1 // Protocol Buffers - Google's data interchange format 2 // Copyright 2014 Google Inc. All rights reserved. 3 // https://developers.google.com/protocol-buffers/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are 7 // met: 8 // 9 // * Redistributions of source code must retain the above copyright 10 // notice, this list of conditions and the following disclaimer. 11 // * Redistributions in binary form must reproduce the above 12 // copyright notice, this list of conditions and the following disclaimer 13 // in the documentation and/or other materials provided with the 14 // distribution. 15 // * Neither the name of Google Inc. nor the names of its 16 // contributors may be used to endorse or promote products derived from 17 // this software without specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // from google3/util/gtl/map_util.h 32 // Author: Anton Carver 33 34 #ifndef GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ 35 #define GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ 36 37 #include <stddef.h> 38 #include <iterator> 39 #include <string> 40 #include <utility> 41 #include <vector> 42 43 #include <google/protobuf/stubs/common.h> 44 45 namespace google { 46 namespace protobuf { 47 namespace internal { 48 // Local implementation of RemoveConst to avoid including base/type_traits.h. 49 template <class T> struct RemoveConst { typedef T type; }; 50 template <class T> struct RemoveConst<const T> : RemoveConst<T> {}; 51 } // namespace internal 52 53 // 54 // Find*() 55 // 56 57 // Returns a const reference to the value associated with the given key if it 58 // exists. Crashes otherwise. 59 // 60 // This is intended as a replacement for operator[] as an rvalue (for reading) 61 // when the key is guaranteed to exist. 62 // 63 // operator[] for lookup is discouraged for several reasons: 64 // * It has a side-effect of inserting missing keys 65 // * It is not thread-safe (even when it is not inserting, it can still 66 // choose to resize the underlying storage) 67 // * It invalidates iterators (when it chooses to resize) 68 // * It default constructs a value object even if it doesn't need to 69 // 70 // This version assumes the key is printable, and includes it in the fatal log 71 // message. 72 template <class Collection> 73 const typename Collection::value_type::second_type& 74 FindOrDie(const Collection& collection, 75 const typename Collection::value_type::first_type& key) { 76 typename Collection::const_iterator it = collection.find(key); 77 GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key; 78 return it->second; 79 } 80 81 // Same as above, but returns a non-const reference. 82 template <class Collection> 83 typename Collection::value_type::second_type& 84 FindOrDie(Collection& collection, // NOLINT 85 const typename Collection::value_type::first_type& key) { 86 typename Collection::iterator it = collection.find(key); 87 GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key; 88 return it->second; 89 } 90 91 // Same as FindOrDie above, but doesn't log the key on failure. 92 template <class Collection> 93 const typename Collection::value_type::second_type& 94 FindOrDieNoPrint(const Collection& collection, 95 const typename Collection::value_type::first_type& key) { 96 typename Collection::const_iterator it = collection.find(key); 97 GOOGLE_CHECK(it != collection.end()) << "Map key not found"; 98 return it->second; 99 } 100 101 // Same as above, but returns a non-const reference. 102 template <class Collection> 103 typename Collection::value_type::second_type& 104 FindOrDieNoPrint(Collection& collection, // NOLINT 105 const typename Collection::value_type::first_type& key) { 106 typename Collection::iterator it = collection.find(key); 107 GOOGLE_CHECK(it != collection.end()) << "Map key not found"; 108 return it->second; 109 } 110 111 // Returns a const reference to the value associated with the given key if it 112 // exists, otherwise returns a const reference to the provided default value. 113 // 114 // WARNING: If a temporary object is passed as the default "value," 115 // this function will return a reference to that temporary object, 116 // which will be destroyed at the end of the statement. A common 117 // example: if you have a map with string values, and you pass a char* 118 // as the default "value," either use the returned value immediately 119 // or store it in a string (not string&). 