1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> 5 // Copyright (C) 2009 Keir Mierle <mierle@gmail.com> 6 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> 7 // Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com > 8 // 9 // This Source Code Form is subject to the terms of the Mozilla 10 // Public License v. 2.0. If a copy of the MPL was not distributed 11 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 12 13 #ifndef EIGEN_LDLT_H 14 #define EIGEN_LDLT_H 15 16 namespace Eigen { 17 18 namespace internal { 19 template<typename MatrixType, int UpLo> struct LDLT_Traits; 20 21 // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef 22 enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite }; 23 } 24 25 /** \ingroup Cholesky_Module 26 * 27 * \class LDLT 28 * 29 * \brief Robust Cholesky decomposition of a matrix with pivoting 30 * 31 * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition 32 * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. 33 * The other triangular part won't be read. 34 * 35 * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite 36 * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L 37 * is lower triangular with a unit diagonal and D is a diagonal matrix. 38 * 39 * The decomposition uses pivoting to ensure stability, so that L will have 40 * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root 41 * on D also stabilizes the computation. 42 * 43 * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky 44 * decomposition to determine whether a system of equations has a solution. 45 * 46 * \sa MatrixBase::ldlt(), class LLT 47 */ 48 template<typename _MatrixType, int _UpLo> class LDLT 49 { 50 public: 51 typedef _MatrixType MatrixType; 52 enum { 53 RowsAtCompileTime = MatrixType::RowsAtCompileTime, 54 ColsAtCompileTime = MatrixType::ColsAtCompileTime, 55 Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here! 56 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, 57 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, 58 UpLo = _UpLo 59 }; 60 typedef typename MatrixType::Scalar Scalar; 61 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; 62 typedef typename MatrixType::Index Index; 63 typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType; 64 65 typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; 66 typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; 67 68 typedef internal::LDLT_Traits<MatrixType,UpLo> Traits; 69 70 /** \brief Default Constructor. 71 * 72 * The default constructor is useful in cases in which the user intends to 73 * perform decompositions via LDLT::compute(const MatrixType&). 74 */ LDLT()75 LDLT() 76 : m_matrix(), 77 m_transpositions(), 78 m_sign(internal::ZeroSign), 79 m_isInitialized(false) 80 {} 81 82 /** \brief Default Constructor with memory preallocation 83 * 84 * Like the default constructor but with preallocation of the internal data 85 * according to the specified problem \a size. 86 * \sa LDLT() 87 */ LDLT(Index size)88 LDLT(Index size) 89 : m_matrix(size, size), 90 m_transpositions(size), 91 m_temporary(size), 92 m_sign(internal::ZeroSign), 93 m_isInitialized(false) 94 {} 95 96 /** \brief Constructor with decomposition 97 * 98 * This calculates the decomposition for the input \a matrix. 99 * \sa LDLT(Index size) 100 */ LDLT(const MatrixType & matrix)101 LDLT(const MatrixType& matrix) 102 : m_matrix(matrix.rows(), matrix.cols()), 103 m_transpositions(matrix.rows()), 104 m_temporary(matrix.rows()), 105 m_sign(internal::ZeroSign), 106 m_isInitialized(false) 107 { 108 compute(matrix); 109 } 110 111 /** Clear any existing decomposition 112 * \sa rankUpdate(w,sigma) 113 */ setZero()114 void setZero() 115 { 116 m_isInitialized = false; 117 } 118 119 /** \returns a view of the upper triangular matrix U */ matrixU()120 inline typename Traits::MatrixU matrixU() const 121 { 122 eigen_assert(m_isInitialized && "LDLT is not initialized."); 123 return Traits::getU(m_matrix); 124 } 125 126 /** \returns a view of the lower triangular matrix L */ matrixL()127 inline typename Traits::MatrixL matrixL() const 128 { 129 eigen_assert(m_isInitialized && "LDLT is not initialized."); 130 return Traits::getL(m_matrix); 131 } 132 133 /** \returns the permutation matrix P as a transposition sequence. 134 */ transpositionsP()135 inline const TranspositionType& transpositionsP() const 136 { 137 eigen_assert(m_isInitialized && "LDLT is not initialized."); 138 return m_transpositions; 139 } 140 141 /** \returns the coefficients of the diagonal matrix D */ vectorD()142 inline Diagonal<const MatrixType> vectorD() const 143 { 144 eigen_assert(m_isInitialized && "LDLT is not initialized."); 145 return m_matrix.diagonal(); 146 } 147 148 /** \returns true if the matrix is positive (semidefinite) */ isPositive()149 inline bool isPositive() const 150 { 151 eigen_assert(m_isInitialized && "LDLT is not initialized."); 152 return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; 153 } 154 155 #ifdef EIGEN2_SUPPORT isPositiveDefinite()156 inline bool isPositiveDefinite() const 157 { 158 return isPositive(); 159 } 160 #endif 161 162 /** \returns true if the matrix is negative (semidefinite) */ isNegative(void)163 inline bool isNegative(void) const 164 { 165 eigen_assert(m_isInitialized && "LDLT is not initialized."); 166 return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign; 167 } 168 169 /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. 