1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/base/platform/time.h"
6
7 #if V8_OS_POSIX
8 #include <fcntl.h> // for O_RDONLY
9 #include <sys/time.h>
10 #include <unistd.h>
11 #endif
12 #if V8_OS_MACOSX
13 #include <mach/mach_time.h>
14 #endif
15
16 #include <string.h>
17
18 #if V8_OS_WIN
19 #include "src/base/lazy-instance.h"
20 #include "src/base/win32-headers.h"
21 #endif
22 #include "src/base/cpu.h"
23 #include "src/base/logging.h"
24 #include "src/base/platform/platform.h"
25
26 namespace v8 {
27 namespace base {
28
FromDays(int days)29 TimeDelta TimeDelta::FromDays(int days) {
30 return TimeDelta(days * Time::kMicrosecondsPerDay);
31 }
32
33
FromHours(int hours)34 TimeDelta TimeDelta::FromHours(int hours) {
35 return TimeDelta(hours * Time::kMicrosecondsPerHour);
36 }
37
38
FromMinutes(int minutes)39 TimeDelta TimeDelta::FromMinutes(int minutes) {
40 return TimeDelta(minutes * Time::kMicrosecondsPerMinute);
41 }
42
43
FromSeconds(int64_t seconds)44 TimeDelta TimeDelta::FromSeconds(int64_t seconds) {
45 return TimeDelta(seconds * Time::kMicrosecondsPerSecond);
46 }
47
48
FromMilliseconds(int64_t milliseconds)49 TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) {
50 return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond);
51 }
52
53
FromNanoseconds(int64_t nanoseconds)54 TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) {
55 return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond);
56 }
57
58
InDays() const59 int TimeDelta::InDays() const {
60 return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
61 }
62
63
InHours() const64 int TimeDelta::InHours() const {
65 return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
66 }
67
68
InMinutes() const69 int TimeDelta::InMinutes() const {
70 return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
71 }
72
73
InSecondsF() const74 double TimeDelta::InSecondsF() const {
75 return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
76 }
77
78
InSeconds() const79 int64_t TimeDelta::InSeconds() const {
80 return delta_ / Time::kMicrosecondsPerSecond;
81 }
82
83
InMillisecondsF() const84 double TimeDelta::InMillisecondsF() const {
85 return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
86 }
87
88
InMilliseconds() const89 int64_t TimeDelta::InMilliseconds() const {
90 return delta_ / Time::kMicrosecondsPerMillisecond;
91 }
92
93
InNanoseconds() const94 int64_t TimeDelta::InNanoseconds() const {
95 return delta_ * Time::kNanosecondsPerMicrosecond;
96 }
97
98
99 #if V8_OS_MACOSX
100
FromMachTimespec(struct mach_timespec ts)101 TimeDelta TimeDelta::FromMachTimespec(struct mach_timespec ts) {
102 DCHECK_GE(ts.tv_nsec, 0);
103 DCHECK_LT(ts.tv_nsec,
104 static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT
105 return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond +
106 ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
107 }
108
109
ToMachTimespec() const110 struct mach_timespec TimeDelta::ToMachTimespec() const {
111 struct mach_timespec ts;
112 DCHECK(delta_ >= 0);
113 ts.tv_sec = delta_ / Time::kMicrosecondsPerSecond;
114 ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) *
115 Time::kNanosecondsPerMicrosecond;
116 return ts;
117 }
118
119 #endif // V8_OS_MACOSX
120
121
122 #if V8_OS_POSIX
123
FromTimespec(struct timespec ts)124 TimeDelta TimeDelta::FromTimespec(struct timespec ts) {
125 DCHECK_GE(ts.tv_nsec, 0);
126 DCHECK_LT(ts.tv_nsec,
127 static_cast<long>(Time::kNanosecondsPerSecond)); // NOLINT
128 return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond +
129 ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
130 }
131
132
ToTimespec() const133 struct timespec TimeDelta::ToTimespec() const {
134 struct timespec ts;
135 ts.tv_sec = delta_ / Time::kMicrosecondsPerSecond;
136 ts.tv_nsec = (delta_ % Time::kMicrosecondsPerSecond) *
137 Time::kNanosecondsPerMicrosecond;
138 return ts;
139 }
140
141 #endif // V8_OS_POSIX
142
143
144 #if V8_OS_WIN
145
146 // We implement time using the high-resolution timers so that we can get
147 // timeouts which are smaller than 10-15ms. To avoid any drift, we
148 // periodically resync the internal clock to the system clock.
