1 #include "SkBitmapScaler.h"
2 #include "SkBitmapFilter.h"
3 #include "SkRect.h"
4 #include "SkTArray.h"
5 #include "SkErrorInternals.h"
6 #include "SkConvolver.h"
7
8 // SkResizeFilter ----------------------------------------------------------------
9
10 // Encapsulates computation and storage of the filters required for one complete
11 // resize operation.
12 class SkResizeFilter {
13 public:
14 SkResizeFilter(SkBitmapScaler::ResizeMethod method,
15 int srcFullWidth, int srcFullHeight,
16 float destWidth, float destHeight,
17 const SkRect& destSubset,
18 const SkConvolutionProcs& convolveProcs);
~SkResizeFilter()19 ~SkResizeFilter() {
20 SkDELETE( fBitmapFilter );
21 }
22
23 // Returns the filled filter values.
xFilter()24 const SkConvolutionFilter1D& xFilter() { return fXFilter; }
yFilter()25 const SkConvolutionFilter1D& yFilter() { return fYFilter; }
26
27 private:
28
29 SkBitmapFilter* fBitmapFilter;
30
31 // Computes one set of filters either horizontally or vertically. The caller
32 // will specify the "min" and "max" rather than the bottom/top and
33 // right/bottom so that the same code can be re-used in each dimension.
34 //
35 // |srcDependLo| and |srcDependSize| gives the range for the source
36 // depend rectangle (horizontally or vertically at the caller's discretion
37 // -- see above for what this means).
38 //
39 // Likewise, the range of destination values to compute and the scale factor
40 // for the transform is also specified.
41
42 void computeFilters(int srcSize,
43 float destSubsetLo, float destSubsetSize,
44 float scale,
45 SkConvolutionFilter1D* output,
46 const SkConvolutionProcs& convolveProcs);
47
48 SkConvolutionFilter1D fXFilter;
49 SkConvolutionFilter1D fYFilter;
50 };
51
SkResizeFilter(SkBitmapScaler::ResizeMethod method,int srcFullWidth,int srcFullHeight,float destWidth,float destHeight,const SkRect & destSubset,const SkConvolutionProcs & convolveProcs)52 SkResizeFilter::SkResizeFilter(SkBitmapScaler::ResizeMethod method,
53 int srcFullWidth, int srcFullHeight,
54 float destWidth, float destHeight,
55 const SkRect& destSubset,
56 const SkConvolutionProcs& convolveProcs) {
57
58 // method will only ever refer to an "algorithm method".
59 SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
60 (method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD));
61
62 switch(method) {
63 case SkBitmapScaler::RESIZE_BOX:
64 fBitmapFilter = SkNEW(SkBoxFilter);
65 break;
66 case SkBitmapScaler::RESIZE_TRIANGLE:
67 fBitmapFilter = SkNEW(SkTriangleFilter);
68 break;
69 case SkBitmapScaler::RESIZE_MITCHELL:
70 fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f));
71 break;
72 case SkBitmapScaler::RESIZE_HAMMING:
73 fBitmapFilter = SkNEW(SkHammingFilter);
74 break;
75 case SkBitmapScaler::RESIZE_LANCZOS3:
76 fBitmapFilter = SkNEW(SkLanczosFilter);
77 break;
78 default:
79 // NOTREACHED:
80 fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f));
81 break;
82 }
83
84
85 float scaleX = destWidth / srcFullWidth;
86 float scaleY = destHeight / srcFullHeight;
87
88 this->computeFilters(srcFullWidth, destSubset.fLeft, destSubset.width(),
89 scaleX, &fXFilter, convolveProcs);
90 if (srcFullWidth == srcFullHeight &&
91 destSubset.fLeft == destSubset.fTop &&
92 destSubset.width() == destSubset.height()&&
93 scaleX == scaleY) {
94 fYFilter = fXFilter;
95 } else {
96 this->computeFilters(srcFullHeight, destSubset.fTop, destSubset.height(),
97 scaleY, &fYFilter, convolveProcs);
98 }
99 }
100
101 // TODO(egouriou): Take advantage of periods in the convolution.
102 // Practical resizing filters are periodic outside of the border area.
103 // For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the
104 // source become p pixels in the destination) will have a period of p.
105 // A nice consequence is a period of 1 when downscaling by an integral
106 // factor. Downscaling from typical display resolutions is also bound
107 // to produce interesting periods as those are chosen to have multiple
108 // small factors.
