif
481 int16_t transCount = transitionCount();
482
483 if (transCount > 0) {
484 double sec = uprv_floor(date / U_MILLIS_PER_SECOND);
485 if (!local && sec < transitionTimeInSeconds(0)) {
486 // Before the first transition time
487 rawoff = initialRawOffset() * U_MILLIS_PER_SECOND;
488 dstoff = initialDstOffset() * U_MILLIS_PER_SECOND;
489 } else {
490 // Linear search from the end is the fastest approach, since
491 // most lookups will happen at/near the end.
492 int16_t transIdx;
493 for (transIdx = transCount - 1; transIdx >= 0; transIdx--) {
494 int64_t transition = transitionTimeInSeconds(transIdx);
495
496 if (local && (sec >= (transition - MAX_OFFSET_SECONDS))) {
497 int32_t offsetBefore = zoneOffsetAt(transIdx - 1);
498 UBool dstBefore = dstOffsetAt(transIdx - 1) != 0;
499
500 int32_t offsetAfter = zoneOffsetAt(transIdx);
501 UBool dstAfter = dstOffsetAt(transIdx) != 0;
502
503 UBool dstToStd = dstBefore && !dstAfter;
504 UBool stdToDst = !dstBefore && dstAfter;
505
506 if (offsetAfter - offsetBefore >= 0) {
507 // Positive transition, which makes a non-existing local time range
508 if (((NonExistingTimeOpt & kStdDstMask) == kStandard && dstToStd)
509 || ((NonExistingTimeOpt & kStdDstMask) == kDaylight && stdToDst)) {
510 transition += offsetBefore;
511 } else if (((NonExistingTimeOpt & kStdDstMask) == kStandard && stdToDst)
512 || ((NonExistingTimeOpt & kStdDstMask) == kDaylight && dstToStd)) {
513 transition += offsetAfter;
514 } else if ((NonExistingTimeOpt & kFormerLatterMask) == kLatter) {
515 transition += offsetBefore;
516 } else {
517 // Interprets the time with rule before the transition,
518 // default for non-existing time range
519 transition += offsetAfter;
520 }
521 } else {
522 // Negative transition, which makes a duplicated local time range
523 if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && dstToStd)
524 || ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && stdToDst)) {
525 transition += offsetAfter;
526 } else if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && stdToDst)
527 || ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && dstToStd)) {
528 transition += offsetBefore;
529 } else if ((DuplicatedTimeOpt & kFormerLatterMask) == kFormer) {
530 transition += offsetBefore;
531 } else {
532 // Interprets the time with rule after the transition,
533 // default for duplicated local time range
534 transition += offsetAfter;
535 }
536 }
537 }
538 if (sec >= transition) {
539 break;
540 }
541 }
542 // transIdx could be -1 when local=true
543 rawoff = rawOffsetAt(transIdx) * U_MILLIS_PER_SECOND;
544 dstoff = dstOffsetAt(transIdx) * U_MILLIS_PER_SECOND;
545 }
546 } else {
547 // No transitions, single pair of offsets only
548 rawoff = initialRawOffset() * U_MILLIS_PER_SECOND;
549 dstoff = initialDstOffset() * U_MILLIS_PER_SECOND;
550 }
551 U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst) - raw=%d, dst=%d\n",
552 date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt, rawoff, dstoff));
553 }
554
555 /**
556 * TimeZone API.
557 */
useDaylightTime() const558 UBool OlsonTimeZone::useDaylightTime() const {
559 // If DST was observed in 1942 (for example) but has never been
560 // observed from 1943 to the present, most clients will expect
561 // this method to return FALSE. This method determines whether
562 // DST is in use in the current year (at any point in the year)
563 // and returns TRUE if so.
564
565 UDate current = uprv_getUTCtime();
566 if (finalZone != NULL && current >= finalStartMillis) {
567 return finalZone->useDaylightTime();
568 }
569
570 int32_t year, month, dom, dow, doy, mid;
571 Grego::timeToFields(current, year, month, dom, dow, doy, mid);
572
573 // Find start of this year, and start of next year
574 double start = Grego::fieldsToDay(year, 0, 1) * SECONDS_PER_DAY;
575 double limit = Grego::fieldsToDay(year+1, 0, 1) * SECONDS_PER_DAY;
576
577 // Return TRUE if DST is observed at any time during the current
578 // year.
