• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  Copyright (c) 2011, Intel Corporation. All rights reserved.
3 
4  Redistribution and use in source and binary forms, with or without modification,
5  are permitted provided that the following conditions are met:
6 
7  * Redistributions of source code must retain the above copyright notice, this
8    list of conditions and the following disclaimer.
9  * Redistributions in binary form must reproduce the above copyright notice,
10    this list of conditions and the following disclaimer in the documentation
11    and/or other materials provided with the distribution.
12  * Neither the name of Intel Corporation nor the names of its contributors may
13    be used to endorse or promote products derived from this software without
14    specific prior written permission.
15 
16  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
20  ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23  ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27  ********************************************************************************
28  *   Content : Eigen bindings to Intel(R) MKL
29  *   Level 3 BLAS SYRK/HERK implementation.
30  ********************************************************************************
31 */
32 
33 #ifndef EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_MKL_H
34 #define EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_MKL_H
35 
36 namespace Eigen {
37 
38 namespace internal {
39 
40 template <typename Index, typename Scalar, int AStorageOrder, bool ConjugateA, int ResStorageOrder, int  UpLo>
41 struct general_matrix_matrix_rankupdate :
42        general_matrix_matrix_triangular_product<
43          Index,Scalar,AStorageOrder,ConjugateA,Scalar,AStorageOrder,ConjugateA,ResStorageOrder,UpLo,BuiltIn> {};
44 
45 
46 // try to go to BLAS specialization
47 #define EIGEN_MKL_RANKUPDATE_SPECIALIZE(Scalar) \
48 template <typename Index, int LhsStorageOrder, bool ConjugateLhs, \
49                           int RhsStorageOrder, bool ConjugateRhs, int  UpLo> \
50 struct general_matrix_matrix_triangular_product<Index,Scalar,LhsStorageOrder,ConjugateLhs, \
51                Scalar,RhsStorageOrder,ConjugateRhs,ColMajor,UpLo,Specialized> { \
52   static EIGEN_STRONG_INLINE void run(Index size, Index depth,const Scalar* lhs, Index lhsStride, \
53                           const Scalar* rhs, Index rhsStride, Scalar* res, Index resStride, Scalar alpha) \
54   { \
55     if (lhs==rhs) { \
56       general_matrix_matrix_rankupdate<Index,Scalar,LhsStorageOrder,ConjugateLhs,ColMajor,UpLo> \
57       ::run(size,depth,lhs,lhsStride,rhs,rhsStride,res,resStride,alpha); \
58     } else { \
59       general_matrix_matrix_triangular_product<Index, \
60         Scalar, LhsStorageOrder, ConjugateLhs, \
61         Scalar, RhsStorageOrder, ConjugateRhs, \
62         ColMajor, UpLo, BuiltIn> \
63       ::run(size,depth,lhs,lhsStride,rhs,rhsStride,res,resStride,alpha); \
64     } \
65   } \
66 };
67 
68 EIGEN_MKL_RANKUPDATE_SPECIALIZE(double)
69 //EIGEN_MKL_RANKUPDATE_SPECIALIZE(dcomplex)
70 EIGEN_MKL_RANKUPDATE_SPECIALIZE(float)
71 //EIGEN_MKL_RANKUPDATE_SPECIALIZE(scomplex)
72 
73 // SYRK for float/double
74 #define EIGEN_MKL_RANKUPDATE_R(EIGTYPE, MKLTYPE, MKLFUNC) \