170 * 171 * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> . 172 * 173 * \note_about_checking_solutions 174 * 175 * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ 176 * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, 177 * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then 178 * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the 179 * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function 180 * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular. 181 * 182 * \sa MatrixBase::ldlt() 183 */ 184 template<typename Rhs> 185 inline const internal::solve_retval<LDLT, Rhs> solve(const MatrixBase<Rhs> & b)186 solve(const MatrixBase<Rhs>& b) const 187 { 188 eigen_assert(m_isInitialized && "LDLT is not initialized."); 189 eigen_assert(m_matrix.rows()==b.rows() 190 && "LDLT::solve(): invalid number of rows of the right hand side matrix b"); 191 return internal::solve_retval<LDLT, Rhs>(*this, b.derived()); 192 } 193 194 #ifdef EIGEN2_SUPPORT 195 template<typename OtherDerived, typename ResultType> solve(const MatrixBase<OtherDerived> & b,ResultType * result)196 bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const 197 { 198 *result = this->solve(b); 199 return true; 200 } 201 #endif 202 203 template<typename Derived> 204 bool solveInPlace(MatrixBase<Derived> &bAndX) const; 205 206 LDLT& compute(const MatrixType& matrix); 207 208 template <typename Derived> 209 LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1); 210 211 /** \returns the internal LDLT decomposition matrix 212 * 213 * TODO: document the storage layout 214 */ matrixLDLT()215 inline const MatrixType& matrixLDLT() const 216 { 217 eigen_assert(m_isInitialized && "LDLT is not initialized."); 218 return m_matrix; 219 } 220 221 MatrixType reconstructedMatrix() const; 222 rows()223 inline Index rows() const { return m_matrix.rows(); } cols()224 inline Index cols() const { return m_matrix.cols(); } 225 226 /** \brief Reports whether previous computation was successful. 227 * 228 * \returns \c Success if computation was succesful, 229 * \c NumericalIssue if the matrix.appears to be negative. 230 */ info()231 ComputationInfo info() const 232 { 233 eigen_assert(m_isInitialized && "LDLT is not initialized."); 234 return Success; 235 } 236 237 protected: 238 239 /** \internal 240 * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. 241 * The strict upper part is used during the decomposition, the strict lower 242 * part correspond to the coefficients of L (its diagonal is equal to 1 and 243 * is not stored), and the diagonal entries correspond to D. 244 */ 245 MatrixType m_matrix; 246 TranspositionType m_transpositions; 247 TmpMatrixType m_temporary; 248 internal::SignMatrix m_sign; 249 bool m_isInitialized; 250 }; 251 252 namespace internal { 253 254 template<int UpLo> struct ldlt_inplace; 255 256 template<> struct ldlt_inplace<Lower> 257 { 258 template<typename MatrixType, typename TranspositionType, typename Workspace> 259 static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) 260 { 261 using std::abs; 262 typedef typename MatrixType::Scalar Scalar; 263 typedef typename MatrixType::RealScalar RealScalar; 264 typedef typename MatrixType::Index Index; 265 eigen_assert(mat.rows()==mat.cols()); 266 const Index size = mat.rows(); 267 268 if (size <= 1) 269 { 270 transpositions.setIdentity(); 271 if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef; 272 else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef; 273 else sign = ZeroSign; 274 return true; 275 } 276 277 for (Index k = 0; k < size; ++k) 278 { 279 // Find largest diagonal element 280 Index index_of_biggest_in_corner; 281 mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); 282 index_of_biggest_in_corner += k; 283 284 transpositions.coeffRef(k) = index_of_biggest_in_corner; 285 if(k != index_of_biggest_in_corner) 286 { 287 // apply the transposition while taking care to consider only 288 // the lower triangular part 289 Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element 290 mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); 291 mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); 292 std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); 293 for(int i=k+1;i<index_of_biggest_in_corner;++i) 294 { 295 Scalar tmp = mat.coeffRef(i,k); 296 mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i)); 297 mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp); 298 } 299 