1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 // Copyright (C) 2010 Vincent Lejeune
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11 
12 #ifndef EIGEN_QR_H
13 #define EIGEN_QR_H
14 
15 namespace Eigen {
16 
17 /** \ingroup QR_Module
18   *
19   *
20   * \class HouseholderQR
21   *
22   * \brief Householder QR decomposition of a matrix
23   *
24   * \param MatrixType the type of the matrix of which we are computing the QR decomposition
25   *
26   * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
27   * such that
28   * \f[
29   *  \mathbf{A} = \mathbf{Q} \, \mathbf{R}
30   * \f]
31   * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix.
32   * The result is stored in a compact way compatible with LAPACK.
33   *
34   * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
35   * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
36   *
37   * This Householder QR decomposition is faster, but less numerically stable and less feature-full than
38   * FullPivHouseholderQR or ColPivHouseholderQR.
39   *
40   * \sa MatrixBase::householderQr()
41   */
42 template<typename _MatrixType> class HouseholderQR
43 {
44   public:
45 
46     typedef _MatrixType MatrixType;
47     enum {
48       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
49       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
50       Options = MatrixType::Options,
51       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
52       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
53     };
54     typedef typename MatrixType::Scalar Scalar;
55     typedef typename MatrixType::RealScalar RealScalar;
56     typedef typename MatrixType::Index Index;
57     typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
58     typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
59     typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
60     typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
61 
62     /**
63       * \brief Default Constructor.
64       *
65       * The default constructor is useful in cases in which the user intends to
66       * perform decompositions via HouseholderQR::compute(const MatrixType&).
67       */
HouseholderQR()68     HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {}
69 
70     /** \brief Default Constructor with memory preallocation
71       *
72       * Like the default constructor but with preallocation of the internal data
73       * according to the specified problem \a size.
74       * \sa HouseholderQR()
75       */
HouseholderQR(Index rows,Index cols)76     HouseholderQR(Index rows, Index cols)
77       : m_qr(rows, cols),
78         m_hCoeffs((std::min)(rows,cols)),
79         m_temp(cols),
80         m_isInitialized(false) {}
81 
82     /** \brief Constructs a QR factorization from a given matrix
83       *
84       * This constructor computes the QR factorization of the matrix \a matrix by calling
85       * the method compute(). It is a short cut for:
86       *
87       * \code
88       * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
89       * qr.compute(matrix);
90       * \endcode
91       *
92       * \sa compute()
93       */
HouseholderQR(const MatrixType & matrix)94     HouseholderQR(const MatrixType& matrix)
95       : m_qr(matrix.rows(), matrix.cols()),
96         m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
97         m_temp(matrix.cols()),
98         m_isInitialized(false)
99     {
100       compute(matrix);
101     }
102 
103     /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
104       * *this is the QR decomposition, if any exists.
105       *
106       * \param b the right-hand-side of the equation to solve.
107       *
108       * \returns a solution.
109       *
110       * \note The case where b is a matrix is not yet implemented. Also, this
111       *       code is space inefficient.
112       *
113       * \note_about_checking_solutions
114       *
115       * \note_about_arbitrary_choice_of_solution
116       *
117       * Example: \include HouseholderQR_solve.cpp
118       * Output: \verbinclude HouseholderQR_solve.out
119       */
120     template<typename Rhs>
121     inline const internal::solve_retval<HouseholderQR, Rhs>
solve(const MatrixBase<Rhs> & b)122     solve(const MatrixBase<Rhs>& b) const
123     {
124       eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
125       return internal::solve_retval<HouseholderQR, Rhs>(*this, b.derived());
126     }
127 
128     /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
129       *
130       * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object.
131       * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:
132       *
133       * Example: \include HouseholderQR_householderQ.cpp
134       * Output: \verbinclude HouseholderQR_householderQ.out
135       */
householderQ()136     HouseholderSequenceType householderQ() const
137     {
138       eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
139       return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
140     }
141 
142     /** \returns a reference to the matrix where the Householder QR decomposition is stored
143       * in a LAPACK-compatible way.
144       */
matrixQR()145     const MatrixType& matrixQR() const
146     {
147         eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
148         return m_qr;
149     }
150 
151     HouseholderQR& compute(const MatrixType& matrix);
152 
153     /** \returns the absolute value of the determinant of the matrix of which
154       * *this is the QR decomposition. It has only linear complexity
155       * (that is, O(n) where n is the dimension of the square matrix)
156       * as the QR decomposition has already been computed.
157       *
158       * \note This is only for square matrices.
159       *
160       * \warning a determinant can be very big or small, so for matrices
161       * of large enough dimension, there is a risk of overflow/underflow.
162       * One way to work around that is to use logAbsDeterminant() instead.
163       *
164       * \sa logAbsDeterminant(), MatrixBase::determinant()
165       */
166     typename MatrixType::RealScalar absDeterminant() const;
167 
168     /** \returns the natural log of the absolute value of the determinant of the matrix of which
169       * *this is the QR decomposition. It has only linear complexity
170       * (that is, O(n) where n is the dimension of the square matrix)
171       * as the QR decomposition has already been computed.
172       *
173       * \note This is only for square matrices.
174       *
175       * \note This method is useful to work around the risk of overflow/underflow that's inherent
176       * to determinant computation.
177       *
178       * \sa absDeterminant(), MatrixBase::determinant()
179       */
180     typename MatrixType::RealScalar logAbsDeterminant() const;
181 
rows()182     inline Index rows() const { return m_qr.rows(); }
cols()183     inline Index cols() const { return m_qr.cols(); }
184 
185     /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
186       *
187       * For advanced uses only.