75 template <typename Index, int AStorageOrder, bool ConjugateA, int  UpLo> \
76 struct general_matrix_matrix_rankupdate<Index,EIGTYPE,AStorageOrder,ConjugateA,ColMajor,UpLo> { \
77   enum { \
78     IsLower = (UpLo&Lower) == Lower, \
79     LowUp = IsLower ? Lower : Upper, \
80     conjA = ((AStorageOrder==ColMajor) && ConjugateA) ? 1 : 0 \
81   }; \
82   static EIGEN_STRONG_INLINE void run(Index size, Index depth,const EIGTYPE* lhs, Index lhsStride, \
83                           const EIGTYPE* rhs, Index rhsStride, EIGTYPE* res, Index resStride, EIGTYPE alpha) \
84   { \
85   /* typedef Matrix<EIGTYPE, Dynamic, Dynamic, RhsStorageOrder> MatrixRhs;*/ \
86 \
87    MKL_INT lda=lhsStride, ldc=resStride, n=size, k=depth; \
88    char uplo=(IsLower) ? 'L' : 'U', trans=(AStorageOrder==RowMajor) ? 'T':'N'; \
89    MKLTYPE alpha_, beta_; \
90 \
91 /* Set alpha_ & beta_ */ \
92    assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(alpha_, alpha); \
93    assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(beta_, EIGTYPE(1)); \
94    MKLFUNC(&uplo, &trans, &n, &k, &alpha_, lhs, &lda, &beta_, res, &ldc); \
95   } \
96 };
97 
98 // HERK for complex data
99 #define EIGEN_MKL_RANKUPDATE_C(EIGTYPE, MKLTYPE, RTYPE, MKLFUNC) \
100 template <typename Index, int AStorageOrder, bool ConjugateA, int  UpLo> \
101 struct general_matrix_matrix_rankupdate<Index,EIGTYPE,AStorageOrder,ConjugateA,ColMajor,UpLo> { \
102   enum { \
103     IsLower = (UpLo&Lower) == Lower, \
104     LowUp = IsLower ? Lower : Upper, \
105     conjA = (((AStorageOrder==ColMajor) && ConjugateA) || ((AStorageOrder==RowMajor) && !ConjugateA)) ? 1 : 0 \
106   }; \
107   static EIGEN_STRONG_INLINE void run(Index size, Index depth,const EIGTYPE* lhs, Index lhsStride, \
108                           const EIGTYPE* rhs, Index rhsStride, EIGTYPE* res, Index resStride, EIGTYPE alpha) \
109   { \
110    typedef Matrix<EIGTYPE, Dynamic, Dynamic, AStorageOrder> MatrixType; \
111 \
112    MKL_INT lda=lhsStride, ldc=resStride, n=size, k=depth; \
113    char uplo=(IsLower) ? 'L' : 'U', trans=(AStorageOrder==RowMajor) ? 'C':'N'; \
114    RTYPE alpha_, beta_; \
115    const EIGTYPE* a_ptr; \
116 \
117 /* Set alpha_ & beta_ */ \
118 /*   assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(alpha_, alpha); */\
119 /*   assign_scalar_eig2mkl<MKLTYPE, EIGTYPE>(beta_, EIGTYPE(1));*/ \
120    alpha_ = alpha.real(); \
121    beta_ = 1.0; \
122 /* Copy with conjugation in some cases*/ \
123    MatrixType a; \
124    if (conjA) { \
125      Map<const MatrixType, 0, OuterStride<> > mapA(lhs,n,k,OuterStride<>(lhsStride)); \
126      a = mapA.conjugate(); \
127      lda = a.outerStride(); \
128      a_ptr = a.data(); \
129    } else a_ptr=lhs; \
130    MKLFUNC(&uplo, &trans, &n, &k, &alpha_, (MKLTYPE*)a_ptr, &lda, &beta_, (MKLTYPE*)res, &ldc); \
131   } \
132 };
133 
134 
135 EIGEN_MKL_RANKUPDATE_R(double, double, dsyrk)
136 EIGEN_MKL_RANKUPDATE_R(float,  float,  ssyrk)
137 
138 //EIGEN_MKL_RANKUPDATE_C(dcomplex, MKL_Complex16, double, zherk)
139 //EIGEN_MKL_RANKUPDATE_C(scomplex, MKL_Complex8,  double, cherk)
140 
141 
142 } // end namespace internal
143 
144 } // end namespace Eigen
145 
146 #endif // EIGEN_GENERAL_MATRIX_MATRIX_TRIANGULAR_MKL_H
147