1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 #ifndef EIGEN_EIGENSOLVER_H
12 #define EIGEN_EIGENSOLVER_H
13
14 #include "./RealSchur.h"
15
16 namespace Eigen {
17
18 /** \eigenvalues_module \ingroup Eigenvalues_Module
19 *
20 *
21 * \class EigenSolver
22 *
23 * \brief Computes eigenvalues and eigenvectors of general matrices
24 *
25 * \tparam _MatrixType the type of the matrix of which we are computing the
26 * eigendecomposition; this is expected to be an instantiation of the Matrix
27 * class template. Currently, only real matrices are supported.
28 *
29 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
30 * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$. If
31 * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
32 * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
33 * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
34 * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
35 *
36 * The eigenvalues and eigenvectors of a matrix may be complex, even when the
37 * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
38 * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
39 * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
40 * have blocks of the form
41 * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
42 * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal. These
43 * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
44 * this variant of the eigendecomposition the pseudo-eigendecomposition.
45 *
46 * Call the function compute() to compute the eigenvalues and eigenvectors of
47 * a given matrix. Alternatively, you can use the
48 * EigenSolver(const MatrixType&, bool) constructor which computes the
49 * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
50 * eigenvectors are computed, they can be retrieved with the eigenvalues() and
51 * eigenvectors() functions. The pseudoEigenvalueMatrix() and
52 * pseudoEigenvectors() methods allow the construction of the
53 * pseudo-eigendecomposition.
54 *
55 * The documentation for EigenSolver(const MatrixType&, bool) contains an
56 * example of the typical use of this class.
57 *
58 * \note The implementation is adapted from
59 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
60 * Their code is based on EISPACK.
61 *
62 * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
63 */
64 template<typename _MatrixType> class EigenSolver
65 {
66 public:
67
68 /** \brief Synonym for the template parameter \p _MatrixType. */
69 typedef _MatrixType MatrixType;
70
71 enum {
72 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
73 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
74 Options = MatrixType::Options,
75 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
76 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
77 };
78
79 /** \brief Scalar type for matrices of type #MatrixType. */
80 typedef typename MatrixType::Scalar Scalar;
81 typedef typename NumTraits<Scalar>::Real RealScalar;
82 typedef typename MatrixType::Index Index;
83
84 /** \brief Complex scalar type for #MatrixType.
85 *
86 * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
87 * \c float or \c double) and just \c Scalar if #Scalar is
88 * complex.
89 */
90 typedef std::complex<RealScalar> ComplexScalar;
91
92 /** \brief Type for vector of eigenvalues as returned by eigenvalues().
93 *
94 * This is a column vector with entries of type #ComplexScalar.
95 * The length of the vector is the size of #MatrixType.
96 */
97 typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
98
99 /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
100 *
101 * This is a square matrix with entries of type #ComplexScalar.
102 * The size is the same as the size of #MatrixType.
103 */
104 typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
105
106 /** \brief Default constructor.
107 *
108 * The default constructor is useful in cases in which the user intends to
109 * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
110 *
111 * \sa compute() for an example.
112 */
EigenSolver()113 EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {}
114
115 /** \brief Default constructor with memory preallocation
116 *
117 * Like the default constructor but with preallocation of the internal data
118 * according to the specified problem \a size.
119 * \sa EigenSolver()
120 */
EigenSolver(Index size)121 EigenSolver(Index size)
122 : m_eivec(size, size),
123 m_eivalues(size),
124 m_isInitialized(false),
125 m_eigenvectorsOk(false),
126 m_realSchur(size),
127 m_matT(size, size),
128 m_tmp(size)
129 {}
130
131 /** \brief Constructor; computes eigendecomposition of given matrix.
132 *
133 * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
134 * \param[in] computeEigenvectors If true, both the eigenvectors and the
135 * eigenvalues are computed; if false, only the eigenvalues are
136 * computed.
137 *
138 * This constructor calls compute() to compute the eigenvalues
139 * and eigenvectors.
140 *
141 * Example: \include EigenSolver_EigenSolver_MatrixType.cpp
142 * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
143 *
144 * \sa compute()
145 */
146 EigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
147 : m_eivec(matrix.rows(), matrix.cols()),
148 m_eivalues(matrix.cols()),
149 m_isInitialized(false),
150 m_eigenvectorsOk(false),
151 m_realSchur(matrix.cols()),
152 m_matT(matrix.rows(), matrix.cols()),
153 m_tmp(matrix.cols())
154 {
155 compute(matrix, computeEigenvectors);
156 }
157
158 /** \brief Returns the eigenvectors of given matrix.
