1 #include "SkBitmapScaler.h"
2 #include "SkBitmapFilter.h"
3 #include "SkRect.h"
4 #include "SkTArray.h"
5 #include "SkErrorInternals.h"
6 #include "SkConvolver.h"
7 
8 // SkResizeFilter ----------------------------------------------------------------
9 
10 // Encapsulates computation and storage of the filters required for one complete
11 // resize operation.
12 class SkResizeFilter {
13 public:
14     SkResizeFilter(SkBitmapScaler::ResizeMethod method,
15                    int srcFullWidth, int srcFullHeight,
16                    float destWidth, float destHeight,
17                    const SkRect& destSubset,
18                    const SkConvolutionProcs& convolveProcs);
~SkResizeFilter()19     ~SkResizeFilter() {
20         SkDELETE( fBitmapFilter );
21     }
22 
23     // Returns the filled filter values.
xFilter()24     const SkConvolutionFilter1D& xFilter() { return fXFilter; }
yFilter()25     const SkConvolutionFilter1D& yFilter() { return fYFilter; }
26 
27 private:
28 
29     SkBitmapFilter* fBitmapFilter;
30 
31     // Computes one set of filters either horizontally or vertically. The caller
32     // will specify the "min" and "max" rather than the bottom/top and
33     // right/bottom so that the same code can be re-used in each dimension.
34     //
35     // |srcDependLo| and |srcDependSize| gives the range for the source
36     // depend rectangle (horizontally or vertically at the caller's discretion
37     // -- see above for what this means).
38     //
39     // Likewise, the range of destination values to compute and the scale factor
40     // for the transform is also specified.
41 
42     void computeFilters(int srcSize,
43                         float destSubsetLo, float destSubsetSize,
44                         float scale,
45                         SkConvolutionFilter1D* output,
46                         const SkConvolutionProcs& convolveProcs);
47 
48     SkConvolutionFilter1D fXFilter;
49     SkConvolutionFilter1D fYFilter;
50 };
51 
SkResizeFilter(SkBitmapScaler::ResizeMethod method,int srcFullWidth,int srcFullHeight,float destWidth,float destHeight,const SkRect & destSubset,const SkConvolutionProcs & convolveProcs)52 SkResizeFilter::SkResizeFilter(SkBitmapScaler::ResizeMethod method,
53                                int srcFullWidth, int srcFullHeight,
54                                float destWidth, float destHeight,
55                                const SkRect& destSubset,
56                                const SkConvolutionProcs& convolveProcs) {
57 
58     // method will only ever refer to an "algorithm method".
59     SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
60              (method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD));
61 
62     switch(method) {
63         case SkBitmapScaler::RESIZE_BOX:
64             fBitmapFilter = SkNEW(SkBoxFilter);
65             break;
66         case SkBitmapScaler::RESIZE_TRIANGLE:
67             fBitmapFilter = SkNEW(SkTriangleFilter);
68             break;
69         case SkBitmapScaler::RESIZE_MITCHELL:
70             fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f));
71             break;
72         case SkBitmapScaler::RESIZE_HAMMING:
73             fBitmapFilter = SkNEW(SkHammingFilter);
74             break;
75         case SkBitmapScaler::RESIZE_LANCZOS3:
76             fBitmapFilter = SkNEW(SkLanczosFilter);
77             break;
78         default:
79             // NOTREACHED:
80             fBitmapFilter = SkNEW_ARGS(SkMitchellFilter, (1.f/3.f, 1.f/3.f));
81             break;
82     }
83 
84 
85     float scaleX = destWidth / srcFullWidth;
86     float scaleY = destHeight / srcFullHeight;
87 
88     this->computeFilters(srcFullWidth, destSubset.fLeft, destSubset.width(),
89                          scaleX, &fXFilter, convolveProcs);
90     if (srcFullWidth == srcFullHeight &&
91         destSubset.fLeft == destSubset.fTop &&
92         destSubset.width() == destSubset.height()&&
93         scaleX == scaleY) {
94         fYFilter = fXFilter;
95     } else {
96         this->computeFilters(srcFullHeight, destSubset.fTop, destSubset.height(),
97                           scaleY, &fYFilter, convolveProcs);
98     }
99 }
100 
101 // TODO(egouriou): Take advantage of periods in the convolution.
102 // Practical resizing filters are periodic outside of the border area.
103 // For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the
104 // source become p pixels in the destination) will have a period of p.
105 // A nice consequence is a period of 1 when downscaling by an integral
106 // factor. Downscaling from typical display resolutions is also bound
107 // to produce interesting periods as those are chosen to have multiple
108 // small factors.