120 // Details: http://go/findwithdefault 121 template <class Collection> 122 const typename Collection::value_type::second_type& 123 FindWithDefault(const Collection& collection, 124 const typename Collection::value_type::first_type& key, 125 const typename Collection::value_type::second_type& value) { 126 typename Collection::const_iterator it = collection.find(key); 127 if (it == collection.end()) { 128 return value; 129 } 130 return it->second; 131 } 132 133 // Returns a pointer to the const value associated with the given key if it 134 // exists, or NULL otherwise. 135 template <class Collection> 136 const typename Collection::value_type::second_type* 137 FindOrNull(const Collection& collection, 138 const typename Collection::value_type::first_type& key) { 139 typename Collection::const_iterator it = collection.find(key); 140 if (it == collection.end()) { 141 return 0; 142 } 143 return &it->second; 144 } 145 146 // Same as above but returns a pointer to the non-const value. 147 template <class Collection> 148 typename Collection::value_type::second_type* 149 FindOrNull(Collection& collection, // NOLINT 150 const typename Collection::value_type::first_type& key) { 151 typename Collection::iterator it = collection.find(key); 152 if (it == collection.end()) { 153 return 0; 154 } 155 return &it->second; 156 } 157 158 // Returns the pointer value associated with the given key. If none is found, 159 // NULL is returned. The function is designed to be used with a map of keys to 160 // pointers. 161 // 162 // This function does not distinguish between a missing key and a key mapped 163 // to a NULL value. 164 template <class Collection> 165 typename Collection::value_type::second_type 166 FindPtrOrNull(const Collection& collection, 167 const typename Collection::value_type::first_type& key) { 168 typename Collection::const_iterator it = collection.find(key); 169 if (it == collection.end()) { 170 return typename Collection::value_type::second_type(); 171 } 172 return it->second; 173 } 174 175 // Same as above, except takes non-const reference to collection. 176 // 177 // This function is needed for containers that propagate constness to the 178 // pointee, such as boost::ptr_map. 179 template <class Collection> 180 typename Collection::value_type::second_type 181 FindPtrOrNull(Collection& collection, // NOLINT 182 const typename Collection::value_type::first_type& key) { 183 typename Collection::iterator it = collection.find(key); 184 if (it == collection.end()) { 185 return typename Collection::value_type::second_type(); 186 } 187 return it->second; 188 } 189 190 // Finds the pointer value associated with the given key in a map whose values 191 // are linked_ptrs. Returns NULL if key is not found. 192 template <class Collection> 193 typename Collection::value_type::second_type::element_type* 194 FindLinkedPtrOrNull(const Collection& collection, 195 const typename Collection::value_type::first_type& key) { 196 typename Collection::const_iterator it = collection.find(key); 197 if (it == collection.end()) { 198 return 0; 199 } 200 // Since linked_ptr::get() is a const member returning a non const, 201 // we do not need a version of this function taking a non const collection. 202 return it->second.get(); 203 } 204 205 // Same as above, but dies if the key is not found. 206 template <class Collection> 207 typename Collection::value_type::second_type::element_type& 208 FindLinkedPtrOrDie(const Collection& collection, 209 const typename Collection::value_type::first_type& key) { 210 typename Collection::const_iterator it = collection.find(key); 211 CHECK(it != collection.end()) << "key not found: " << key; 212 // Since linked_ptr::operator*() is a const member returning a non const, 213 // we do not need a version of this function taking a non const collection. 214 return *it->second; 215 } 216 217 // Finds the value associated with the given key and copies it to *value (if not 218 // NULL). Returns false if the key was not found, true otherwise. 