149 class Clock FINAL {
150 public:
Clock()151 Clock() : initial_ticks_(GetSystemTicks()), initial_time_(GetSystemTime()) {}
152
Now()153 Time Now() {
154 // Time between resampling the un-granular clock for this API (1 minute).
155 const TimeDelta kMaxElapsedTime = TimeDelta::FromMinutes(1);
156
157 LockGuard<Mutex> lock_guard(&mutex_);
158
159 // Determine current time and ticks.
160 TimeTicks ticks = GetSystemTicks();
161 Time time = GetSystemTime();
162
163 // Check if we need to synchronize with the system clock due to a backwards
164 // time change or the amount of time elapsed.
165 TimeDelta elapsed = ticks - initial_ticks_;
166 if (time < initial_time_ || elapsed > kMaxElapsedTime) {
167 initial_ticks_ = ticks;
168 initial_time_ = time;
169 return time;
170 }
171
172 return initial_time_ + elapsed;
173 }
174
NowFromSystemTime()175 Time NowFromSystemTime() {
176 LockGuard<Mutex> lock_guard(&mutex_);
177 initial_ticks_ = GetSystemTicks();
178 initial_time_ = GetSystemTime();
179 return initial_time_;
180 }
181
182 private:
GetSystemTicks()183 static TimeTicks GetSystemTicks() {
184 return TimeTicks::Now();
185 }
186
GetSystemTime()187 static Time GetSystemTime() {
188 FILETIME ft;
189 ::GetSystemTimeAsFileTime(&ft);
190 return Time::FromFiletime(ft);
191 }
192
193 TimeTicks initial_ticks_;
194 Time initial_time_;
195 Mutex mutex_;
196 };
197
198
199 static LazyStaticInstance<Clock, DefaultConstructTrait<Clock>,
200 ThreadSafeInitOnceTrait>::type clock =
201 LAZY_STATIC_INSTANCE_INITIALIZER;
202
203
Now()204 Time Time::Now() {
205 return clock.Pointer()->Now();
206 }
207
208
NowFromSystemTime()209 Time Time::NowFromSystemTime() {
210 return clock.Pointer()->NowFromSystemTime();
211 }
212
213
214 // Time between windows epoch and standard epoch.
215 static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000);
216
217
FromFiletime(FILETIME ft)218 Time Time::FromFiletime(FILETIME ft) {
219 if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) {
220 return Time();
221 }
222 if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() &&
223 ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) {
224 return Max();
225 }
226 int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) +
227 (static_cast<uint64_t>(ft.dwHighDateTime) << 32)) / 10;
228 return Time(us - kTimeToEpochInMicroseconds);
229 }
230
231
ToFiletime() const232 FILETIME Time::ToFiletime() const {
233 DCHECK(us_ >= 0);
234 FILETIME ft;
235 if (IsNull()) {
236 ft.dwLowDateTime = 0;
237 ft.dwHighDateTime = 0;
238 return ft;
239 }
240 if (IsMax()) {
241 ft.dwLowDateTime = std::numeric_limits<DWORD>::max();
242 ft.dwHighDateTime = std::numeric_limits<DWORD>::max();
243 return ft;
244 }
245 uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10;
246 ft.dwLowDateTime = static_cast<DWORD>(us);
247 ft.dwHighDateTime = static_cast<DWORD>(us >> 32);
248 return ft;
249 }
250
251 #elif V8_OS_POSIX
252
Now()253 Time Time::Now() {
254 struct timeval tv;
255 int result = gettimeofday(&tv, NULL);
256 DCHECK_EQ(0, result);
257 USE(result);
258 return FromTimeval(tv);
259 }
260
261
NowFromSystemTime()262 Time Time::NowFromSystemTime() {
263 return Now();
264 }
265
266
FromTimespec(struct timespec ts)267 Time Time::FromTimespec(struct timespec ts) {
268 DCHECK(ts.tv_nsec >= 0);
269 DCHECK(ts.tv_nsec < static_cast<long>(kNanosecondsPerSecond)); // NOLINT
270 if (ts.tv_nsec == 0 && ts.tv_sec == 0) {
271 return Time();
272 }
273 if (ts.tv_nsec == static_cast<long>(kNanosecondsPerSecond - 1) && // NOLINT
274 ts.tv_sec == std::numeric_limits<time_t>::max()) {
275 return Max();
276 }
277 return Time(ts.tv_sec * kMicrosecondsPerSecond +
278 ts.tv_nsec / kNanosecondsPerMicrosecond);
279 }
280
281
ToTimespec() const282 struct timespec Time::ToTimespec() const {
283 struct timespec ts;
284 if (IsNull()) {
285 ts.tv_sec = 0;
286 ts.tv_nsec = 0;
287 return ts;
288 }
289 if (IsMax()) {
290 ts.tv_sec = std::numeric_limits<time_t>::max();
291 ts.tv_nsec = static_cast<long>(kNanosecondsPerSecond - 1); // NOLINT
292 return ts;
293 }
294 ts.tv_sec = us_ / kMicrosecondsPerSecond;
295 ts.tv_nsec = (us_ % kMicrosecondsPerSecond) * kNanosecondsPerMicrosecond;
296 return ts;
297 }
298
299
FromTimeval(struct timeval tv)300 Time Time::FromTimeval(struct timeval tv) {