109 // Small periods reduce computational load and improve cache usage if
110 // the coefficients can be shared. For periods of 1 we can consider
111 // loading the factors only once outside the borders.
computeFilters(int srcSize,float destSubsetLo,float destSubsetSize,float scale,SkConvolutionFilter1D * output,const SkConvolutionProcs & convolveProcs)112 void SkResizeFilter::computeFilters(int srcSize,
113 float destSubsetLo, float destSubsetSize,
114 float scale,
115 SkConvolutionFilter1D* output,
116 const SkConvolutionProcs& convolveProcs) {
117 float destSubsetHi = destSubsetLo + destSubsetSize; // [lo, hi)
118
119 // When we're doing a magnification, the scale will be larger than one. This
120 // means the destination pixels are much smaller than the source pixels, and
121 // that the range covered by the filter won't necessarily cover any source
122 // pixel boundaries. Therefore, we use these clamped values (max of 1) for
123 // some computations.
124 float clampedScale = SkTMin(1.0f, scale);
125
126 // This is how many source pixels from the center we need to count
127 // to support the filtering function.
128 float srcSupport = fBitmapFilter->width() / clampedScale;
129
130 // Speed up the divisions below by turning them into multiplies.
131 float invScale = 1.0f / scale;
132
133 SkTArray<float> filterValues(64);
134 SkTArray<short> fixedFilterValues(64);
135
136 // Loop over all pixels in the output range. We will generate one set of
137 // filter values for each one. Those values will tell us how to blend the
138 // source pixels to compute the destination pixel.
139 for (int destSubsetI = SkScalarFloorToInt(destSubsetLo); destSubsetI < SkScalarCeilToInt(destSubsetHi);
140 destSubsetI++) {
141 // Reset the arrays. We don't declare them inside so they can re-use the
142 // same malloc-ed buffer.
143 filterValues.reset();
144 fixedFilterValues.reset();
145
146 // This is the pixel in the source directly under the pixel in the dest.
147 // Note that we base computations on the "center" of the pixels. To see
148 // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
149 // downscale should "cover" the pixels around the pixel with *its center*
150 // at coordinates (2.5, 2.5) in the source, not those around (0, 0).
151 // Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
152 float srcPixel = (static_cast<float>(destSubsetI) + 0.5f) * invScale;
153
154 // Compute the (inclusive) range of source pixels the filter covers.
155 int srcBegin = SkTMax(0, SkScalarFloorToInt(srcPixel - srcSupport));
156 int srcEnd = SkTMin(srcSize - 1, SkScalarCeilToInt(srcPixel + srcSupport));
157
158 // Compute the unnormalized filter value at each location of the source
159 // it covers.
160 float filterSum = 0.0f; // Sub of the filter values for normalizing.
161 for (int curFilterPixel = srcBegin; curFilterPixel <= srcEnd;
162 curFilterPixel++) {
163 // Distance from the center of the filter, this is the filter coordinate
164 // in source space. We also need to consider the center of the pixel
165 // when comparing distance against 'srcPixel'. In the 5x downscale
166 // example used above the distance from the center of the filter to
167 // the pixel with coordinates (2, 2) should be 0, because its center
168 // is at (2.5, 2.5).
169 float srcFilterDist =
170 ((static_cast<float>(curFilterPixel) + 0.5f) - srcPixel);
171
172 // Since the filter really exists in dest space, map it there.
173 float destFilterDist = srcFilterDist * clampedScale;
174
175 // Compute the filter value at that location.
176 float filterValue = fBitmapFilter->evaluate(destFilterDist);
177 filterValues.push_back(filterValue);
178
179 filterSum += filterValue;
180 }
181 SkASSERT(!filterValues.empty());
182
183 // The filter must be normalized so that we don't affect the brightness of
184 // the image. Convert to normalized fixed point.
185 short fixedSum = 0;
186 for (int i = 0; i < filterValues.count(); i++) {
187 short curFixed = output->FloatToFixed(filterValues[i] / filterSum);
188 fixedSum += curFixed;
189 fixedFilterValues.push_back(curFixed);
190 }
191
192 // The conversion to fixed point will leave some rounding errors, which
193 // we add back in to avoid affecting the brightness of the image. We
194 // arbitrarily add this to the center of the filter array (this won't always
195 // be the center of the filter function since it could get clipped on the
196 // edges, but it doesn't matter enough to worry about that case).
197 short leftovers = output->FloatToFixed(1.0f) - fixedSum;
198 fixedFilterValues[fixedFilterValues.count() / 2] += leftovers;
199
200 // Now it's ready to go.
201 output->AddFilter(srcBegin, &fixedFilterValues[0],
202 static_cast<int>(fixedFilterValues.count()));
203 }
204
205 if (convolveProcs.fApplySIMDPadding) {
206 convolveProcs.fApplySIMDPadding( output );
207 }
208 }
209
ResizeMethodToAlgorithmMethod(SkBitmapScaler::ResizeMethod method)210 static SkBitmapScaler::ResizeMethod ResizeMethodToAlgorithmMethod(
211 SkBitmapScaler::ResizeMethod method) {
212 // Convert any "Quality Method" into an "Algorithm Method"
213 if (method >= SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD &&
214 method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD) {
215 return method;
216 }
217 // The call to SkBitmapScalerGtv::Resize() above took care of
218 // GPU-acceleration in the cases where it is possible. So now we just
219 // pick the appropriate software method for each resize quality.