219 template <class Collection, class Key, class Value> 220 bool FindCopy(const Collection& collection, 221 const Key& key, 222 Value* const value) { 223 typename Collection::const_iterator it = collection.find(key); 224 if (it == collection.end()) { 225 return false; 226 } 227 if (value) { 228 *value = it->second; 229 } 230 return true; 231 } 232 233 // 234 // Contains*() 235 // 236 237 // Returns true if and only if the given collection contains the given key. 238 template <class Collection, class Key> 239 bool ContainsKey(const Collection& collection, const Key& key) { 240 return collection.find(key) != collection.end(); 241 } 242 243 // Returns true if and only if the given collection contains the given key-value 244 // pair. 245 template <class Collection, class Key, class Value> 246 bool ContainsKeyValuePair(const Collection& collection, 247 const Key& key, 248 const Value& value) { 249 typedef typename Collection::const_iterator const_iterator; 250 std::pair<const_iterator, const_iterator> range = collection.equal_range(key); 251 for (const_iterator it = range.first; it != range.second; ++it) { 252 if (it->second == value) { 253 return true; 254 } 255 } 256 return false; 257 } 258 259 // 260 // Insert*() 261 // 262 263 // Inserts the given key-value pair into the collection. Returns true if and 264 // only if the key from the given pair didn't previously exist. Otherwise, the 265 // value in the map is replaced with the value from the given pair. 266 template <class Collection> 267 bool InsertOrUpdate(Collection* const collection, 268 const typename Collection::value_type& vt) { 269 std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); 270 if (!ret.second) { 271 // update 272 ret.first->second = vt.second; 273 return false; 274 } 275 return true; 276 } 277 278 // Same as above, except that the key and value are passed separately. 279 template <class Collection> 280 bool InsertOrUpdate(Collection* const collection, 281 const typename Collection::value_type::first_type& key, 282 const typename Collection::value_type::second_type& value) { 283 return InsertOrUpdate( 284 collection, typename Collection::value_type(key, value)); 285 } 286 287 // Inserts/updates all the key-value pairs from the range defined by the 288 // iterators "first" and "last" into the given collection. 289 template <class Collection, class InputIterator> 290 void InsertOrUpdateMany(Collection* const collection, 291 InputIterator first, InputIterator last) { 292 for (; first != last; ++first) { 293 InsertOrUpdate(collection, *first); 294 } 295 } 296 297 // Change the value associated with a particular key in a map or hash_map 298 // of the form map<Key, Value*> which owns the objects pointed to by the 299 // value pointers. If there was an existing value for the key, it is deleted. 300 // True indicates an insert took place, false indicates an update + delete. 301 template <class Collection> 302 bool InsertAndDeleteExisting( 303 Collection* const collection, 304 const typename Collection::value_type::first_type& key, 305 const typename Collection::value_type::second_type& value) { 306 std::pair<typename Collection::iterator, bool> ret = 307 collection->insert(typename Collection::value_type(key, value)); 308 if (!ret.second) { 309 delete ret.first->second; 310 ret.first->second = value; 311 return false; 312 } 313 return true; 314 } 315 316 // Inserts the given key and value into the given collection if and only if the 317 // given key did NOT already exist in the collection. If the key previously 318 // existed in the collection, the value is not changed. Returns true if the 319 // key-value pair was inserted; returns false if the key was already present. 320 template <class Collection> 321 bool InsertIfNotPresent(Collection* const collection, 322 const typename Collection::value_type& vt) { 323 return collection->insert(vt).second; 324 } 325 326 // Same as above except the key and value are passed separately. 327 template <class Collection> 328 bool InsertIfNotPresent( 329 Collection* const collection, 330 const typename Collection::value_type::first_type& key, 331 const typename Collection::value_type::second_type& value) { 332 return InsertIfNotPresent( 333 collection, typename Collection::value_type(key, value)); 334 } 335 336 // Same as above except dies if the key already exists in the collection. 337 template <class Collection> 338 void InsertOrDie(Collection* const collection, 339 const typename Collection::value_type& value) { 340 CHECK(InsertIfNotPresent(collection, value)) << "duplicate value: " << value; 341 } 342 343 // Same as above except doesn't log the value on error. 344 template <class Collection> 345 void InsertOrDieNoPrint(Collection* const collection, 346 const typename Collection::value_type& value) { 347 CHECK(InsertIfNotPresent(collection, value)) << "duplicate value."; 348 } 349 350 // Inserts the key-value pair into the collection. Dies if key was already 351 // present. 