301 DCHECK(tv.tv_usec >= 0);
302 DCHECK(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond));
303 if (tv.tv_usec == 0 && tv.tv_sec == 0) {
304 return Time();
305 }
306 if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) &&
307 tv.tv_sec == std::numeric_limits<time_t>::max()) {
308 return Max();
309 }
310 return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec);
311 }
312
313
ToTimeval() const314 struct timeval Time::ToTimeval() const {
315 struct timeval tv;
316 if (IsNull()) {
317 tv.tv_sec = 0;
318 tv.tv_usec = 0;
319 return tv;
320 }
321 if (IsMax()) {
322 tv.tv_sec = std::numeric_limits<time_t>::max();
323 tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1);
324 return tv;
325 }
326 tv.tv_sec = us_ / kMicrosecondsPerSecond;
327 tv.tv_usec = us_ % kMicrosecondsPerSecond;
328 return tv;
329 }
330
331 #endif // V8_OS_WIN
332
333
FromJsTime(double ms_since_epoch)334 Time Time::FromJsTime(double ms_since_epoch) {
335 // The epoch is a valid time, so this constructor doesn't interpret
336 // 0 as the null time.
337 if (ms_since_epoch == std::numeric_limits<double>::max()) {
338 return Max();
339 }
340 return Time(
341 static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond));
342 }
343
344
ToJsTime() const345 double Time::ToJsTime() const {
346 if (IsNull()) {
347 // Preserve 0 so the invalid result doesn't depend on the platform.
348 return 0;
349 }
350 if (IsMax()) {
351 // Preserve max without offset to prevent overflow.
352 return std::numeric_limits<double>::max();
353 }
354 return static_cast<double>(us_) / kMicrosecondsPerMillisecond;
355 }
356
357
358 #if V8_OS_WIN
359
360 class TickClock {
361 public:
~TickClock()362 virtual ~TickClock() {}
363 virtual int64_t Now() = 0;
364 virtual bool IsHighResolution() = 0;
365 };
366
367
368 // Overview of time counters:
369 // (1) CPU cycle counter. (Retrieved via RDTSC)
370 // The CPU counter provides the highest resolution time stamp and is the least
371 // expensive to retrieve. However, the CPU counter is unreliable and should not
372 // be used in production. Its biggest issue is that it is per processor and it
373 // is not synchronized between processors. Also, on some computers, the counters
374 // will change frequency due to thermal and power changes, and stop in some
375 // states.
376 //
377 // (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
378 // resolution (100 nanoseconds) time stamp but is comparatively more expensive
379 // to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
380 // (with some help from ACPI).
381 // According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
382 // in the worst case, it gets the counter from the rollover interrupt on the
383 // programmable interrupt timer. In best cases, the HAL may conclude that the
384 // RDTSC counter runs at a constant frequency, then it uses that instead. On
385 // multiprocessor machines, it will try to verify the values returned from
386 // RDTSC on each processor are consistent with each other, and apply a handful
387 // of workarounds for known buggy hardware. In other words, QPC is supposed to
388 // give consistent result on a multiprocessor computer, but it is unreliable in
389 // reality due to bugs in BIOS or HAL on some, especially old computers.
390 // With recent updates on HAL and newer BIOS, QPC is getting more reliable but
391 // it should be used with caution.
392 //
393 // (3) System time. The system time provides a low-resolution (typically 10ms
394 // to 55 milliseconds) time stamp but is comparatively less expensive to
395 // retrieve and more reliable.
396 class HighResolutionTickClock FINAL : public TickClock {
397 public:
HighResolutionTickClock(int64_t ticks_per_second)398 explicit HighResolutionTickClock(int64_t ticks_per_second)
399 : ticks_per_second_(ticks_per_second) {
400 DCHECK_LT(0, ticks_per_second);
401 }
~HighResolutionTickClock()402 virtual ~HighResolutionTickClock() {}
403
Now()404 virtual int64_t Now() OVERRIDE {
405 LARGE_INTEGER now;
406 BOOL result = QueryPerformanceCounter(&now);
407 DCHECK(result);
408 USE(result);
409
410 // Intentionally calculate microseconds in a round about manner to avoid
411 // overflow and precision issues. Think twice before simplifying!
