• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_DIAGONALPRODUCT_H
12 #define EIGEN_DIAGONALPRODUCT_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 template<typename MatrixType, typename DiagonalType, int ProductOrder>
18 struct traits<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
19  : traits<MatrixType>
20 {
21   typedef typename scalar_product_traits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
22   enum {
23     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
24     ColsAtCompileTime = MatrixType::ColsAtCompileTime,
25     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
26     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
27 
28     _StorageOrder = MatrixType::Flags & RowMajorBit ? RowMajor : ColMajor,
29     _ScalarAccessOnDiag =  !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
30                           ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
31     _SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
32     // FIXME currently we need same types, but in the future the next rule should be the one
33     //_Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))),
34     _Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))),
35     _LinearAccessMask = (RowsAtCompileTime==1 || ColsAtCompileTime==1) ? LinearAccessBit : 0,
36 
37     Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixType::Flags)) | (_Vectorizable ? PacketAccessBit : 0) | AlignedBit,//(int(MatrixType::Flags)&int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit),
38     CoeffReadCost = NumTraits<Scalar>::MulCost + MatrixType::CoeffReadCost + DiagonalType::DiagonalVectorType::CoeffReadCost
39   };
40 };
41 }
42 
43 template<typename MatrixType, typename DiagonalType, int ProductOrder>
44 class DiagonalProduct : internal::no_assignment_operator,
45                         public MatrixBase<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
46 {
47   public:
48 
49     typedef MatrixBase<DiagonalProduct> Base;
50     EIGEN_DENSE_PUBLIC_INTERFACE(DiagonalProduct)
51 
52     inline DiagonalProduct(const MatrixType& matrix, const DiagonalType& diagonal)
53       : m_matrix(matrix), m_diagonal(diagonal)
54     {
55       eigen_assert(diagonal.diagonal().size() == (ProductOrder == OnTheLeft ? matrix.rows() : matrix.cols()));
56     }
57 
58     EIGEN_STRONG_INLINE Index rows() const { return m_matrix.rows(); }
59     EIGEN_STRONG_INLINE Index cols() const { return m_matrix.cols(); }
60 
61     EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
62     {
63       return m_diagonal.diagonal().coeff(ProductOrder == OnTheLeft ? row : col) * m_matrix.coeff(row, col);
64     }
65 
66     EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
67     {
68       enum {
69         StorageOrder = int(MatrixType::Flags) & RowMajorBit ? RowMajor : ColMajor
70       };
71       return coeff(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
72     }
73 
74     template<int LoadMode>
75     EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
76     {
77       enum {
78         StorageOrder = Flags & RowMajorBit ? RowMajor : ColMajor
79       };
80       const Index indexInDiagonalVector = ProductOrder == OnTheLeft ? row : col;
81       return packet_impl<LoadMode>(row,col,indexInDiagonalVector,typename internal::conditional<
82         ((int(StorageOrder) == RowMajor && int(ProductOrder) == OnTheLeft)
83        ||(int(StorageOrder) == ColMajor && int(ProductOrder) == OnTheRight)), internal::true_type, internal::false_type>::type());
84     }
85 
86     template<int LoadMode>
87     EIGEN_STRONG_INLINE PacketScalar packet(Index idx) const
88     {
89       enum {
90         StorageOrder = int(MatrixType::Flags) & RowMajorBit ? RowMajor : ColMajor
91       };
92       return packet<LoadMode>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
93     }
94 
95   protected:
96     template<int LoadMode>
97     EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::true_type) const
98     {
99       return internal::pmul(m_matrix.template packet<LoadMode>(row, col),
100                      internal::pset1<PacketScalar>(m_diagonal.diagonal().coeff(id)));
101     }
102 
103     template<int LoadMode>
104     EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::false_type) const
105     {
106       enum {
107         InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
108         DiagonalVectorPacketLoadMode = (LoadMode == Aligned && (((InnerSize%16) == 0) || (int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit)==AlignedBit) ? Aligned : Unaligned)
109       };
110       return internal::pmul(m_matrix.template packet<LoadMode>(row, col),
111                      m_diagonal.diagonal().template packet<DiagonalVectorPacketLoadMode>(id));
112     }
113 
114     typename MatrixType::Nested m_matrix;
115     typename DiagonalType::Nested m_diagonal;
116 };
117 
118 /** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal.
119   */
120 template<typename Derived>
121 template<typename DiagonalDerived>
122 inline const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
123 MatrixBase<Derived>::operator*(const DiagonalBase<DiagonalDerived> &a_diagonal) const
124 {
125   return DiagonalProduct<Derived, DiagonalDerived, OnTheRight>(derived(), a_diagonal.derived());
126 }
127 
128 } // end namespace Eigen
129 
130 #endif // EIGEN_DIAGONALPRODUCT_H
131