1
2 /*
3 * Copyright 2012 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9 #include "SkWriteBuffer.h"
10 #include "SkBitmap.h"
11 #include "SkBitmapHeap.h"
12 #include "SkData.h"
13 #include "SkPixelRef.h"
14 #include "SkPtrRecorder.h"
15 #include "SkStream.h"
16 #include "SkTypeface.h"
17
SkWriteBuffer(uint32_t flags)18 SkWriteBuffer::SkWriteBuffer(uint32_t flags)
19 : fFlags(flags)
20 , fFactorySet(NULL)
21 , fNamedFactorySet(NULL)
22 , fBitmapHeap(NULL)
23 , fTFSet(NULL) {
24 }
25
SkWriteBuffer(void * storage,size_t storageSize,uint32_t flags)26 SkWriteBuffer::SkWriteBuffer(void* storage, size_t storageSize, uint32_t flags)
27 : fFlags(flags)
28 , fFactorySet(NULL)
29 , fNamedFactorySet(NULL)
30 , fWriter(storage, storageSize)
31 , fBitmapHeap(NULL)
32 , fTFSet(NULL) {
33 }
34
~SkWriteBuffer()35 SkWriteBuffer::~SkWriteBuffer() {
36 SkSafeUnref(fFactorySet);
37 SkSafeUnref(fNamedFactorySet);
38 SkSafeUnref(fBitmapHeap);
39 SkSafeUnref(fTFSet);
40 }
41
writeByteArray(const void * data,size_t size)42 void SkWriteBuffer::writeByteArray(const void* data, size_t size) {
43 fWriter.write32(SkToU32(size));
44 fWriter.writePad(data, size);
45 }
46
writeBool(bool value)47 void SkWriteBuffer::writeBool(bool value) {
48 fWriter.writeBool(value);
49 }
50
writeFixed(SkFixed value)51 void SkWriteBuffer::writeFixed(SkFixed value) {
52 fWriter.write32(value);
53 }
54
writeScalar(SkScalar value)55 void SkWriteBuffer::writeScalar(SkScalar value) {
56 fWriter.writeScalar(value);
57 }
58
writeScalarArray(const SkScalar * value,uint32_t count)59 void SkWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) {
60 fWriter.write32(count);
61 fWriter.write(value, count * sizeof(SkScalar));
62 }
63
writeInt(int32_t value)64 void SkWriteBuffer::writeInt(int32_t value) {
65 fWriter.write32(value);
66 }
67
writeIntArray(const int32_t * value,uint32_t count)68 void SkWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) {
69 fWriter.write32(count);
70 fWriter.write(value, count * sizeof(int32_t));
71 }
72
writeUInt(uint32_t value)73 void SkWriteBuffer::writeUInt(uint32_t value) {
74 fWriter.write32(value);
75 }
76
write32(int32_t value)77 void SkWriteBuffer::write32(int32_t value) {
78 fWriter.write32(value);
79 }
80
writeString(const char * value)81 void SkWriteBuffer::writeString(const char* value) {
82 fWriter.writeString(value);
83 }
84
writeEncodedString(const void * value,size_t byteLength,SkPaint::TextEncoding encoding)85 void SkWriteBuffer::writeEncodedString(const void* value, size_t byteLength,
86 SkPaint::TextEncoding encoding) {
87 fWriter.writeInt(encoding);
88 fWriter.writeInt(SkToU32(byteLength));
89 fWriter.write(value, byteLength);
90 }
91
92
writeColor(const SkColor & color)93 void SkWriteBuffer::writeColor(const SkColor& color) {
94 fWriter.write32(color);
95 }
96
writeColorArray(const SkColor * color,uint32_t count)97 void SkWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) {
98 fWriter.write32(count);
99 fWriter.write(color, count * sizeof(SkColor));
100 }
101
writePoint(const SkPoint & point)102 void SkWriteBuffer::writePoint(const SkPoint& point) {
103 fWriter.writeScalar(point.fX);
104 fWriter.writeScalar(point.fY);
105 }
106
writePointArray(const SkPoint * point,uint32_t count)107 void SkWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) {
108 fWriter.write32(count);
109 fWriter.write(point, count * sizeof(SkPoint));
110 }
111
writeMatrix(const SkMatrix & matrix)112 void SkWriteBuffer::writeMatrix(const SkMatrix& matrix) {
113 fWriter.writeMatrix(matrix);
114 }
115