579 for (int16_t i = 0; i < transitionCount(); ++i) {
580 double transition = (double)transitionTimeInSeconds(i);
581 if (transition >= limit) {
582 break;
583 }
584 if ((transition >= start && dstOffsetAt(i) != 0)
585 || (transition > start && dstOffsetAt(i - 1) != 0)) {
586 return TRUE;
587 }
588 }
589 return FALSE;
590 }
591 int32_t
getDSTSavings() const592 OlsonTimeZone::getDSTSavings() const{
593 if (finalZone != NULL){
594 return finalZone->getDSTSavings();
595 }
596 return TimeZone::getDSTSavings();
597 }
598 /**
599 * TimeZone API.
600 */
inDaylightTime(UDate date,UErrorCode & ec) const601 UBool OlsonTimeZone::inDaylightTime(UDate date, UErrorCode& ec) const {
602 int32_t raw, dst;
603 getOffset(date, FALSE, raw, dst, ec);
604 return dst != 0;
605 }
606
607 UBool
hasSameRules(const TimeZone & other) const608 OlsonTimeZone::hasSameRules(const TimeZone &other) const {
609 if (this == &other) {
610 return TRUE;
611 }
612 const OlsonTimeZone* z = dynamic_cast<const OlsonTimeZone*>(&other);
613 if (z == NULL) {
614 return FALSE;
615 }
616
617 // [sic] pointer comparison: typeMapData points into
618 // memory-mapped or DLL space, so if two zones have the same
619 // pointer, they are equal.
620 if (typeMapData == z->typeMapData) {
621 return TRUE;
622 }
623
624 // If the pointers are not equal, the zones may still
625 // be equal if their rules and transitions are equal
626 if ((finalZone == NULL && z->finalZone != NULL)
627 || (finalZone != NULL && z->finalZone == NULL)
628 || (finalZone != NULL && z->finalZone != NULL && *finalZone != *z->finalZone)) {
629 return FALSE;
630 }
631
632 if (finalZone != NULL) {
633 if (finalStartYear != z->finalStartYear || finalStartMillis != z->finalStartMillis) {
634 return FALSE;
635 }
636 }
637 if (typeCount != z->typeCount
638 || transitionCountPre32 != z->transitionCountPre32
639 || transitionCount32 != z->transitionCount32
640 || transitionCountPost32 != z->transitionCountPost32) {
641 return FALSE;
642 }
643
644 return
645 arrayEqual(transitionTimesPre32, z->transitionTimesPre32, sizeof(transitionTimesPre32[0]) * transitionCountPre32 << 1)
646 && arrayEqual(transitionTimes32, z->transitionTimes32, sizeof(transitionTimes32[0]) * transitionCount32)
647 && arrayEqual(transitionTimesPost32, z->transitionTimesPost32, sizeof(transitionTimesPost32[0]) * transitionCountPost32 << 1)
648 && arrayEqual(typeOffsets, z->typeOffsets, sizeof(typeOffsets[0]) * typeCount << 1)
649 && arrayEqual(typeMapData, z->typeMapData, sizeof(typeMapData[0]) * transitionCount());
650 }
651
652 void
clearTransitionRules(void)653 OlsonTimeZone::clearTransitionRules(void) {
654 initialRule = NULL;
655 firstTZTransition = NULL;
656 firstFinalTZTransition = NULL;
