1 #if !defined(_FX_JPEG_TURBO_)
2 /*
3  * jddctmgr.c
4  *
5  * Copyright (C) 1994-1996, Thomas G. Lane.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains the inverse-DCT management logic.
10  * This code selects a particular IDCT implementation to be used,
11  * and it performs related housekeeping chores.  No code in this file
12  * is executed per IDCT step, only during output pass setup.
13  *
14  * Note that the IDCT routines are responsible for performing coefficient
15  * dequantization as well as the IDCT proper.  This module sets up the
16  * dequantization multiplier table needed by the IDCT routine.
17  */
18 
19 #define JPEG_INTERNALS
20 #include "jinclude.h"
21 #include "jpeglib.h"
22 #include "jdct.h"		/* Private declarations for DCT subsystem */
23 
24 
25 /*
26  * The decompressor input side (jdinput.c) saves away the appropriate
27  * quantization table for each component at the start of the first scan
28  * involving that component.  (This is necessary in order to correctly
29  * decode files that reuse Q-table slots.)
30  * When we are ready to make an output pass, the saved Q-table is converted
31  * to a multiplier table that will actually be used by the IDCT routine.
32  * The multiplier table contents are IDCT-method-dependent.  To support
33  * application changes in IDCT method between scans, we can remake the
34  * multiplier tables if necessary.
35  * In buffered-image mode, the first output pass may occur before any data
36  * has been seen for some components, and thus before their Q-tables have
37  * been saved away.  To handle this case, multiplier tables are preset
38  * to zeroes; the result of the IDCT will be a neutral gray level.
39  */
40 
41 
42 /* Private subobject for this module */
43 
44 typedef struct {
45   struct jpeg_inverse_dct pub;	/* public fields */
46 
47   /* This array contains the IDCT method code that each multiplier table
48    * is currently set up for, or -1 if it's not yet set up.
49    * The actual multiplier tables are pointed to by dct_table in the
50    * per-component comp_info structures.
51    */
52   int cur_method[MAX_COMPONENTS];
53 } my_idct_controller;
54 
55 typedef my_idct_controller * my_idct_ptr;
56 
57 
58 /* Allocated multiplier tables: big enough for any supported variant */
59 
60 typedef union {
61   ISLOW_MULT_TYPE islow_array[DCTSIZE2];
62 #ifdef DCT_IFAST_SUPPORTED
63   IFAST_MULT_TYPE ifast_array[DCTSIZE2];
64 #endif
65 #ifdef DCT_FLOAT_SUPPORTED
66   FLOAT_MULT_TYPE float_array[DCTSIZE2];
67 #endif
68 } multiplier_table;
69 
70 
71 /* The current scaled-IDCT routines require ISLOW-style multiplier tables,
72  * so be sure to compile that code if either ISLOW or SCALING is requested.
73  */
74 #ifdef DCT_ISLOW_SUPPORTED
75 #define PROVIDE_ISLOW_TABLES
76 #else
77 #ifdef IDCT_SCALING_SUPPORTED
78 #define PROVIDE_ISLOW_TABLES
79 #endif
80 #endif
81 
82 
83 /*
84  * Prepare for an output pass.
85  * Here we select the proper IDCT routine for each component and build
86  * a matching multiplier table.
87  */
88 
89 METHODDEF(void)
start_pass(j_decompress_ptr cinfo)90 start_pass (j_decompress_ptr cinfo)
91 {
92   my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
93   int ci, i;
94   jpeg_component_info *compptr;
95   int method = 0;
96   inverse_DCT_method_ptr method_ptr = NULL;
97   JQUANT_TBL * qtbl;
98 
99   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
100        ci++, compptr++) {
101     /* Select the proper IDCT routine for this component's scaling */
102     switch (compptr->DCT_scaled_size) {
103 #ifdef IDCT_SCALING_SUPPORTED
104     case 1:
105       method_ptr = jpeg_idct_1x1;
106       method = JDCT_ISLOW;	/* jidctred uses islow-style table */
107       break;
108     case 2:
109       method_ptr = jpeg_idct_2x2;
110       method = JDCT_ISLOW;	/* jidctred uses islow-style table */
111       break;
112     case 4:
113       method_ptr = jpeg_idct_4x4;
114       method = JDCT_ISLOW;	/* jidctred uses islow-style table */
115       break;
116 #endif
117     case DCTSIZE:
118       switch (cinfo->dct_method) {
119 #ifdef DCT_ISLOW_SUPPORTED
120       case JDCT_ISLOW:
121 	method_ptr = jpeg_idct_islow;
122 	method = JDCT_ISLOW;
123 	break;
124 #endif
125 #ifdef DCT_IFAST_SUPPORTED
126       case JDCT_IFAST:
127 	method_ptr = jpeg_idct_ifast;
128 	method = JDCT_IFAST;
129 	break;
130 #endif
131 #ifdef DCT_FLOAT_SUPPORTED
132       case JDCT_FLOAT:
133 	method_ptr = jpeg_idct_float;
134 	method = JDCT_FLOAT;
135 	break;
136 #endif
137       default:
138 	ERREXIT(cinfo, JERR_NOT_COMPILED);
139 	break;
140       }
141       break;
142     default:
143       ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
144       break;
145     }
146     idct->pub.inverse_DCT[ci] = method_ptr;
147     /* Create multiplier table from quant table.