352 template <class Collection> 353 void InsertOrDie(Collection* const collection, 354 const typename Collection::value_type::first_type& key, 355 const typename Collection::value_type::second_type& data) { 356 typedef typename Collection::value_type value_type; 357 GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) 358 << "duplicate key: " << key; 359 } 360 361 // Same as above except doesn't log the key on error. 362 template <class Collection> 363 void InsertOrDieNoPrint( 364 Collection* const collection, 365 const typename Collection::value_type::first_type& key, 366 const typename Collection::value_type::second_type& data) { 367 typedef typename Collection::value_type value_type; 368 GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key."; 369 } 370 371 // Inserts a new key and default-initialized value. Dies if the key was already 372 // present. Returns a reference to the value. Example usage: 373 // 374 // map<int, SomeProto> m; 375 // SomeProto& proto = InsertKeyOrDie(&m, 3); 376 // proto.set_field("foo"); 377 template <class Collection> 378 typename Collection::value_type::second_type& InsertKeyOrDie( 379 Collection* const collection, 380 const typename Collection::value_type::first_type& key) { 381 typedef typename Collection::value_type value_type; 382 std::pair<typename Collection::iterator, bool> res = 383 collection->insert(value_type(key, typename value_type::second_type())); 384 GOOGLE_CHECK(res.second) << "duplicate key: " << key; 385 return res.first->second; 386 } 387 388 // 389 // Lookup*() 390 // 391 392 // Looks up a given key and value pair in a collection and inserts the key-value 393 // pair if it's not already present. Returns a reference to the value associated 394 // with the key. 395 template <class Collection> 396 typename Collection::value_type::second_type& 397 LookupOrInsert(Collection* const collection, 398 const typename Collection::value_type& vt) { 399 return collection->insert(vt).first->second; 400 } 401 402 // Same as above except the key-value are passed separately. 403 template <class Collection> 404 typename Collection::value_type::second_type& 405 LookupOrInsert(Collection* const collection, 406 const typename Collection::value_type::first_type& key, 407 const typename Collection::value_type::second_type& value) { 408 return LookupOrInsert( 409 collection, typename Collection::value_type(key, value)); 410 } 411 412 // Counts the number of equivalent elements in the given "sequence", and stores 413 // the results in "count_map" with element as the key and count as the value. 414 // 415 // Example: 416 // vector<string> v = {"a", "b", "c", "a", "b"}; 417 // map<string, int> m; 418 // AddTokenCounts(v, 1, &m); 419 // assert(m["a"] == 2); 420 // assert(m["b"] == 2); 421 // assert(m["c"] == 1); 422 template <typename Sequence, typename Collection> 423 void AddTokenCounts( 424 const Sequence& sequence, 425 const typename Collection::value_type::second_type& increment, 426 Collection* const count_map) { 427 for (typename Sequence::const_iterator it = sequence.begin(); 428 it != sequence.end(); ++it) { 429 typename Collection::value_type::second_type& value = 430 LookupOrInsert(count_map, *it, 431 typename Collection::value_type::second_type()); 432 value += increment; 433 } 434 } 435 436 // Returns a reference to the value associated with key. If not found, a value 437 // is default constructed on the heap and added to the map. 438 // 439 // This function is useful for containers of the form map<Key, Value*>, where 440 // inserting a new key, value pair involves constructing a new heap-allocated 441 // Value, and storing a pointer to that in the collection. 442 template <class Collection> 443 typename Collection::value_type::second_type& 444 LookupOrInsertNew(Collection* const collection, 445 const typename Collection::value_type::first_type& key) { 446 typedef typename std::iterator_traits< 447 typename Collection::value_type::second_type>::value_type Element; 448 std::pair<typename Collection::iterator, bool> ret = 449 collection->insert(typename Collection::value_type( 450 key, 451 static_cast<typename Collection::value_type::second_type>(NULL))); 452 if (ret.second) { 453 ret.first->second = new Element(); 454 } 455 return ret.first->second; 456 } 457 458 // Same as above but constructs the value using the single-argument constructor 459 // and the given "arg". 