657 historicRules = NULL;
658 historicRuleCount = 0;
659 finalZoneWithStartYear = NULL;
660 firstTZTransitionIdx = 0;
661 transitionRulesInitOnce.reset();
662 }
663
664 void
deleteTransitionRules(void)665 OlsonTimeZone::deleteTransitionRules(void) {
666 if (initialRule != NULL) {
667 delete initialRule;
668 }
669 if (firstTZTransition != NULL) {
670 delete firstTZTransition;
671 }
672 if (firstFinalTZTransition != NULL) {
673 delete firstFinalTZTransition;
674 }
675 if (finalZoneWithStartYear != NULL) {
676 delete finalZoneWithStartYear;
677 }
678 if (historicRules != NULL) {
679 for (int i = 0; i < historicRuleCount; i++) {
680 if (historicRules[i] != NULL) {
681 delete historicRules[i];
682 }
683 }
684 uprv_free(historicRules);
685 }
686 clearTransitionRules();
687 }
688
689 /*
690 * Lazy transition rules initializer
691 */
692
initRules(OlsonTimeZone * This,UErrorCode & status)693 static void U_CALLCONV initRules(OlsonTimeZone *This, UErrorCode &status) {
694 This->initTransitionRules(status);
695 }
696
697 void
checkTransitionRules(UErrorCode & status) const698 OlsonTimeZone::checkTransitionRules(UErrorCode& status) const {
699 OlsonTimeZone *ncThis = const_cast<OlsonTimeZone *>(this);
700 umtx_initOnce(ncThis->transitionRulesInitOnce, &initRules, ncThis, status);
701 }
702
703 void
initTransitionRules(UErrorCode & status)704 OlsonTimeZone::initTransitionRules(UErrorCode& status) {
705 if(U_FAILURE(status)) {
706 return;
707 }
708 deleteTransitionRules();
709 UnicodeString tzid;
710 getID(tzid);
711
712 UnicodeString stdName = tzid + UNICODE_STRING_SIMPLE("(STD)");
713 UnicodeString dstName = tzid + UNICODE_STRING_SIMPLE("(DST)");
714
715 int32_t raw, dst;
716
717 // Create initial rule
718 raw = initialRawOffset() * U_MILLIS_PER_SECOND;
719 dst = initialDstOffset() * U_MILLIS_PER_SECOND;
720 initialRule = new InitialTimeZoneRule((dst == 0 ? stdName : dstName), raw, dst);
721 // Check to make sure initialRule was created
722 if (initialRule == NULL) {
723 status = U_MEMORY_ALLOCATION_ERROR;
724 deleteTransitionRules();
725 return;
726 }
727
728 int32_t transCount = transitionCount();
729 if (transCount > 0) {
730 int16_t transitionIdx, typeIdx;
731
732 // We probably no longer need to check the first "real" transition
733 // here, because the new tzcode remove such transitions already.
734 // For now, keeping this code for just in case. Feb 19, 2010 Yoshito
735 firstTZTransitionIdx = 0;
736 for (transitionIdx = 0; transitionIdx < transCount; transitionIdx++) {
737 if (typeMapData[transitionIdx] != 0) { // type 0 is the initial type
738 break;
739 }
740 firstTZTransitionIdx++;
741 }
742 if (transitionIdx == transCount) {
743 // Actually no transitions...