writeIRect(const SkIRect & rect)116 void SkWriteBuffer::writeIRect(const SkIRect& rect) {
117 fWriter.write(&rect, sizeof(SkIRect));
118 }
119
writeRect(const SkRect & rect)120 void SkWriteBuffer::writeRect(const SkRect& rect) {
121 fWriter.writeRect(rect);
122 }
123
writeRegion(const SkRegion & region)124 void SkWriteBuffer::writeRegion(const SkRegion& region) {
125 fWriter.writeRegion(region);
126 }
127
writePath(const SkPath & path)128 void SkWriteBuffer::writePath(const SkPath& path) {
129 fWriter.writePath(path);
130 }
131
writeStream(SkStream * stream,size_t length)132 size_t SkWriteBuffer::writeStream(SkStream* stream, size_t length) {
133 fWriter.write32(SkToU32(length));
134 size_t bytesWritten = fWriter.readFromStream(stream, length);
135 if (bytesWritten < length) {
136 fWriter.reservePad(length - bytesWritten);
137 }
138 return bytesWritten;
139 }
140
writeToStream(SkWStream * stream)141 bool SkWriteBuffer::writeToStream(SkWStream* stream) {
142 return fWriter.writeToStream(stream);
143 }
144
write_encoded_bitmap(SkWriteBuffer * buffer,SkData * data,const SkIPoint & origin)145 static void write_encoded_bitmap(SkWriteBuffer* buffer, SkData* data,
146 const SkIPoint& origin) {
147 buffer->writeUInt(SkToU32(data->size()));
148 buffer->getWriter32()->writePad(data->data(), data->size());
149 buffer->write32(origin.fX);
150 buffer->write32(origin.fY);
151 }
152
writeBitmap(const SkBitmap & bitmap)153 void SkWriteBuffer::writeBitmap(const SkBitmap& bitmap) {
154 // Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the
155 // right size.
156 this->writeInt(bitmap.width());
157 this->writeInt(bitmap.height());
158
159 // Record information about the bitmap in one of three ways, in order of priority:
160 // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoid serializing the
161 // bitmap entirely or serialize it later as desired. A boolean value of true will be written
162 // to the stream to signify that a heap was used.
163 // 2. If there is a function for encoding bitmaps, use it to write an encoded version of the
164 // bitmap. After writing a boolean value of false, signifying that a heap was not used, write
165 // the size of the encoded data. A non-zero size signifies that encoded data was written.
166 // 3. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was
167 // not used, write a zero to signify that the data was not encoded.
168 bool useBitmapHeap = fBitmapHeap != NULL;
169 // Write a bool: true if the SkBitmapHeap is to be used, in which case the reader must use an
170 // SkBitmapHeapReader to read the SkBitmap. False if the bitmap was serialized another way.
171 this->writeBool(useBitmapHeap);
172 if (useBitmapHeap) {
173 SkASSERT(NULL == fPixelSerializer);
174 int32_t slot = fBitmapHeap->insert(bitmap);
175 fWriter.write32(slot);
176 // crbug.com/155875
177 // The generation ID is not required information. We write it to prevent collisions
178 // in SkFlatDictionary. It is possible to get a collision when a previously
179 // unflattened (i.e. stale) instance of a similar flattenable is in the dictionary
180 // and the instance currently being written is re-using the same slot from the
181 // bitmap heap.
182 fWriter.write32(bitmap.getGenerationID());
183 return;
184 }
185
186 SkPixelRef* pixelRef = bitmap.pixelRef();
187 if (pixelRef) {
188 // see if the pixelref already has an encoded version
189 SkAutoDataUnref existingData(pixelRef->refEncodedData());
190 if (existingData.get() != NULL) {
191 // Assumes that if the client did not set a serializer, they are
192 // happy to get the encoded data.