460 template <class Collection, class Arg> 461 typename Collection::value_type::second_type& 462 LookupOrInsertNew(Collection* const collection, 463 const typename Collection::value_type::first_type& key, 464 const Arg& arg) { 465 typedef typename std::iterator_traits< 466 typename Collection::value_type::second_type>::value_type Element; 467 std::pair<typename Collection::iterator, bool> ret = 468 collection->insert(typename Collection::value_type( 469 key, 470 static_cast<typename Collection::value_type::second_type>(NULL))); 471 if (ret.second) { 472 ret.first->second = new Element(arg); 473 } 474 return ret.first->second; 475 } 476 477 // Lookup of linked/shared pointers is used in two scenarios: 478 // 479 // Use LookupOrInsertNewLinkedPtr if the container owns the elements. 480 // In this case it is fine working with the raw pointer as long as it is 481 // guaranteed that no other thread can delete/update an accessed element. 482 // A mutex will need to lock the container operation as well as the use 483 // of the returned elements. Finding an element may be performed using 484 // FindLinkedPtr*(). 485 // 486 // Use LookupOrInsertNewSharedPtr if the container does not own the elements 487 // for their whole lifetime. This is typically the case when a reader allows 488 // parallel updates to the container. In this case a Mutex only needs to lock 489 // container operations, but all element operations must be performed on the 490 // shared pointer. Finding an element must be performed using FindPtr*() and 491 // cannot be done with FindLinkedPtr*() even though it compiles. 492 493 // Lookup a key in a map or hash_map whose values are linked_ptrs. If it is 494 // missing, set collection[key].reset(new Value::element_type) and return that. 495 // Value::element_type must be default constructable. 496 template <class Collection> 497 typename Collection::value_type::second_type::element_type* 498 LookupOrInsertNewLinkedPtr( 499 Collection* const collection, 500 const typename Collection::value_type::first_type& key) { 501 typedef typename Collection::value_type::second_type Value; 502 std::pair<typename Collection::iterator, bool> ret = 503 collection->insert(typename Collection::value_type(key, Value())); 504 if (ret.second) { 505 ret.first->second.reset(new typename Value::element_type); 506 } 507 return ret.first->second.get(); 508 } 509 510 // A variant of LookupOrInsertNewLinkedPtr where the value is constructed using 511 // a single-parameter constructor. Note: the constructor argument is computed 512 // even if it will not be used, so only values cheap to compute should be passed 513 // here. On the other hand it does not matter how expensive the construction of 514 // the actual stored value is, as that only occurs if necessary. 515 template <class Collection, class Arg> 516 typename Collection::value_type::second_type::element_type* 517 LookupOrInsertNewLinkedPtr( 518 Collection* const collection, 519 const typename Collection::value_type::first_type& key, 520 const Arg& arg) { 521 typedef typename Collection::value_type::second_type Value; 522 std::pair<typename Collection::iterator, bool> ret = 523 collection->insert(typename Collection::value_type(key, Value())); 524 if (ret.second) { 525 ret.first->second.reset(new typename Value::element_type(arg)); 526 } 527 return ret.first->second.get(); 528 } 529 530 // Lookup a key in a map or hash_map whose values are shared_ptrs. If it is 531 // missing, set collection[key].reset(new Value::element_type). Unlike 532 // LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of 533 // the raw pointer. Value::element_type must be default constructable. 534 template <class Collection> 535 typename Collection::value_type::second_type& 536 LookupOrInsertNewSharedPtr( 537 Collection* const collection, 538 const typename Collection::value_type::first_type& key) { 539 typedef typename Collection::value_type::second_type SharedPtr; 540 typedef typename Collection::value_type::second_type::element_type Element; 541 std::pair<typename Collection::iterator, bool> ret = 542 collection->insert(typename Collection::value_type(key, SharedPtr())); 543 if (ret.second) { 544 ret.first->second.reset(new Element()); 545 } 546 return ret.first->second; 547 } 548 549 // A variant of LookupOrInsertNewSharedPtr where the value is constructed using 550 // a single-parameter constructor. Note: the constructor argument is computed 551 // even if it will not be used, so only values cheap to compute should be passed 552 // here. On the other hand it does not matter how expensive the construction of 553 // the actual stored value is, as that only occurs if necessary. 