159 *
160 * \returns %Matrix whose columns are the (possibly complex) eigenvectors.
161 *
162 * \pre Either the constructor
163 * EigenSolver(const MatrixType&,bool) or the member function
164 * compute(const MatrixType&, bool) has been called before, and
165 * \p computeEigenvectors was set to true (the default).
166 *
167 * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
168 * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
169 * eigenvectors are normalized to have (Euclidean) norm equal to one. The
170 * matrix returned by this function is the matrix \f$ V \f$ in the
171 * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
172 *
173 * Example: \include EigenSolver_eigenvectors.cpp
174 * Output: \verbinclude EigenSolver_eigenvectors.out
175 *
176 * \sa eigenvalues(), pseudoEigenvectors()
177 */
178 EigenvectorsType eigenvectors() const;
179
180 /** \brief Returns the pseudo-eigenvectors of given matrix.
181 *
182 * \returns Const reference to matrix whose columns are the pseudo-eigenvectors.
183 *
184 * \pre Either the constructor
185 * EigenSolver(const MatrixType&,bool) or the member function
186 * compute(const MatrixType&, bool) has been called before, and
187 * \p computeEigenvectors was set to true (the default).
188 *
189 * The real matrix \f$ V \f$ returned by this function and the
190 * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
191 * satisfy \f$ AV = VD \f$.
192 *
193 * Example: \include EigenSolver_pseudoEigenvectors.cpp
194 * Output: \verbinclude EigenSolver_pseudoEigenvectors.out
195 *
196 * \sa pseudoEigenvalueMatrix(), eigenvectors()
197 */
pseudoEigenvectors()198 const MatrixType& pseudoEigenvectors() const
199 {
200 eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
201 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
202 return m_eivec;
203 }
204
205 /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
206 *
207 * \returns A block-diagonal matrix.
208 *
209 * \pre Either the constructor
210 * EigenSolver(const MatrixType&,bool) or the member function
211 * compute(const MatrixType&, bool) has been called before.
212 *
213 * The matrix \f$ D \f$ returned by this function is real and
214 * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
215 * blocks of the form
216 * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
217 * These blocks are not sorted in any particular order.
218 * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
219 * pseudoEigenvectors() satisfy \f$ AV = VD \f$.
220 *
221 * \sa pseudoEigenvectors() for an example, eigenvalues()
222 */
223 MatrixType pseudoEigenvalueMatrix() const;
224
225 /** \brief Returns the eigenvalues of given matrix.
226 *
227 * \returns A const reference to the column vector containing the eigenvalues.
228 *
229 * \pre Either the constructor
230 * EigenSolver(const MatrixType&,bool) or the member function
231 * compute(const MatrixType&, bool) has been called before.
232 *
233 * The eigenvalues are repeated according to their algebraic multiplicity,
234 * so there are as many eigenvalues as rows in the matrix. The eigenvalues
235 * are not sorted in any particular order.
236 *
237 * Example: \include EigenSolver_eigenvalues.cpp
238 * Output: \verbinclude EigenSolver_eigenvalues.out
239 *
240 * \sa eigenvectors(), pseudoEigenvalueMatrix(),
241 * MatrixBase::eigenvalues()
242 */
eigenvalues()243 const EigenvalueType& eigenvalues() const
244 {
245 eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
246 return m_eivalues;
247 }
248
249 /** \brief Computes eigendecomposition of given matrix.
250 *
251 * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
252 * \param[in] computeEigenvectors If true, both the eigenvectors and the
253 * eigenvalues are computed; if false, only the eigenvalues are
254 * computed.
255 * \returns Reference to \c *this
256 *
257 * This function computes the eigenvalues of the real matrix \p matrix.
258 * The eigenvalues() function can be used to retrieve them. If
259 * \p computeEigenvectors is true, then the eigenvectors are also computed
260 * and can be retrieved by calling eigenvectors().
261 *
262 * The matrix is first reduced to real Schur form using the RealSchur
263 * class. The Schur decomposition is then used to compute the eigenvalues
264 * and eigenvectors.
265 *
266 * The cost of the computation is dominated by the cost of the
267 * Schur decomposition, which is very approximately \f$ 25n^3 \f$
268 * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors
269 * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
270 *
271 * This method reuses of the allocated data in the EigenSolver object.