412 int64_t whole_seconds = now.QuadPart / ticks_per_second_;
413 int64_t leftover_ticks = now.QuadPart % ticks_per_second_;
414 int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) +
415 ((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_);
416
417 // Make sure we never return 0 here, so that TimeTicks::HighResolutionNow()
418 // will never return 0.
419 return ticks + 1;
420 }
421
IsHighResolution()422 virtual bool IsHighResolution() OVERRIDE {
423 return true;
424 }
425
426 private:
427 int64_t ticks_per_second_;
428 };
429
430
431 class RolloverProtectedTickClock FINAL : public TickClock {
432 public:
433 // We initialize rollover_ms_ to 1 to ensure that we will never
434 // return 0 from TimeTicks::HighResolutionNow() and TimeTicks::Now() below.
RolloverProtectedTickClock()435 RolloverProtectedTickClock() : last_seen_now_(0), rollover_ms_(1) {}
~RolloverProtectedTickClock()436 virtual ~RolloverProtectedTickClock() {}
437
Now()438 virtual int64_t Now() OVERRIDE {
439 LockGuard<Mutex> lock_guard(&mutex_);
440 // We use timeGetTime() to implement TimeTicks::Now(), which rolls over
441 // every ~49.7 days. We try to track rollover ourselves, which works if
442 // TimeTicks::Now() is called at least every 49 days.
443 // Note that we do not use GetTickCount() here, since timeGetTime() gives
444 // more predictable delta values, as described here:
445 // http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-difference-between-gettickcount-and-timegettime.aspx
446 // timeGetTime() provides 1ms granularity when combined with
447 // timeBeginPeriod(). If the host application for V8 wants fast timers, it
448 // can use timeBeginPeriod() to increase the resolution.
449 DWORD now = timeGetTime();
450 if (now < last_seen_now_) {
451 rollover_ms_ += V8_INT64_C(0x100000000); // ~49.7 days.
452 }
453 last_seen_now_ = now;
454 return (now + rollover_ms_) * Time::kMicrosecondsPerMillisecond;
455 }
456
IsHighResolution()457 virtual bool IsHighResolution() OVERRIDE {
458 return false;
459 }
460
461 private:
462 Mutex mutex_;
463 DWORD last_seen_now_;
464 int64_t rollover_ms_;
465 };
466
467
468 static LazyStaticInstance<RolloverProtectedTickClock,
469 DefaultConstructTrait<RolloverProtectedTickClock>,
470 ThreadSafeInitOnceTrait>::type tick_clock =
471 LAZY_STATIC_INSTANCE_INITIALIZER;
472
473
474 struct CreateHighResTickClockTrait {
Createv8::base::CreateHighResTickClockTrait475 static TickClock* Create() {
476 // Check if the installed hardware supports a high-resolution performance
477 // counter, and if not fallback to the low-resolution tick clock.
478 LARGE_INTEGER ticks_per_second;
479 if (!QueryPerformanceFrequency(&ticks_per_second)) {
480 return tick_clock.Pointer();
481 }
482
483 // On Athlon X2 CPUs (e.g. model 15) the QueryPerformanceCounter
484 // is unreliable, fallback to the low-resolution tick clock.
485 CPU cpu;
486 if (strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15) {
487 return tick_clock.Pointer();
488 }
489
490 return new HighResolutionTickClock(ticks_per_second.QuadPart);
491 }
492 };
493
494
495 static LazyDynamicInstance<TickClock, CreateHighResTickClockTrait,
496 ThreadSafeInitOnceTrait>::type high_res_tick_clock =
497 LAZY_DYNAMIC_INSTANCE_INITIALIZER;
498
499
Now()500 TimeTicks TimeTicks::Now() {
501 // Make sure we never return 0 here.
502 TimeTicks ticks(tick_clock.Pointer()->Now());
503 DCHECK(!ticks.IsNull());
504 return ticks;
505 }
506
507
HighResolutionNow()508 TimeTicks TimeTicks::HighResolutionNow() {
509 // Make sure we never return 0 here.