if(NumTraits<Scalar>::IsComplex) 300 mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k)); 301 } 302 303 // partition the matrix: 304 // A00 | - | - 305 // lu = A10 | A11 | - 306 // A20 | A21 | A22 307 Index rs = size - k - 1; 308 Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); 309 Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); 310 Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); 311 312 if(k>0) 313 { 314 temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); 315 mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); 316 if(rs>0) 317 A21.noalias() -= A20 * temp.head(k); 318 } 319 320 // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot 321 // was smaller than the cutoff value. However, soince LDLT is not rank-revealing 322 // we should only make sure we do not introduce INF or NaN values. 323 // LAPACK also uses 0 as the cutoff value. 324 RealScalar realAkk = numext::real(mat.coeffRef(k,k)); 325 if((rs>0) && (abs(realAkk) > RealScalar(0))) 326 A21 /= realAkk; 327 328 if (sign == PositiveSemiDef) { 329 if (realAkk < 0) sign = Indefinite; 330 } else if (sign == NegativeSemiDef) { 331 if (realAkk > 0) sign = Indefinite; 332 } else if (sign == ZeroSign) { 333 if (realAkk > 0) sign = PositiveSemiDef; 334 else if (realAkk < 0) sign = NegativeSemiDef; 335 } 336 } 337 338 return true; 339 } 340 341 // Reference for the algorithm: Davis and Hager, "Multiple Rank 342 // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) 343 // Trivial rearrangements of their computations (Timothy E. Holy) 344 // allow their algorithm to work for rank-1 updates even if the 345 // original matrix is not of full rank. 346 // Here only rank-1 updates are implemented, to reduce the 347 // requirement for intermediate storage and improve accuracy 348 template<typename MatrixType, typename WDerived> 349 static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1) 350 { 351 using numext::isfinite; 352 typedef typename MatrixType::Scalar Scalar; 353 typedef typename MatrixType::RealScalar RealScalar; 354 typedef typename MatrixType::Index Index; 355 356 const Index size = mat.rows(); 357 eigen_assert(mat.cols() == size && w.size()==size); 358 359 RealScalar alpha = 1; 360 361 // Apply the update 362 for (Index j = 0; j < size; j++) 363 { 364 // Check for termination due to an original decomposition of low-rank 365 if (!(isfinite)(alpha)) 366 break; 367 368 // Update the diagonal terms 369 RealScalar dj = numext::real(mat.coeff(j,j)); 370 Scalar wj = w.coeff(j); 371 RealScalar swj2 = sigma*numext::abs2(wj); 372 RealScalar gamma = dj*alpha + swj2; 373 374 mat.coeffRef(j,j) += swj2/alpha; 375 alpha += swj2/dj; 376 377 378 // Update the terms of L 379 Index rs = size-j-1; 380 w.tail(rs) -= wj * mat.col(j).tail(rs); 381 if(gamma != 0) 382 mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs); 383 } 384 return true; 385 } 386 387 template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> 388 static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1) 389 { 390 // Apply the permutation to the input w 391 tmp = transpositions * w; 392 393 return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma); 394 } 395 }; 396 397 template<> struct ldlt_inplace<Upper> 398 { 399 template<typename MatrixType, typename TranspositionType, typename Workspace> 400 static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) 401 { 402 Transpose<MatrixType> matt(mat); 403 return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); 404 } 405 406 template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> 407 static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1) 408 { 409 Transpose<MatrixType> matt(mat); 410 return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma); 411 } 412 }; 413 414 template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> 415 { 416 typedef const TriangularView<const MatrixType, UnitLower> MatrixL; 417 typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; 418 static inline MatrixL getL(const MatrixType& m) { return m; } 419 static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } 420 }; 421 422 template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> 423 { 424 typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; 425 typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; 426 static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } 427 static inline MatrixU getU(const MatrixType& m) { return m; } 428 }; 429 430 } // end namespace internal 431 432 /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix 433 */ 434 template<typename MatrixType, int _UpLo> 435 LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a) 436 { 437 eigen_assert(a.rows()==a.cols()); 438 const Index size = a.rows(); 439 440 m_matrix = a; 441 442 m_transpositions.resize(size); 443 m_isInitialized = false; 444 m_temporary.resize(size); 445 m_sign = internal::ZeroSign; 446 447 internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign); 448 449 m_isInitialized = true; 450 return *this; 451 } 452 453 /** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. 