220 switch (method) {
221 // Users of RESIZE_GOOD are willing to trade a lot of quality to
222 // get speed, allowing the use of linear resampling to get hardware
223 // acceleration (SRB). Hence any of our "good" software filters
224 // will be acceptable, so we use a triangle.
225 case SkBitmapScaler::RESIZE_GOOD:
226 return SkBitmapScaler::RESIZE_TRIANGLE;
227 // Users of RESIZE_BETTER are willing to trade some quality in order
228 // to improve performance, but are guaranteed not to devolve to a linear
229 // resampling. In visual tests we see that Hamming-1 is not as good as
230 // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is
231 // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed
232 // an acceptable trade-off between quality and speed.
233 case SkBitmapScaler::RESIZE_BETTER:
234 return SkBitmapScaler::RESIZE_HAMMING;
235 default:
236 #ifdef SK_HIGH_QUALITY_IS_LANCZOS
237 return SkBitmapScaler::RESIZE_LANCZOS3;
238 #else
239 return SkBitmapScaler::RESIZE_MITCHELL;
240 #endif
241 }
242 }
243
244 // static
Resize(SkBitmap * resultPtr,const SkBitmap & source,ResizeMethod method,float destWidth,float destHeight,SkBitmap::Allocator * allocator)245 bool SkBitmapScaler::Resize(SkBitmap* resultPtr,
246 const SkBitmap& source,
247 ResizeMethod method,
248 float destWidth, float destHeight,
249 SkBitmap::Allocator* allocator) {
250
251 SkConvolutionProcs convolveProcs= { 0, NULL, NULL, NULL, NULL };
252 PlatformConvolutionProcs(&convolveProcs);
253
254 SkRect destSubset = { 0, 0, destWidth, destHeight };
255
256 // Ensure that the ResizeMethod enumeration is sound.
257 SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) &&
258 (method <= RESIZE_LAST_QUALITY_METHOD)) ||
259 ((RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
260 (method <= RESIZE_LAST_ALGORITHM_METHOD)));
261
262 // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just
263 // return empty.
264 if (source.width() < 1 || source.height() < 1 ||
265 destWidth < 1 || destHeight < 1) {
266 // todo: seems like we could handle negative dstWidth/Height, since that
267 // is just a negative scale (flip)
268 return false;
269 }
270
271 method = ResizeMethodToAlgorithmMethod(method);
272
273 // Check that we deal with an "algorithm methods" from this point onward.
274 SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
275 (method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD));
276
277 SkAutoLockPixels locker(source);
278 if (!source.readyToDraw() ||
279 source.colorType() != kN32_SkColorType) {
280 return false;
281 }
282
283 SkResizeFilter filter(method, source.width(), source.height(),
284 destWidth, destHeight, destSubset, convolveProcs);
285
286 // Get a source bitmap encompassing this touched area. We construct the
287 // offsets and row strides such that it looks like a new bitmap, while
288 // referring to the old data.
289 const unsigned char* sourceSubset =
290 reinterpret_cast<const unsigned char*>(source.getPixels());
291
292 // Convolve into the result.
293 SkBitmap result;
294 result.setInfo(SkImageInfo::MakeN32(SkScalarCeilToInt(destSubset.width()),
295 SkScalarCeilToInt(destSubset.height()),
296 source.alphaType()));
297 result.allocPixels(allocator, NULL);
298 if (!result.readyToDraw()) {
299 return false;
300 }
301
302 BGRAConvolve2D(sourceSubset, static_cast<int>(source.rowBytes()),
303 !source.isOpaque(), filter.xFilter(), filter.yFilter(),
304 static_cast<int>(result.rowBytes()),
305 static_cast<unsigned char*>(result.getPixels()),
306 convolveProcs, true);
307
308 *resultPtr = result;
309 resultPtr->lockPixels();
310 SkASSERT(resultPtr->getPixels());
311 return true;
312 }
313
314 // static -- simpler interface to the resizer; returns a default bitmap if scaling
315 // fails for any reason. This is the interface that Chrome expects.
Resize(const SkBitmap & source,ResizeMethod method,float destWidth,float destHeight,SkBitmap::Allocator * allocator)316 SkBitmap SkBitmapScaler::Resize(const SkBitmap& source,
317 ResizeMethod method,
318 float destWidth, float destHeight,
319 SkBitmap::Allocator* allocator) {
320 SkBitmap result;
321 if (!Resize(&result, source, method, destWidth, destHeight, allocator)) {
322 return SkBitmap();
323 }
324 return result;
325 }
326