510 TimeTicks ticks(high_res_tick_clock.Pointer()->Now());
511 DCHECK(!ticks.IsNull());
512 return ticks;
513 }
514
515
516 // static
IsHighResolutionClockWorking()517 bool TimeTicks::IsHighResolutionClockWorking() {
518 return high_res_tick_clock.Pointer()->IsHighResolution();
519 }
520
521
522 // static
KernelTimestampNow()523 TimeTicks TimeTicks::KernelTimestampNow() { return TimeTicks(0); }
524
525
526 // static
KernelTimestampAvailable()527 bool TimeTicks::KernelTimestampAvailable() { return false; }
528
529 #else // V8_OS_WIN
530
Now()531 TimeTicks TimeTicks::Now() {
532 return HighResolutionNow();
533 }
534
535
HighResolutionNow()536 TimeTicks TimeTicks::HighResolutionNow() {
537 int64_t ticks;
538 #if V8_OS_MACOSX
539 static struct mach_timebase_info info;
540 if (info.denom == 0) {
541 kern_return_t result = mach_timebase_info(&info);
542 DCHECK_EQ(KERN_SUCCESS, result);
543 USE(result);
544 }
545 ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond *
546 info.numer / info.denom);
547 #elif V8_OS_SOLARIS
548 ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond);
549 #elif V8_LIBRT_NOT_AVAILABLE
550 // TODO(bmeurer): This is a temporary hack to support cross-compiling
551 // Chrome for Android in AOSP. Remove this once AOSP is fixed, also
552 // cleanup the tools/gyp/v8.gyp file.
553 struct timeval tv;
554 int result = gettimeofday(&tv, NULL);
555 DCHECK_EQ(0, result);
556 USE(result);
557 ticks = (tv.tv_sec * Time::kMicrosecondsPerSecond + tv.tv_usec);
558 #elif V8_OS_POSIX
559 struct timespec ts;
560 int result = clock_gettime(CLOCK_MONOTONIC, &ts);
561 DCHECK_EQ(0, result);
562 USE(result);
563 ticks = (ts.tv_sec * Time::kMicrosecondsPerSecond +
564 ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
565 #endif // V8_OS_MACOSX
566 // Make sure we never return 0 here.
567 return TimeTicks(ticks + 1);
568 }
569
570
571 // static
IsHighResolutionClockWorking()572 bool TimeTicks::IsHighResolutionClockWorking() {
573 return true;
574 }
575
576
577 #if V8_OS_LINUX && !V8_LIBRT_NOT_AVAILABLE
578
579 class KernelTimestampClock {
580 public:
KernelTimestampClock()581 KernelTimestampClock() : clock_fd_(-1), clock_id_(kClockInvalid) {
582 clock_fd_ = open(kTraceClockDevice, O_RDONLY);
583 if (clock_fd_ == -1) {
584 return;
585 }
586 clock_id_ = get_clockid(clock_fd_);
587 }
588
~KernelTimestampClock()589 virtual ~KernelTimestampClock() {
590 if (clock_fd_ != -1) {
591 close(clock_fd_);
592 }
593 }
594
Now()595 int64_t Now() {
596 if (clock_id_ == kClockInvalid) {
597 return 0;
598 }
599
600 struct timespec ts;
601
602 clock_gettime(clock_id_, &ts);
603 return ((int64_t)ts.tv_sec * kNsecPerSec) + ts.tv_nsec;
604 }
605
Available()606 bool Available() { return clock_id_ != kClockInvalid; }
607
608 private:
609 static const clockid_t kClockInvalid = -1;
610 static const char kTraceClockDevice[];
611 static const uint64_t kNsecPerSec = 1000000000;
612
613 int clock_fd_;
614 clockid_t clock_id_;
615
get_clockid(int fd)616 static int get_clockid(int fd) { return ((~(clockid_t)(fd) << 3) | 3); }
617 };
618
619
620 // Timestamp module name
621 const char KernelTimestampClock::kTraceClockDevice[] = "/dev/trace_clock";
622
623 #else
624
625 class KernelTimestampClock {
626 public:
KernelTimestampClock()627 KernelTimestampClock() {}
628
Now()629 int64_t Now() { return 0; }
Available()630 bool Available() { return false; }
631 };
632
633 #endif // V8_OS_LINUX && !V8_LIBRT_NOT_AVAILABLE
634
635 static LazyStaticInstance<KernelTimestampClock,
636 DefaultConstructTrait<KernelTimestampClock>,
637 ThreadSafeInitOnceTrait>::type kernel_tick_clock =
638 LAZY_STATIC_INSTANCE_INITIALIZER;
639
640
641 // static
KernelTimestampNow()642 TimeTicks TimeTicks::KernelTimestampNow() {
643 return TimeTicks(kernel_tick_clock.Pointer()->Now());
644 }
645
646
647 // static
KernelTimestampAvailable()648 bool TimeTicks::KernelTimestampAvailable() {
649 return kernel_tick_clock.Pointer()->Available();
650 }
651
652 #endif // V8_OS_WIN
653
654 } } // namespace v8::base
655