193 if (!fPixelSerializer || fPixelSerializer->useEncodedData(existingData->data(),
194 existingData->size())) {
195 write_encoded_bitmap(this, existingData, bitmap.pixelRefOrigin());
196 return;
197 }
198 }
199
200 // see if the caller wants to manually encode
201 if (fPixelSerializer) {
202 SkASSERT(NULL == fBitmapHeap);
203 SkAutoLockPixels alp(bitmap);
204 SkAutoDataUnref data(fPixelSerializer->encodePixels(bitmap.info(),
205 bitmap.getPixels(),
206 bitmap.rowBytes()));
207 if (data.get() != NULL) {
208 // if we have to "encode" the bitmap, then we assume there is no
209 // offset to share, since we are effectively creating a new pixelref
210 write_encoded_bitmap(this, data, SkIPoint::Make(0, 0));
211 return;
212 }
213 }
214 }
215
216 this->writeUInt(0); // signal raw pixels
217 SkBitmap::WriteRawPixels(this, bitmap);
218 }
219
writeTypeface(SkTypeface * obj)220 void SkWriteBuffer::writeTypeface(SkTypeface* obj) {
221 if (NULL == obj || NULL == fTFSet) {
222 fWriter.write32(0);
223 } else {
224 fWriter.write32(fTFSet->add(obj));
225 }
226 }
227
setFactoryRecorder(SkFactorySet * rec)228 SkFactorySet* SkWriteBuffer::setFactoryRecorder(SkFactorySet* rec) {
229 SkRefCnt_SafeAssign(fFactorySet, rec);
230 if (fNamedFactorySet != NULL) {
231 fNamedFactorySet->unref();
232 fNamedFactorySet = NULL;
233 }
234 return rec;
235 }
236
setNamedFactoryRecorder(SkNamedFactorySet * rec)237 SkNamedFactorySet* SkWriteBuffer::setNamedFactoryRecorder(SkNamedFactorySet* rec) {
238 SkRefCnt_SafeAssign(fNamedFactorySet, rec);
239 if (fFactorySet != NULL) {
240 fFactorySet->unref();
241 fFactorySet = NULL;
242 }
243 return rec;
244 }
245
setTypefaceRecorder(SkRefCntSet * rec)246 SkRefCntSet* SkWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) {
247 SkRefCnt_SafeAssign(fTFSet, rec);
248 return rec;
249 }
250
setBitmapHeap(SkBitmapHeap * bitmapHeap)251 void SkWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) {
252 SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap);
253 if (bitmapHeap != NULL) {
254 SkASSERT(NULL == fPixelSerializer);
255 fPixelSerializer.reset(NULL);
256 }
257 }
258
setPixelSerializer(SkPixelSerializer * serializer)259 void SkWriteBuffer::setPixelSerializer(SkPixelSerializer* serializer) {
260 fPixelSerializer.reset(serializer);
261 if (serializer) {
262 serializer->ref();
263 SkASSERT(NULL == fBitmapHeap);
264 SkSafeUnref(fBitmapHeap);
265 fBitmapHeap = NULL;
266 }
267 }
268
writeFlattenable(const SkFlattenable * flattenable)269 void SkWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) {
270 /*
271 * If we have a factoryset, then the first 32bits tell us...
272 * 0: failure to write the flattenable
273 * >0: (1-based) index into the SkFactorySet or SkNamedFactorySet
274 * If we don't have a factoryset, then the first "ptr" is either the
275 * factory, or null for failure.
276 *
277 * The distinction is important, since 0-index is 32bits (always), but a
278 * 0-functionptr might be 32 or 64 bits.
279 */
280 if (NULL == flattenable) {
281 if (this->isValidating()) {
282 this->writeString("");
283 } else if (fFactorySet != NULL || fNamedFactorySet != NULL) {
284 this->write32(0);
285 } else {
286 this->writeFunctionPtr(NULL);
287 }
288 return;
289 }
290
291 SkFlattenable::Factory factory = flattenable->getFactory();
292 SkASSERT(factory != NULL);
293
294 /*
295 * We can write 1 of 3 versions of the flattenable:
296 * 1. function-ptr : this is the fastest for the reader, but assumes that
297 * the writer and reader are in the same process.
298 * 2. index into fFactorySet : This is assumes the writer will later
299 * resolve the function-ptrs into strings for its reader. SkPicture
300 * does exactly this, by writing a table of names (matching the indices)
301 * up front in its serialized form.
302 * 3. index into fNamedFactorySet. fNamedFactorySet will also store the
303 * name. SkGPipe uses this technique so it can write the name to its
304 * stream before writing the flattenable.
305 */
306 if (this->isValidating()) {
307 this->writeString(flattenable->getTypeName());
308 } else if (fFactorySet) {
309 this->write32(fFactorySet->add(factory));
310 } else if (fNamedFactorySet) {
311 int32_t index = fNamedFactorySet->find(factory);
312 this->write32(index);
313 if (0 == index) {
314 return;
315 }
316 } else {
317 this->writeFunctionPtr((void*)factory);
318 }
319
320 // make room for the size of the flattened object
321 (void)fWriter.reserve(sizeof(uint32_t));
322 // record the current size, so we can subtract after the object writes.
323 size_t offset = fWriter.bytesWritten();
324 // now flatten the object
325 flattenable->flatten(*this);
326 size_t objSize = fWriter.bytesWritten() - offset;
327 // record the obj's size
328 fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize));
329 }
330