454 * \param w a vector to be incorporated into the decomposition. 455 * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. 456 * \sa setZero() 457 */ 458 template<typename MatrixType, int _UpLo> 459 template<typename Derived> 460 LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename NumTraits<typename MatrixType::Scalar>::Real& sigma) 461 { 462 const Index size = w.rows(); 463 if (m_isInitialized) 464 { 465 eigen_assert(m_matrix.rows()==size); 466 } 467 else 468 { 469 m_matrix.resize(size,size); 470 m_matrix.setZero(); 471 m_transpositions.resize(size); 472 for (Index i = 0; i < size; i++) 473 m_transpositions.coeffRef(i) = i; 474 m_temporary.resize(size); 475 m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; 476 m_isInitialized = true; 477 } 478 479 internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma); 480 481 return *this; 482 } 483 484 namespace internal { 485 template<typename _MatrixType, int _UpLo, typename Rhs> 486 struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs> 487 : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs> 488 { 489 typedef LDLT<_MatrixType,_UpLo> LDLTType; 490 EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs) 491 492 template<typename Dest> void evalTo(Dest& dst) const 493 { 494 eigen_assert(rhs().rows() == dec().matrixLDLT().rows()); 495 // dst = P b 496 dst = dec().transpositionsP() * rhs(); 497 498 // dst = L^-1 (P b) 499 dec().matrixL().solveInPlace(dst); 500 501 // dst = D^-1 (L^-1 P b) 502 // more precisely, use pseudo-inverse of D (see bug 241) 503 using std::abs; 504 using std::max; 505 typedef typename LDLTType::MatrixType MatrixType; 506 typedef typename LDLTType::RealScalar RealScalar; 507 const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD()); 508 // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon 509 // as motivated by LAPACK's xGELSS: 510 // RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest()); 511 // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest 512 // diagonal element is not well justified and to numerical issues in some cases. 513 // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. 514 RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest(); 515 516 for (Index i = 0; i < vectorD.size(); ++i) { 517 if(abs(vectorD(i)) > tolerance) 518 dst.row(i) /= vectorD(i); 519 else 520 dst.row(i).setZero(); 521 } 522 523 // dst = L^-T (D^-1 L^-1 P b) 524 dec().matrixU().solveInPlace(dst); 525 526 // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b 527 dst = dec().transpositionsP().transpose() * dst; 528 } 529 }; 530 } 531 532 /** \internal use x = ldlt_object.solve(x); 533 * 534 * This is the \em in-place version of solve(). 535 * 536 * \param bAndX represents both the right-hand side matrix b and result x. 537 * 538 * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. 539 * 540 * This version avoids a copy when the right hand side matrix b is not 541 * needed anymore. 542 * 543 * \sa LDLT::solve(), MatrixBase::ldlt() 544 */ 545 template<typename MatrixType,int _UpLo> 546 template<typename Derived> 547 bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const 548 { 549 eigen_assert(m_isInitialized && "LDLT is not initialized."); 550 eigen_assert(m_matrix.rows() == bAndX.rows()); 551 552 bAndX = this->solve(bAndX); 553 554 return true; 555 } 556 557 /** \returns the matrix represented by the decomposition, 558 * i.e., it returns the product: P^T L D L^* P. 559 * This function is provided for debug purpose. */ 560 template<typename MatrixType, int _UpLo> 561 MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const 562 { 563 eigen_assert(m_isInitialized && "LDLT is not initialized."); 564 const Index size = m_matrix.rows(); 565 MatrixType res(size,size); 566 567 // P 568 res.setIdentity(); 569 res = transpositionsP() * res; 570 // L^* P 571 res = matrixU() * res; 572 // D(L^*P) 573 res = vectorD().real().asDiagonal() * res; 574 // L(DL^*P) 575 res = matrixL() * res; 576 // P^T (LDL^*P) 577 res = transpositionsP().transpose() * res; 578 579 return res; 580 } 581 582 /** \cholesky_module 583 * \returns the Cholesky decomposition with full pivoting without square root of \c *this 584 */ 585 template<typename MatrixType, unsigned int UpLo> 586 inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> 587 SelfAdjointView<MatrixType, UpLo>::ldlt() const 588 { 589 return LDLT<PlainObject,UpLo>(m_matrix); 590 } 591 592 /** \cholesky_module 593 * \returns the Cholesky decomposition with full pivoting without square root of \c *this 594 */ 595 template<typename Derived> 596 inline const LDLT<typename MatrixBase<Derived>::PlainObject> 597 MatrixBase<Derived>::ldlt() const 598 { 599 return LDLT<PlainObject>(derived()); 600 } 601 602 } // end namespace Eigen 603 604 #endif // EIGEN_LDLT_H 605