109 // Small periods reduce computational load and improve cache usage if
110 // the coefficients can be shared. For periods of 1 we can consider
111 // loading the factors only once outside the borders.
computeFilters(int srcSize,float destSubsetLo,float destSubsetSize,float scale,SkConvolutionFilter1D * output,const SkConvolutionProcs & convolveProcs)112 void SkResizeFilter::computeFilters(int srcSize,
113                                   float destSubsetLo, float destSubsetSize,
114                                   float scale,
115                                   SkConvolutionFilter1D* output,
116                                   const SkConvolutionProcs& convolveProcs) {
117   float destSubsetHi = destSubsetLo + destSubsetSize;  // [lo, hi)
118 
119   // When we're doing a magnification, the scale will be larger than one. This
120   // means the destination pixels are much smaller than the source pixels, and
121   // that the range covered by the filter won't necessarily cover any source
122   // pixel boundaries. Therefore, we use these clamped values (max of 1) for
123   // some computations.
124   float clampedScale = SkTMin(1.0f, scale);
125 
126   // This is how many source pixels from the center we need to count
127   // to support the filtering function.
128   float srcSupport = fBitmapFilter->width() / clampedScale;
129 
130   // Speed up the divisions below by turning them into multiplies.
131   float invScale = 1.0f / scale;
132 
133   SkTArray<float> filterValues(64);
134   SkTArray<short> fixedFilterValues(64);
135 
136   // Loop over all pixels in the output range. We will generate one set of
137   // filter values for each one. Those values will tell us how to blend the
138   // source pixels to compute the destination pixel.
139   for (int destSubsetI = SkScalarFloorToInt(destSubsetLo); destSubsetI < SkScalarCeilToInt(destSubsetHi);
140        destSubsetI++) {
141     // Reset the arrays. We don't declare them inside so they can re-use the
142     // same malloc-ed buffer.
143     filterValues.reset();
144     fixedFilterValues.reset();
145 
146     // This is the pixel in the source directly under the pixel in the dest.
147     // Note that we base computations on the "center" of the pixels. To see
148     // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
149     // downscale should "cover" the pixels around the pixel with *its center*
150     // at coordinates (2.5, 2.5) in the source, not those around (0, 0).
151     // Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
152     float srcPixel = (static_cast<float>(destSubsetI) + 0.5f) * invScale;
153 
154     // Compute the (inclusive) range of source pixels the filter covers.
155     int srcBegin = SkTMax(0, SkScalarFloorToInt(srcPixel - srcSupport));
156     int srcEnd = SkTMin(srcSize - 1, SkScalarCeilToInt(srcPixel + srcSupport));
157 
158     // Compute the unnormalized filter value at each location of the source
159     // it covers.
160     float filterSum = 0.0f;  // Sub of the filter values for normalizing.
161     for (int curFilterPixel = srcBegin; curFilterPixel <= srcEnd;
162          curFilterPixel++) {
163       // Distance from the center of the filter, this is the filter coordinate
164       // in source space. We also need to consider the center of the pixel
165       // when comparing distance against 'srcPixel'. In the 5x downscale
166       // example used above the distance from the center of the filter to
167       // the pixel with coordinates (2, 2) should be 0, because its center
168       // is at (2.5, 2.5).
169       float srcFilterDist =
170           ((static_cast<float>(curFilterPixel) + 0.5f) - srcPixel);
171 
172       // Since the filter really exists in dest space, map it there.
173       float destFilterDist = srcFilterDist * clampedScale;
174 
175       // Compute the filter value at that location.
176       float filterValue = fBitmapFilter->evaluate(destFilterDist);
177       filterValues.push_back(filterValue);
178 
179       filterSum += filterValue;
180     }
181     SkASSERT(!filterValues.empty());
182 
183     // The filter must be normalized so that we don't affect the brightness of
184     // the image. Convert to normalized fixed point.
185     short fixedSum = 0;
186     for (int i = 0; i < filterValues.count(); i++) {
187       short curFixed = output->FloatToFixed(filterValues[i] / filterSum);
188       fixedSum += curFixed;
189       fixedFilterValues.push_back(curFixed);
190     }
191 
192     // The conversion to fixed point will leave some rounding errors, which
193     // we add back in to avoid affecting the brightness of the image. We
194     // arbitrarily add this to the center of the filter array (this won't always
195     // be the center of the filter function since it could get clipped on the
196     // edges, but it doesn't matter enough to worry about that case).
197     short leftovers = output->FloatToFixed(1.0f) - fixedSum;
198     fixedFilterValues[fixedFilterValues.count() / 2] += leftovers;
199 
200     // Now it's ready to go.
201     output->AddFilter(srcBegin, &fixedFilterValues[0],
202                       static_cast<int>(fixedFilterValues.count()));
203   }
204 
205   if (convolveProcs.fApplySIMDPadding) {
206       convolveProcs.fApplySIMDPadding( output );
207   }
208 }
209 
ResizeMethodToAlgorithmMethod(SkBitmapScaler::ResizeMethod method)210 static SkBitmapScaler::ResizeMethod ResizeMethodToAlgorithmMethod(
211                                     SkBitmapScaler::ResizeMethod method) {
212     // Convert any "Quality Method" into an "Algorithm Method"
213     if (method >= SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD &&
214     method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD) {
215         return method;
216     }
217     // The call to SkBitmapScalerGtv::Resize() above took care of
218     // GPU-acceleration in the cases where it is possible. So now we just
219     // pick the appropriate software method for each resize quality.