272 *
273 * Example: \include EigenSolver_compute.cpp
274 * Output: \verbinclude EigenSolver_compute.out
275 */
276 EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
277
info()278 ComputationInfo info() const
279 {
280 eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
281 return m_realSchur.info();
282 }
283
284 /** \brief Sets the maximum number of iterations allowed. */
setMaxIterations(Index maxIters)285 EigenSolver& setMaxIterations(Index maxIters)
286 {
287 m_realSchur.setMaxIterations(maxIters);
288 return *this;
289 }
290
291 /** \brief Returns the maximum number of iterations. */
getMaxIterations()292 Index getMaxIterations()
293 {
294 return m_realSchur.getMaxIterations();
295 }
296
297 private:
298 void doComputeEigenvectors();
299
300 protected:
301 MatrixType m_eivec;
302 EigenvalueType m_eivalues;
303 bool m_isInitialized;
304 bool m_eigenvectorsOk;
305 RealSchur<MatrixType> m_realSchur;
306 MatrixType m_matT;
307
308 typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
309 ColumnVectorType m_tmp;
310 };
311
312 template<typename MatrixType>
pseudoEigenvalueMatrix()313 MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
314 {
315 eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
316 Index n = m_eivalues.rows();
317 MatrixType matD = MatrixType::Zero(n,n);
318 for (Index i=0; i<n; ++i)
319 {
320 if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i))))
321 matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i));
322 else
323 {
324 matD.template block<2,2>(i,i) << numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)),
325 -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i));
326 ++i;
327 }
328 }
329 return matD;
330 }
331
332 template<typename MatrixType>
eigenvectors()333 typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const
334 {
335 eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
336 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
337 Index n = m_eivec.cols();
338 EigenvectorsType matV(n,n);
339 for (Index j=0; j<n; ++j)
340 {
341 if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j))) || j+1==n)
342 {
343 // we have a real eigen value
344 matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
345 matV.col(j).normalize();
346 }
347 else
348 {
349 // we have a pair of complex eigen values
350 for (Index i=0; i<n; ++i)
351 {
352 matV.coeffRef(i,j) = ComplexScalar(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1));
353 matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
354 }
355 matV.col(j).normalize();
356 matV.col(j+1).normalize();
357 ++j;
358 }
359 }
360 return matV;
361 }
362
363 template<typename MatrixType>
364 EigenSolver<MatrixType>&
compute(const MatrixType & matrix,bool computeEigenvectors)365 EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
366 {
367 using std::sqrt;
368 using std::abs;
369 eigen_assert(matrix.cols() == matrix.rows());
370
371 // Reduce to real Schur form.
372 m_realSchur.compute(matrix, computeEigenvectors);
373
374 if (m_realSchur.info() == Success)
375 {
376 m_matT = m_realSchur.matrixT();
377 if (computeEigenvectors)
378 m_eivec = m_realSchur.matrixU();
379
380 // Compute eigenvalues from matT
381 m_eivalues.resize(matrix.cols());
382 Index i = 0;
383 while (i < matrix.cols())
384 {
385 if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0))
386 {
387 m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
388 ++i;
389 }
390 else
391 {
392 Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
393 Scalar z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
394 m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
395 m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
396 i += 2;
397 }
398 }
399
400 // Compute eigenvectors.
401 if (computeEigenvectors)
402 doComputeEigenvectors();
403 }
404
405 m_isInitialized = true;
406 m_eigenvectorsOk = computeEigenvectors;
407
408 return *this;
409 }
410
411 // Complex scalar division.