744 } else {
745 // Build historic rule array
746 UDate* times = (UDate*)uprv_malloc(sizeof(UDate)*transCount); /* large enough to store all transition times */
747 if (times == NULL) {
748 status = U_MEMORY_ALLOCATION_ERROR;
749 deleteTransitionRules();
750 return;
751 }
752 for (typeIdx = 0; typeIdx < typeCount; typeIdx++) {
753 // Gather all start times for each pair of offsets
754 int32_t nTimes = 0;
755 for (transitionIdx = firstTZTransitionIdx; transitionIdx < transCount; transitionIdx++) {
756 if (typeIdx == (int16_t)typeMapData[transitionIdx]) {
757 UDate tt = (UDate)transitionTime(transitionIdx);
758 if (finalZone == NULL || tt <= finalStartMillis) {
759 // Exclude transitions after finalMillis
760 times[nTimes++] = tt;
761 }
762 }
763 }
764 if (nTimes > 0) {
765 // Create a TimeArrayTimeZoneRule
766 raw = typeOffsets[typeIdx << 1] * U_MILLIS_PER_SECOND;
767 dst = typeOffsets[(typeIdx << 1) + 1] * U_MILLIS_PER_SECOND;
768 if (historicRules == NULL) {
769 historicRuleCount = typeCount;
770 historicRules = (TimeArrayTimeZoneRule**)uprv_malloc(sizeof(TimeArrayTimeZoneRule*)*historicRuleCount);
771 if (historicRules == NULL) {
772 status = U_MEMORY_ALLOCATION_ERROR;
773 deleteTransitionRules();
774 uprv_free(times);
775 return;
776 }
777 for (int i = 0; i < historicRuleCount; i++) {
778 // Initialize TimeArrayTimeZoneRule pointers as NULL
779 historicRules[i] = NULL;
780 }
781 }
782 historicRules[typeIdx] = new TimeArrayTimeZoneRule((dst == 0 ? stdName : dstName),
783 raw, dst, times, nTimes, DateTimeRule::UTC_TIME);
784 // Check for memory allocation error
785 if (historicRules[typeIdx] == NULL) {
786 status = U_MEMORY_ALLOCATION_ERROR;
787 deleteTransitionRules();
788 return;
789 }
790 }
791 }
792 uprv_free(times);
793
794 // Create initial transition
795 typeIdx = (int16_t)typeMapData[firstTZTransitionIdx];
796 firstTZTransition = new TimeZoneTransition((UDate)transitionTime(firstTZTransitionIdx),
797 *initialRule, *historicRules[typeIdx]);
798 // Check to make sure firstTZTransition was created.
799 if (firstTZTransition == NULL) {
800 status = U_MEMORY_ALLOCATION_ERROR;
801 deleteTransitionRules();
802 return;
803 }
804 }
805 }
806 if (finalZone != NULL) {
807 // Get the first occurence of final rule starts
808 UDate startTime = (UDate)finalStartMillis;
809 TimeZoneRule *firstFinalRule = NULL;
810
811 if (finalZone->useDaylightTime()) {
812 /*
813 * Note: When an OlsonTimeZone is constructed, we should set the final year
814 * as the start year of finalZone. However, the bounday condition used for
815 * getting offset from finalZone has some problems.
816 * For now, we do not set the valid start year when the construction time
817 * and create a clone and set the start year when extracting rules.
818 */
819 finalZoneWithStartYear = (SimpleTimeZone*)finalZone->clone();
820 // Check to make sure finalZone was actually cloned.
821 if (finalZoneWithStartYear == NULL) {
822 status = U_MEMORY_ALLOCATION_ERROR;
823 deleteTransitionRules();
824 return;
825 }
826 finalZoneWithStartYear->setStartYear(finalStartYear);
827
828 TimeZoneTransition tzt;
829 finalZoneWithStartYear->getNextTransition(startTime, false, tzt);
830 firstFinalRule = tzt.getTo()->clone();
831 // Check to make sure firstFinalRule received proper clone.
832 if (firstFinalRule == NULL) {
833 status = U_MEMORY_ALLOCATION_ERROR;
834 deleteTransitionRules();
835 return;
836 }
837 startTime = tzt.getTime();
838 } else {
839 // final rule with no transitions
840 finalZoneWithStartYear = (SimpleTimeZone*)finalZone->clone();
841 // Check to make sure finalZone was actually cloned.
842 if (finalZoneWithStartYear == NULL) {
843 status = U_MEMORY_ALLOCATION_ERROR;
844 deleteTransitionRules();
845 return;
846 }
847 finalZone->getID(tzid);
848 firstFinalRule = new TimeArrayTimeZoneRule(tzid,
849 finalZone->getRawOffset(), 0, &startTime, 1, DateTimeRule::UTC_TIME);
850 // Check firstFinalRule was properly created.