554 template <class Collection, class Arg> 555 typename Collection::value_type::second_type& 556 LookupOrInsertNewSharedPtr( 557 Collection* const collection, 558 const typename Collection::value_type::first_type& key, 559 const Arg& arg) { 560 typedef typename Collection::value_type::second_type SharedPtr; 561 typedef typename Collection::value_type::second_type::element_type Element; 562 std::pair<typename Collection::iterator, bool> ret = 563 collection->insert(typename Collection::value_type(key, SharedPtr())); 564 if (ret.second) { 565 ret.first->second.reset(new Element(arg)); 566 } 567 return ret.first->second; 568 } 569 570 // 571 // Misc Utility Functions 572 // 573 574 // Updates the value associated with the given key. If the key was not already 575 // present, then the key-value pair are inserted and "previous" is unchanged. If 576 // the key was already present, the value is updated and "*previous" will 577 // contain a copy of the old value. 578 // 579 // InsertOrReturnExisting has complementary behavior that returns the 580 // address of an already existing value, rather than updating it. 581 template <class Collection> 582 bool UpdateReturnCopy(Collection* const collection, 583 const typename Collection::value_type::first_type& key, 584 const typename Collection::value_type::second_type& value, 585 typename Collection::value_type::second_type* previous) { 586 std::pair<typename Collection::iterator, bool> ret = 587 collection->insert(typename Collection::value_type(key, value)); 588 if (!ret.second) { 589 // update 590 if (previous) { 591 *previous = ret.first->second; 592 } 593 ret.first->second = value; 594 return true; 595 } 596 return false; 597 } 598 599 // Same as above except that the key and value are passed as a pair. 600 template <class Collection> 601 bool UpdateReturnCopy(Collection* const collection, 602 const typename Collection::value_type& vt, 603 typename Collection::value_type::second_type* previous) { 604 std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); 605 if (!ret.second) { 606 // update 607 if (previous) { 608 *previous = ret.first->second; 609 } 610 ret.first->second = vt.second; 611 return true; 612 } 613 return false; 614 } 615 616 // Tries to insert the given key-value pair into the collection. Returns NULL if 617 // the insert succeeds. Otherwise, returns a pointer to the existing value. 618 // 619 // This complements UpdateReturnCopy in that it allows to update only after 620 // verifying the old value and still insert quickly without having to look up 621 // twice. Unlike UpdateReturnCopy this also does not come with the issue of an 622 // undefined previous* in case new data was inserted. 623 template <class Collection> 624 typename Collection::value_type::second_type* const 625 InsertOrReturnExisting(Collection* const collection, 626 const typename Collection::value_type& vt) { 627 std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); 628 if (ret.second) { 629 return NULL; // Inserted, no existing previous value. 630 } else { 631 return &ret.first->second; // Return address of already existing value. 632 } 633 } 634 635 // Same as above, except for explicit key and data. 636 template <class Collection> 637 typename Collection::value_type::second_type* const 638 InsertOrReturnExisting( 639 Collection* const collection, 640 const typename Collection::value_type::first_type& key, 641 const typename Collection::value_type::second_type& data) { 642 return InsertOrReturnExisting(collection, 643 typename Collection::value_type(key, data)); 644 } 645 646 // Erases the collection item identified by the given key, and returns the value 647 // associated with that key. It is assumed that the value (i.e., the 648 // mapped_type) is a pointer. Returns NULL if the key was not found in the 649 // collection. 650 // 651 // Examples: 652 // map<string, MyType*> my_map; 653 // 654 // One line cleanup: 655 // delete EraseKeyReturnValuePtr(&my_map, "abc"); 656 // 657 // Use returned value: 658 // scoped_ptr<MyType> value_ptr(EraseKeyReturnValuePtr(&my_map, "abc")); 659 // if (value_ptr.get()) 660 // value_ptr->DoSomething(); 661 // 662 template <class Collection> 663 typename Collection::value_type::second_type EraseKeyReturnValuePtr( 664 Collection* const collection, 665 const typename Collection::value_type::first_type& key) { 666 typename Collection::iterator it = collection->find(key); 667 if (it == collection->end()) { 668 return NULL; 669 } 670 typename Collection::value_type::second_type v = it->second; 671 collection->erase(it); 672 return v; 673 } 674 675 // Inserts all the keys from map_container into key_container, which must 676 // support insert(MapContainer::key_type). 