188       */
hCoeffs()189     const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
190 
191   protected:
192     MatrixType m_qr;
193     HCoeffsType m_hCoeffs;
194     RowVectorType m_temp;
195     bool m_isInitialized;
196 };
197 
198 template<typename MatrixType>
absDeterminant()199 typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
200 {
201   using std::abs;
202   eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
203   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
204   return abs(m_qr.diagonal().prod());
205 }
206 
207 template<typename MatrixType>
logAbsDeterminant()208 typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
209 {
210   eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
211   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
212   return m_qr.diagonal().cwiseAbs().array().log().sum();
213 }
214 
215 namespace internal {
216 
217 /** \internal */
218 template<typename MatrixQR, typename HCoeffs>
219 void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0)
220 {
221   typedef typename MatrixQR::Index Index;
222   typedef typename MatrixQR::Scalar Scalar;
223   typedef typename MatrixQR::RealScalar RealScalar;
224   Index rows = mat.rows();
225   Index cols = mat.cols();
226   Index size = (std::min)(rows,cols);
227 
228   eigen_assert(hCoeffs.size() == size);
229 
230   typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType;
231   TempType tempVector;
232   if(tempData==0)
233   {
234     tempVector.resize(cols);
235     tempData = tempVector.data();
236   }
237 
238   for(Index k = 0; k < size; ++k)
239   {
240     Index remainingRows = rows - k;
241     Index remainingCols = cols - k - 1;
242 
243     RealScalar beta;
244     mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta);
245     mat.coeffRef(k,k) = beta;
246 
247     // apply H to remaining part of m_qr from the left
248     mat.bottomRightCorner(remainingRows, remainingCols)
249         .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1);
250   }
251 }
252 
253 /** \internal */
254 template<typename MatrixQR, typename HCoeffs>
255 void householder_qr_inplace_blocked(MatrixQR& mat, HCoeffs& hCoeffs,
256                                        typename MatrixQR::Index maxBlockSize=32,
257                                        typename MatrixQR::Scalar* tempData = 0)
258 {
259   typedef typename MatrixQR::Index Index;
260   typedef typename MatrixQR::Scalar Scalar;
261   typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;
262 
263   Index rows = mat.rows();
264   Index cols = mat.cols();
265   Index size = (std::min)(rows, cols);
266 
267   typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType;
268   TempType tempVector;
269   if(tempData==0)
270   {
271     tempVector.resize(cols);
272     tempData = tempVector.data();
273   }
274 
275   Index blockSize = (std::min)(maxBlockSize,size);
276 
277   Index k = 0;
278   for (k = 0; k < size; k += blockSize)
279   {
280     Index bs = (std::min)(size-k,blockSize);  // actual size of the block
281     Index tcols = cols - k - bs;            // trailing columns
282     Index brows = rows-k;                   // rows of the block
283 
284     // partition the matrix:
285     //        A00 | A01 | A02
286     // mat  = A10 | A11 | A12
287     //        A20 | A21 | A22
288     // and performs the qr dec of [A11^T A12^T]^T
289     // and update [A21^T A22^T]^T using level 3 operations.
290     // Finally, the algorithm continue on A22
291 
292     BlockType A11_21 = mat.block(k,k,brows,bs);
293     Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs);
294 
295     householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData);
296 
297     if(tcols)
298     {
299       BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
300       apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment.adjoint());
301     }
302   }
303 }
304 
305 template<typename _MatrixType, typename Rhs>
306 struct solve_retval<HouseholderQR<_MatrixType>, Rhs>
307   : solve_retval_base<HouseholderQR<_MatrixType>, Rhs>
308 {
309   EIGEN_MAKE_SOLVE_HELPERS(HouseholderQR<_MatrixType>,Rhs)
310 
311   template<typename Dest> void evalTo(Dest& dst) const
312   {
313     const Index rows = dec().rows(), cols = dec().cols();
314     const Index rank = (std::min)(rows, cols);
315     eigen_assert(rhs().rows() == rows);
316 
317     typename Rhs::PlainObject c(rhs());
318 
319     // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
320     c.applyOnTheLeft(householderSequence(
321       dec().matrixQR().leftCols(rank),
322       dec().hCoeffs().head(rank)).transpose()
323     );
324 
325     dec().matrixQR()
326        .topLeftCorner(rank, rank)
327        .template triangularView<Upper>()
328        .solveInPlace(c.topRows(rank));
329 
330     dst.topRows(rank) = c.topRows(rank);
331     dst.bottomRows(cols-rank).setZero();
332   }
333 };
334 
335 } // end namespace internal
336 
337 /** Performs the QR factorization of the given matrix \a matrix. The result of
338   * the factorization is stored into \c *this, and a reference to \c *this
339   * is returned.
340   *
341   * \sa class HouseholderQR, HouseholderQR(const MatrixType&)
342   */
343 template<typename MatrixType>
344 HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const MatrixType& matrix)
345 {
346   Index rows = matrix.rows();
347   Index cols = matrix.cols();
348   Index size = (std::min)(rows,cols);
349 
350   m_qr = matrix;
351   m_hCoeffs.resize(size);
352 
353   m_temp.resize(cols);
354 
355   internal::householder_qr_inplace_blocked(m_qr, m_hCoeffs, 48, m_temp.data());
356 
357   m_isInitialized = true;
358   return *this;
359 }
360 
361 /** \return the Householder QR decomposition of \c *this.
362   *
363   * \sa class HouseholderQR
364   */
365 template<typename Derived>
366 const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
367 MatrixBase<Derived>::householderQr() const
368 {
369   return HouseholderQR<PlainObject>(eval());
370 }
371 
372 } // end namespace Eigen
373 
374 #endif // EIGEN_QR_H
375