220     switch (method) {
221         // Users of RESIZE_GOOD are willing to trade a lot of quality to
222         // get speed, allowing the use of linear resampling to get hardware
223         // acceleration (SRB). Hence any of our "good" software filters
224         // will be acceptable, so we use a triangle.
225         case SkBitmapScaler::RESIZE_GOOD:
226             return SkBitmapScaler::RESIZE_TRIANGLE;
227         // Users of RESIZE_BETTER are willing to trade some quality in order
228         // to improve performance, but are guaranteed not to devolve to a linear
229         // resampling. In visual tests we see that Hamming-1 is not as good as
230         // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is
231         // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed
232         // an acceptable trade-off between quality and speed.
233         case SkBitmapScaler::RESIZE_BETTER:
234             return SkBitmapScaler::RESIZE_HAMMING;
235         default:
236 #ifdef SK_HIGH_QUALITY_IS_LANCZOS
237             return SkBitmapScaler::RESIZE_LANCZOS3;
238 #else
239             return SkBitmapScaler::RESIZE_MITCHELL;
240 #endif
241     }
242 }
243 
244 // static
Resize(SkBitmap * resultPtr,const SkBitmap & source,ResizeMethod method,float destWidth,float destHeight,SkBitmap::Allocator * allocator)245 bool SkBitmapScaler::Resize(SkBitmap* resultPtr,
246                             const SkBitmap& source,
247                             ResizeMethod method,
248                             float destWidth, float destHeight,
249                             SkBitmap::Allocator* allocator) {
250 
251   SkConvolutionProcs convolveProcs= { 0, NULL, NULL, NULL, NULL };
252   PlatformConvolutionProcs(&convolveProcs);
253 
254   SkRect destSubset = { 0, 0, destWidth, destHeight };
255 
256   // Ensure that the ResizeMethod enumeration is sound.
257   SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) &&
258       (method <= RESIZE_LAST_QUALITY_METHOD)) ||
259       ((RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
260       (method <= RESIZE_LAST_ALGORITHM_METHOD)));
261 
262   // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just
263   // return empty.
264   if (source.width() < 1 || source.height() < 1 ||
265       destWidth < 1 || destHeight < 1) {
266       // todo: seems like we could handle negative dstWidth/Height, since that
267       // is just a negative scale (flip)
268       return false;
269   }
270 
271   method = ResizeMethodToAlgorithmMethod(method);
272 
273   // Check that we deal with an "algorithm methods" from this point onward.
274   SkASSERT((SkBitmapScaler::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
275       (method <= SkBitmapScaler::RESIZE_LAST_ALGORITHM_METHOD));
276 
277   SkAutoLockPixels locker(source);
278   if (!source.readyToDraw() ||
279       source.colorType() != kN32_SkColorType) {
280       return false;
281   }
282 
283   SkResizeFilter filter(method, source.width(), source.height(),
284                         destWidth, destHeight, destSubset, convolveProcs);
285 
286   // Get a source bitmap encompassing this touched area. We construct the
287   // offsets and row strides such that it looks like a new bitmap, while
288   // referring to the old data.
289   const unsigned char* sourceSubset =
290       reinterpret_cast<const unsigned char*>(source.getPixels());
291 
292   // Convolve into the result.
293   SkBitmap result;
294   result.setInfo(SkImageInfo::MakeN32(SkScalarCeilToInt(destSubset.width()),
295                                       SkScalarCeilToInt(destSubset.height()),
296                                       source.alphaType()));
297   result.allocPixels(allocator, NULL);
298   if (!result.readyToDraw()) {
299       return false;
300   }
301 
302   BGRAConvolve2D(sourceSubset, static_cast<int>(source.rowBytes()),
303       !source.isOpaque(), filter.xFilter(), filter.yFilter(),
304       static_cast<int>(result.rowBytes()),
305       static_cast<unsigned char*>(result.getPixels()),
306       convolveProcs, true);
307 
308   *resultPtr = result;
309   resultPtr->lockPixels();
310   SkASSERT(resultPtr->getPixels());
311   return true;
312 }
313 
314 // static -- simpler interface to the resizer; returns a default bitmap if scaling
315 // fails for any reason.  This is the interface that Chrome expects.
Resize(const SkBitmap & source,ResizeMethod method,float destWidth,float destHeight,SkBitmap::Allocator * allocator)316 SkBitmap SkBitmapScaler::Resize(const SkBitmap& source,
317                                 ResizeMethod method,
318                                 float destWidth, float destHeight,
319                                 SkBitmap::Allocator* allocator) {
320   SkBitmap result;
321   if (!Resize(&result, source, method, destWidth, destHeight, allocator)) {
322     return SkBitmap();
323   }
324   return result;
325 }
326