677 // 678 // Note: any initial contents of the key_container are not cleared. 679 template <class MapContainer, class KeyContainer> 680 void InsertKeysFromMap(const MapContainer& map_container, 681 KeyContainer* key_container) { 682 GOOGLE_CHECK(key_container != NULL); 683 for (typename MapContainer::const_iterator it = map_container.begin(); 684 it != map_container.end(); ++it) { 685 key_container->insert(it->first); 686 } 687 } 688 689 // Appends all the keys from map_container into key_container, which must 690 // support push_back(MapContainer::key_type). 691 // 692 // Note: any initial contents of the key_container are not cleared. 693 template <class MapContainer, class KeyContainer> 694 void AppendKeysFromMap(const MapContainer& map_container, 695 KeyContainer* key_container) { 696 GOOGLE_CHECK(key_container != NULL); 697 for (typename MapContainer::const_iterator it = map_container.begin(); 698 it != map_container.end(); ++it) { 699 key_container->push_back(it->first); 700 } 701 } 702 703 // A more specialized overload of AppendKeysFromMap to optimize reallocations 704 // for the common case in which we're appending keys to a vector and hence can 705 // (and sometimes should) call reserve() first. 706 // 707 // (It would be possible to play SFINAE games to call reserve() for any 708 // container that supports it, but this seems to get us 99% of what we need 709 // without the complexity of a SFINAE-based solution.) 710 template <class MapContainer, class KeyType> 711 void AppendKeysFromMap(const MapContainer& map_container, 712 vector<KeyType>* key_container) { 713 GOOGLE_CHECK(key_container != NULL); 714 // We now have the opportunity to call reserve(). Calling reserve() every 715 // time is a bad idea for some use cases: libstdc++'s implementation of 716 // vector<>::reserve() resizes the vector's backing store to exactly the 717 // given size (unless it's already at least that big). Because of this, 718 // the use case that involves appending a lot of small maps (total size 719 // N) one by one to a vector would be O(N^2). But never calling reserve() 720 // loses the opportunity to improve the use case of adding from a large 721 // map to an empty vector (this improves performance by up to 33%). A 722 // number of heuristics are possible; see the discussion in 723 // cl/34081696. Here we use the simplest one. 724 if (key_container->empty()) { 725 key_container->reserve(map_container.size()); 726 } 727 for (typename MapContainer::const_iterator it = map_container.begin(); 728 it != map_container.end(); ++it) { 729 key_container->push_back(it->first); 730 } 731 } 732 733 // Inserts all the values from map_container into value_container, which must 734 // support push_back(MapContainer::mapped_type). 735 // 736 // Note: any initial contents of the value_container are not cleared. 737 template <class MapContainer, class ValueContainer> 738 void AppendValuesFromMap(const MapContainer& map_container, 739 ValueContainer* value_container) { 740 GOOGLE_CHECK(value_container != NULL); 741 for (typename MapContainer::const_iterator it = map_container.begin(); 742 it != map_container.end(); ++it) { 743 value_container->push_back(it->second); 744 } 745 } 746 747 // A more specialized overload of AppendValuesFromMap to optimize reallocations 748 // for the common case in which we're appending values to a vector and hence 749 // can (and sometimes should) call reserve() first. 750 // 751 // (It would be possible to play SFINAE games to call reserve() for any 752 // container that supports it, but this seems to get us 99% of what we need 753 // without the complexity of a SFINAE-based solution.) 754 template <class MapContainer, class ValueType> 755 void AppendValuesFromMap(const MapContainer& map_container, 756 vector<ValueType>* value_container) { 757 GOOGLE_CHECK(value_container != NULL); 758 // See AppendKeysFromMap for why this is done. 759 if (value_container->empty()) { 760 value_container->reserve(map_container.size()); 761 } 762 for (typename MapContainer::const_iterator it = map_container.begin(); 763 it != map_container.end(); ++it) { 764 value_container->push_back(it->second); 765 } 766 } 767 768 } // namespace protobuf 769 } // namespace google 770 771 #endif // GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ 772