851 if (firstFinalRule == NULL) {
852 status = U_MEMORY_ALLOCATION_ERROR;
853 deleteTransitionRules();
854 return;
855 }
856 }
857 TimeZoneRule *prevRule = NULL;
858 if (transCount > 0) {
859 prevRule = historicRules[typeMapData[transCount - 1]];
860 }
861 if (prevRule == NULL) {
862 // No historic transitions, but only finalZone available
863 prevRule = initialRule;
864 }
865 firstFinalTZTransition = new TimeZoneTransition();
866 // Check to make sure firstFinalTZTransition was created before dereferencing
867 if (firstFinalTZTransition == NULL) {
868 status = U_MEMORY_ALLOCATION_ERROR;
869 deleteTransitionRules();
870 return;
871 }
872 firstFinalTZTransition->setTime(startTime);
873 firstFinalTZTransition->adoptFrom(prevRule->clone());
874 firstFinalTZTransition->adoptTo(firstFinalRule);
875 }
876 }
877
878 UBool
getNextTransition(UDate base,UBool inclusive,TimeZoneTransition & result) const879 OlsonTimeZone::getNextTransition(UDate base, UBool inclusive, TimeZoneTransition& result) const {
880 UErrorCode status = U_ZERO_ERROR;
881 checkTransitionRules(status);
882 if (U_FAILURE(status)) {
883 return FALSE;
884 }
885
886 if (finalZone != NULL) {
887 if (inclusive && base == firstFinalTZTransition->getTime()) {
888 result = *firstFinalTZTransition;
889 return TRUE;
890 } else if (base >= firstFinalTZTransition->getTime()) {
891 if (finalZone->useDaylightTime()) {
892 //return finalZone->getNextTransition(base, inclusive, result);
893 return finalZoneWithStartYear->getNextTransition(base, inclusive, result);
894 } else {
895 // No more transitions
896 return FALSE;
897 }
898 }
899 }
900 if (historicRules != NULL) {
901 // Find a historical transition
902 int16_t transCount = transitionCount();
903 int16_t ttidx = transCount - 1;
904 for (; ttidx >= firstTZTransitionIdx; ttidx--) {
905 UDate t = (UDate)transitionTime(ttidx);
906 if (base > t || (!inclusive && base == t)) {
907 break;
908 }
909 }
910 if (ttidx == transCount - 1) {
911 if (firstFinalTZTransition != NULL) {
912 result = *firstFinalTZTransition;
913 return TRUE;
914 } else {
915 return FALSE;
916 }
917 } else if (ttidx < firstTZTransitionIdx) {
918 result = *firstTZTransition;
919 return TRUE;
920 } else {
921 // Create a TimeZoneTransition
922 TimeZoneRule *to = historicRules[typeMapData[ttidx + 1]];
923 TimeZoneRule *from = historicRules[typeMapData[ttidx]];
924 UDate startTime = (UDate)transitionTime(ttidx+1);
925
926 // The transitions loaded from zoneinfo.res may contain non-transition data
927 UnicodeString fromName, toName;
928 from->getName(fromName);
929 to->getName(toName);
930 if (fromName == toName && from->getRawOffset() == to->getRawOffset()
931 && from->getDSTSavings() == to->getDSTSavings()) {
932 return getNextTransition(startTime, false, result);
933 }
934 result.setTime(startTime);
935 result.adoptFrom(from->clone());
936 result.adoptTo(to->clone());
937 return TRUE;
938 }
939 }
940 return FALSE;
941 }
942
943 UBool
getPreviousTransition(UDate base,UBool inclusive,TimeZoneTransition & result) const944 OlsonTimeZone::getPreviousTransition(UDate base, UBool inclusive, TimeZoneTransition& result) const {
945 UErrorCode status = U_ZERO_ERROR;
946 checkTransitionRules(status);
947 if (U_FAILURE(status)) {
948 return FALSE;
949 }
950
951 if (finalZone != NULL) {
952 if (inclusive && base == firstFinalTZTransition->getTime()) {
953 result = *firstFinalTZTransition;
954 return TRUE;
955 } else if (base > firstFinalTZTransition->getTime()) {
956 if (finalZone->useDaylightTime()) {
