Copyright (c) 1987, 1988, 1989, 1990, 1991, 1992, 1994, 1995, 1996, 1997
The Regents of the University of California. All rights reserved.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that: (1) source code distributions
retain the above copyright notice and this paragraph in its entirety, (2)
distributions including binary code include the above copyright notice and
this paragraph in its entirety in the documentation or other materials
provided with the distribution, and (3) all advertising materials mentioning
features or use of this software display the following acknowledgement:
``This product includes software developed by the University of California,
Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior
written permission.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
In addition, packets time-stamped by different cores might be time-stamped in one order and added to the queue of packets for libpcap to read in another order, so time stamps might not be monotonically increasing.
Some capture devices on some platforms can provide time stamps for packets; those time stamps are usually high-resolution time stamps, and are usually applied to the packet when the first or last bit of the packet arrives, and are thus more accurate than time stamps provided by the host operating system. Those time stamps might not, however, be synchronized with the host operating system's clock, so that, for example, the time stamp of a packet might not correspond to the time stamp of an event on the host triggered by the arrival of that packet.
Depending on the capture device and the software on the host, libpcap might allow different types of time stamp to be used. The pcap_list_tstamp_types (3PCAP) routine provides, for a packet capture handle created by pcap_create (3PCAP) but not yet activated by pcap_activate (3PCAP), a list of time stamp types supported by the capture device for that handle. The list might be empty, in which case no choice of time stamp type is offered for that capture device. If the list is not empty, the pcap_set_tstamp_type (3PCAP) routine can be used after a pcap_create() call and before a pcap_activate() call to specify the type of time stamp to be used on the device. The time stamp types are listed here; the first value is the #define to use in code, the second value is the value returned by pcap_tstamp_type_val_to_name() and accepted by pcap_tstamp_name_to_val() .
5 PCAP_TSTAMP_HOST " - " host Time stamp provided by the host on which the capture is being done. The precision of this time stamp is unspecified; it might or might not be synchronized with the host operating system's clock.
5 PCAP_TSTAMP_HOST_LOWPREC " - " host_lowprec Time stamp provided by the host on which the capture is being done. This is a low-precision time stamp, synchronized with the host operating system's clock.
5 PCAP_TSTAMP_HOST_HIPREC " - " host_hiprec Time stamp provided by the host on which the capture is being done. This is a high-precision time stamp; it might or might not be synchronized with the host operating system's clock. It might be more expensive to fetch than PCAP_TSTAMP_HOST_LOWPREC .
5 PCAP_TSTAMP_ADAPTER " - " adapter Time stamp provided by the network adapter on which the capture is being done. This is a high-precision time stamp, synchronized with the host operating system's clock.
5 PCAP_TSTAMP_ADAPTER_UNSYNCED " - " adapter_unsynced Time stamp provided by the network adapter on which the capture is being done. This is a high-precision time stamp; it is not synchronized with the host operating system's clock.