412 template<typename Scalar>
cdiv(const Scalar & xr,const Scalar & xi,const Scalar & yr,const Scalar & yi)413 std::complex<Scalar> cdiv(const Scalar& xr, const Scalar& xi, const Scalar& yr, const Scalar& yi)
414 {
415 using std::abs;
416 Scalar r,d;
417 if (abs(yr) > abs(yi))
418 {
419 r = yi/yr;
420 d = yr + r*yi;
421 return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d);
422 }
423 else
424 {
425 r = yr/yi;
426 d = yi + r*yr;
427 return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d);
428 }
429 }
430
431
432 template<typename MatrixType>
doComputeEigenvectors()433 void EigenSolver<MatrixType>::doComputeEigenvectors()
434 {
435 using std::abs;
436 const Index size = m_eivec.cols();
437 const Scalar eps = NumTraits<Scalar>::epsilon();
438
439 // inefficient! this is already computed in RealSchur
440 Scalar norm(0);
441 for (Index j = 0; j < size; ++j)
442 {
443 norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
444 }
445
446 // Backsubstitute to find vectors of upper triangular form
447 if (norm == 0.0)
448 {
449 return;
450 }
451
452 for (Index n = size-1; n >= 0; n--)
453 {
454 Scalar p = m_eivalues.coeff(n).real();
455 Scalar q = m_eivalues.coeff(n).imag();
456
457 // Scalar vector
458 if (q == Scalar(0))
459 {
460 Scalar lastr(0), lastw(0);
461 Index l = n;
462
463 m_matT.coeffRef(n,n) = 1.0;
464 for (Index i = n-1; i >= 0; i--)
465 {
466 Scalar w = m_matT.coeff(i,i) - p;
467 Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
468
469 if (m_eivalues.coeff(i).imag() < 0.0)
470 {
471 lastw = w;
472 lastr = r;
473 }
474 else
475 {
476 l = i;
477 if (m_eivalues.coeff(i).imag() == 0.0)
478 {
479 if (w != 0.0)
480 m_matT.coeffRef(i,n) = -r / w;
481 else
482 m_matT.coeffRef(i,n) = -r / (eps * norm);
483 }
484 else // Solve real equations
485 {
486 Scalar x = m_matT.coeff(i,i+1);
487 Scalar y = m_matT.coeff(i+1,i);
488 Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
489 Scalar t = (x * lastr - lastw * r) / denom;
490 m_matT.coeffRef(i,n) = t;
491 if (abs(x) > abs(lastw))
492 m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
493 else
494 m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
495 }
496
497 // Overflow control
498 Scalar t = abs(m_matT.coeff(i,n));
499 if ((eps * t) * t > Scalar(1))
500 m_matT.col(n).tail(size-i) /= t;
501 }
502 }
503 }
504 else if (q < Scalar(0) && n > 0) // Complex vector
505 {
506 Scalar lastra(0), lastsa(0), lastw(0);
507 Index l = n-1;
508
509 // Last vector component imaginary so matrix is triangular
510 if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n)))
511 {
512 m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
513 m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
514 }
515 else
516 {
517 std::complex<Scalar> cc = cdiv<Scalar>(0.0,-m_matT.coeff(n-1,n),m_matT.coeff(n-1,n-1)-p,q);
518 m_matT.coeffRef(n-1,n-1) = numext::real(cc);
519 m_matT.coeffRef(n-1,n) = numext::imag(cc);
520 }
521 m_matT.coeffRef(n,n-1) = 0.0;
522 m_matT.coeffRef(n,n) = 1.0;
523 for (Index i = n-2; i >= 0; i--)
524 {
525 Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
526 Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
527 Scalar w = m_matT.coeff(i,i) - p;
528
529 if (m_eivalues.coeff(i).imag() < 0.0)
530 {
531 lastw = w;
532 lastra = ra;
533 lastsa = sa;
534 }
535 else
536 {
537 l = i;
538 if (m_eivalues.coeff(i).imag() == RealScalar(0))
539 {
540 std::complex<Scalar> cc = cdiv(-ra,-sa,w,q);
541 m_matT.coeffRef(i,n-1) = numext::real(cc);
542 m_matT.coeffRef(i,n) = numext::imag(cc);
543 }
544 else
545 {
546 // Solve complex equations
547 Scalar x = m_matT.coeff(i,i+1);
548 Scalar y = m_matT.coeff(i+1,i);
549 Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
550 Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
551 if ((vr == 0.0) && (vi == 0.0))
552 vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw));
553
554 std::complex<Scalar> cc = cdiv(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra,vr,vi);
555 m_matT.coeffRef(i,n-1) = numext::real(cc);
556 m_matT.coeffRef(i,n) = numext::imag(cc);
557 if (abs(x) > (abs(lastw) + abs(q)))
558 {
559 m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
560 m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
561 }
562 else
563 {
564 cc = cdiv(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n),lastw,q);
565 m_matT.coeffRef(i+1,n-1) = numext::real(cc);
566 m_matT.coeffRef(i+1,n) = numext::imag(cc);
567 }
568 }
569
570 // Overflow control
571 using std::max;
572 Scalar t = (max)(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n)));
573 if ((eps * t) * t > Scalar(1))
574 m_matT.block(i, n-1, size-i, 2) /= t;
575
576 }
577 }
578
579 // We handled a pair of complex conjugate eigenvalues, so need to skip them both
580 n--;
581 }
582 else
583 {
584 eigen_assert(0 && "Internal bug in EigenSolver"); // this should not happen
585 }
586 }
587
588 // Back transformation to get eigenvectors of original matrix
589 for (Index j = size-1; j >= 0; j--)
590 {
591 m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
592 m_eivec.col(j) = m_tmp;
593 }
594 }
595
596 } // end namespace Eigen
597
598 #endif // EIGEN_EIGENSOLVER_H
599