148      * However, we can skip this if the component is uninteresting
149      * or if we already built the table.  Also, if no quant table
150      * has yet been saved for the component, we leave the
151      * multiplier table all-zero; we'll be reading zeroes from the
152      * coefficient controller's buffer anyway.
153      */
154     if (! compptr->component_needed || idct->cur_method[ci] == method)
155       continue;
156     qtbl = compptr->quant_table;
157     if (qtbl == NULL)		/* happens if no data yet for component */
158       continue;
159     idct->cur_method[ci] = method;
160     switch (method) {
161 #ifdef PROVIDE_ISLOW_TABLES
162     case JDCT_ISLOW:
163       {
164 	/* For LL&M IDCT method, multipliers are equal to raw quantization
165 	 * coefficients, but are stored as ints to ensure access efficiency.
166 	 */
167 	ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
168 	for (i = 0; i < DCTSIZE2; i++) {
169 	  ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
170 	}
171       }
172       break;
173 #endif
174 #ifdef DCT_IFAST_SUPPORTED
175     case JDCT_IFAST:
176       {
177 	/* For AA&N IDCT method, multipliers are equal to quantization
178 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
179 	 *   scalefactor[0] = 1
180 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
181 	 * For integer operation, the multiplier table is to be scaled by
182 	 * IFAST_SCALE_BITS.
183 	 */
184 	IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
185 #define CONST_BITS 14
186 	static const INT16 aanscales[DCTSIZE2] = {
187 	  /* precomputed values scaled up by 14 bits */
188 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
189 	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
190 	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
191 	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
192 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
193 	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
194 	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
195 	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
196 	};
197 	SHIFT_TEMPS
198 
199 	for (i = 0; i < DCTSIZE2; i++) {
200 	  ifmtbl[i] = (IFAST_MULT_TYPE)
201 	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
202 				  (INT32) aanscales[i]),
203 		    CONST_BITS-IFAST_SCALE_BITS);
204 	}
205       }
206       break;
207 #endif
208 #ifdef DCT_FLOAT_SUPPORTED
209     case JDCT_FLOAT:
210       {
211 	/* For float AA&N IDCT method, multipliers are equal to quantization
212 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
213 	 *   scalefactor[0] = 1
214 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
215 	 */
216 	FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
217 	int row, col;
218 	static const double aanscalefactor[DCTSIZE] = {
219 	  1.0, 1.387039845, 1.306562965, 1.175875602,
220 	  1.0, 0.785694958, 0.541196100, 0.275899379
221 	};
222 
223 	i = 0;
224 	for (row = 0; row < DCTSIZE; row++) {
225 	  for (col = 0; col < DCTSIZE; col++) {
226 	    fmtbl[i] = (FLOAT_MULT_TYPE)
227 	      ((double) qtbl->quantval[i] *
228 	       aanscalefactor[row] * aanscalefactor[col]);
229 	    i++;
230 	  }
231 	}
232       }
233       break;
234 #endif
235     default:
236       ERREXIT(cinfo, JERR_NOT_COMPILED);
237       break;
238     }
239   }
240 }
241 
242 
243 /*
244  * Initialize IDCT manager.
245  */
246 
247 GLOBAL(void)
jinit_inverse_dct(j_decompress_ptr cinfo)248 jinit_inverse_dct (j_decompress_ptr cinfo)
249 {
250   my_idct_ptr idct;
251   int ci;
252   jpeg_component_info *compptr;
253 
254   idct = (my_idct_ptr)
255     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
256 				SIZEOF(my_idct_controller));
257   cinfo->idct = (struct jpeg_inverse_dct *) idct;
258   idct->pub.start_pass = start_pass;
259 
260   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
261        ci++, compptr++) {
262     /* Allocate and pre-zero a multiplier table for each component */
263     compptr->dct_table =
264       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
265 				  SIZEOF(multiplier_table));
266     MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
267     /* Mark multiplier table not yet set up for any method */
268     idct->cur_method[ci] = -1;
269   }
270 }
271 
272 #endif //_FX_JPEG_TURBO_
273