1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "code_generator_utils.h"
18 
19 #include "base/logging.h"
20 
21 namespace art {
22 
CalculateMagicAndShiftForDivRem(int64_t divisor,bool is_long,int64_t * magic,int * shift)23 void CalculateMagicAndShiftForDivRem(int64_t divisor, bool is_long,
24                                      int64_t* magic, int* shift) {
25   // It does not make sense to calculate magic and shift for zero divisor.
26   DCHECK_NE(divisor, 0);
27 
28   /* Implementation according to H.S.Warren's "Hacker's Delight" (Addison Wesley, 2002)
29    * Chapter 10 and T.Grablund, P.L.Montogomery's "Division by Invariant Integers Using
30    * Multiplication" (PLDI 1994).
31    * The magic number M and shift S can be calculated in the following way:
32    * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
33    * where divisor(d) >= 2.
34    * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
35    * where divisor(d) <= -2.
36    * Thus nc can be calculated like:
37    * nc = exp + exp % d - 1, where d >= 2 and exp = 2^31 for int or 2^63 for long
38    * nc = -exp + (exp + 1) % d, where d >= 2 and exp = 2^31 for int or 2^63 for long
39    *
40    * So the shift p is the smallest p satisfying
41    * 2^p > nc * (d - 2^p % d), where d >= 2
42    * 2^p > nc * (d + 2^p % d), where d <= -2.
43    *
44    * The magic number M is calculated by
45    * M = (2^p + d - 2^p % d) / d, where d >= 2
46    * M = (2^p - d - 2^p % d) / d, where d <= -2.
47    *
48    * Notice that p is always bigger than or equal to 32 (resp. 64), so we just return 32 - p
49    * (resp. 64 - p) as the shift number S.
50    */
51 
52   int64_t p = is_long ? 63 : 31;
53   const uint64_t exp = is_long ? (UINT64_C(1) << 63) : (UINT32_C(1) << 31);
54 
55   // Initialize the computations.
56   uint64_t abs_d = (divisor >= 0) ? divisor : -divisor;
57   uint64_t sign_bit = is_long ? static_cast<uint64_t>(divisor) >> 63 :
58                                 static_cast<uint32_t>(divisor) >> 31;
59   uint64_t tmp = exp + sign_bit;
60   uint64_t abs_nc = tmp - 1 - (tmp % abs_d);
61   uint64_t quotient1 = exp / abs_nc;
62   uint64_t remainder1 = exp % abs_nc;
63   uint64_t quotient2 = exp / abs_d;
64   uint64_t remainder2 = exp % abs_d;
65 
66   /*
67    * To avoid handling both positive and negative divisor, "Hacker's Delight"
68    * introduces a method to handle these 2 cases together to avoid duplication.
69    */
70   uint64_t delta;
71   do {
72     p++;
73     quotient1 = 2 * quotient1;
74     remainder1 = 2 * remainder1;
75     if (remainder1 >= abs_nc) {
76       quotient1++;
77       remainder1 = remainder1 - abs_nc;
78     }
79     quotient2 = 2 * quotient2;
80     remainder2 = 2 * remainder2;
81     if (remainder2 >= abs_d) {
82       quotient2++;
83       remainder2 = remainder2 - abs_d;
84     }
85     delta = abs_d - remainder2;
86   } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
87 
88   *magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
89 
90   if (!is_long) {
91     *magic = static_cast<int>(*magic);
92   }
93 
94   *shift = is_long ? p - 64 : p - 32;
95 }
96 
97 }  // namespace art
98