957 //return finalZone->getPreviousTransition(base, inclusive, result);
958 return finalZoneWithStartYear->getPreviousTransition(base, inclusive, result);
959 } else {
960 result = *firstFinalTZTransition;
961 return TRUE;
962 }
963 }
964 }
965
966 if (historicRules != NULL) {
967 // Find a historical transition
968 int16_t ttidx = transitionCount() - 1;
969 for (; ttidx >= firstTZTransitionIdx; ttidx--) {
970 UDate t = (UDate)transitionTime(ttidx);
971 if (base > t || (inclusive && base == t)) {
972 break;
973 }
974 }
975 if (ttidx < firstTZTransitionIdx) {
976 // No more transitions
977 return FALSE;
978 } else if (ttidx == firstTZTransitionIdx) {
979 result = *firstTZTransition;
980 return TRUE;
981 } else {
982 // Create a TimeZoneTransition
983 TimeZoneRule *to = historicRules[typeMapData[ttidx]];
984 TimeZoneRule *from = historicRules[typeMapData[ttidx-1]];
985 UDate startTime = (UDate)transitionTime(ttidx);
986
987 // The transitions loaded from zoneinfo.res may contain non-transition data
988 UnicodeString fromName, toName;
989 from->getName(fromName);
990 to->getName(toName);
991 if (fromName == toName && from->getRawOffset() == to->getRawOffset()
992 && from->getDSTSavings() == to->getDSTSavings()) {
993 return getPreviousTransition(startTime, false, result);
994 }
995 result.setTime(startTime);
996 result.adoptFrom(from->clone());
997 result.adoptTo(to->clone());
998 return TRUE;
999 }
1000 }
1001 return FALSE;
1002 }
1003
1004 int32_t
countTransitionRules(UErrorCode & status) const1005 OlsonTimeZone::countTransitionRules(UErrorCode& status) const {
1006 if (U_FAILURE(status)) {
1007 return 0;
1008 }
1009 checkTransitionRules(status);
1010 if (U_FAILURE(status)) {
1011 return 0;
1012 }
1013
1014 int32_t count = 0;
1015 if (historicRules != NULL) {
1016 // historicRules may contain null entries when original zoneinfo data
1017 // includes non transition data.
1018 for (int32_t i = 0; i < historicRuleCount; i++) {
1019 if (historicRules[i] != NULL) {
1020 count++;
1021 }
1022 }
1023 }
1024 if (finalZone != NULL) {
1025 if (finalZone->useDaylightTime()) {
1026 count += 2;
1027 } else {
1028 count++;
1029 }
1030 }
1031 return count;
1032 }
1033
1034 void
getTimeZoneRules(const InitialTimeZoneRule * & initial,const TimeZoneRule * trsrules[],int32_t & trscount,UErrorCode & status) const1035 OlsonTimeZone::getTimeZoneRules(const InitialTimeZoneRule*& initial,
1036 const TimeZoneRule* trsrules[],
1037 int32_t& trscount,
1038 UErrorCode& status) const {
1039 if (U_FAILURE(status)) {
1040 return;
1041 }
1042 checkTransitionRules(status);
1043 if (U_FAILURE(status)) {
1044 return;
1045 }
1046
1047 // Initial rule
1048 initial = initialRule;
1049
1050 // Transition rules
1051 int32_t cnt = 0;
1052 if (historicRules != NULL && trscount > cnt) {
1053 // historicRules may contain null entries when original zoneinfo data
1054 // includes non transition data.
1055 for (int32_t i = 0; i < historicRuleCount; i++) {
1056 if (historicRules[i] != NULL) {
1057 trsrules[cnt++] = historicRules[i];
1058 if (cnt >= trscount) {
1059 break;
1060 }
1061 }
1062 }
1063 }
1064 if (finalZoneWithStartYear != NULL && trscount > cnt) {
1065 const InitialTimeZoneRule *tmpini;
1066 int32_t tmpcnt = trscount - cnt;
1067 finalZoneWithStartYear->getTimeZoneRules(tmpini, &trsrules[cnt], tmpcnt, status);
1068 if (U_FAILURE(status)) {
1069 return;
1070 }
1071 cnt += tmpcnt;
1072 }
1073 // Set the result length
1074 trscount = cnt;
1075 }
1076
1077 U_NAMESPACE_END
1078
1079 #endif // !UCONFIG_NO_FORMATTING
1080
1081 //eof
1082