1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrAAConvexTessellator.h"
9 #include "SkCanvas.h"
10 #include "SkPath.h"
11 #include "SkPoint.h"
12 #include "SkString.h"
13 
14 // Next steps:
15 //  use in AAConvexPathRenderer
16 //  add an interactive sample app slide
17 //  add debug check that all points are suitably far apart
18 //  test more degenerate cases
19 
20 // The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
21 static const SkScalar kClose = (SK_Scalar1 / 16);
22 static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose);
23 
intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & n1)24 static SkScalar intersect(const SkPoint& p0, const SkPoint& n0,
25                           const SkPoint& p1, const SkPoint& n1) {
26     const SkPoint v = p1 - p0;
27 
28     SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
29     return (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
30 }
31 
32 // This is a special case version of intersect where we have the vector
33 // perpendicular to the second line rather than the vector parallel to it.
perp_intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & perp)34 static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
35                                const SkPoint& p1, const SkPoint& perp) {
36     const SkPoint v = p1 - p0;
37     SkScalar perpDot = n0.dot(perp);
38     return v.dot(perp) / perpDot;
39 }
40 
duplicate_pt(const SkPoint & p0,const SkPoint & p1)41 static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
42     SkScalar distSq = p0.distanceToSqd(p1);
43     return distSq < kCloseSqd;
44 }
45 
abs_dist_from_line(const SkPoint & p0,const SkVector & v,const SkPoint & test)46 static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) {
47     SkPoint testV = test - p0;
48     SkScalar dist = testV.fX * v.fY - testV.fY * v.fX;
49     return SkScalarAbs(dist);
50 }
51 
addPt(const SkPoint & pt,SkScalar depth,bool movable)52 int GrAAConvexTessellator::addPt(const SkPoint& pt,
53                                  SkScalar depth,
54                                  bool movable) {
55     this->validate();
56 
57     int index = fPts.count();
58     *fPts.push() = pt;
59     *fDepths.push() = depth;
60     *fMovable.push() = movable;
61 
62     this->validate();
63     return index;
64 }
65 
popLastPt()66 void GrAAConvexTessellator::popLastPt() {
67     this->validate();
68 
69     fPts.pop();
70     fDepths.pop();
71     fMovable.pop();
72 
73     this->validate();
74 }
75 
popFirstPtShuffle()76 void GrAAConvexTessellator::popFirstPtShuffle() {
77     this->validate();
78 
79     fPts.removeShuffle(0);
80     fDepths.removeShuffle(0);
81     fMovable.removeShuffle(0);
82 
83     this->validate();
84 }
85 
updatePt(int index,const SkPoint & pt,SkScalar depth)86 void GrAAConvexTessellator::updatePt(int index,
87                                      const SkPoint& pt,
88                                      SkScalar depth) {
89     this->validate();
90     SkASSERT(fMovable[index]);
91 
92     fPts[index] = pt;
93     fDepths[index] = depth;
94 }
95 
addTri(int i0,int i1,int i2)96 void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
97     if (i0 == i1 || i1 == i2 || i2 == i0) {
98         return;
99     }
100 
101     *fIndices.push() = i0;
102     *fIndices.push() = i1;
103     *fIndices.push() = i2;
104 }
105 
rewind()106 void GrAAConvexTessellator::rewind() {
107     fPts.rewind();
108     fDepths.rewind();
109     fMovable.rewind();
110     fIndices.rewind();
111     fNorms.rewind();
112     fInitialRing.rewind();
113     fCandidateVerts.rewind();
114 #if GR_AA_CONVEX_TESSELLATOR_VIZ
115     fRings.rewind();        // TODO: leak in this case!
116 #else
117     fRings[0].rewind();
118     fRings[1].rewind();
119 #endif
120 }
121 
computeBisectors()122 void GrAAConvexTessellator::computeBisectors() {
123     fBisectors.setCount(fNorms.count());
124 
125     int prev = fBisectors.count() - 1;
126     for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
127         fBisectors[cur] = fNorms[cur] + fNorms[prev];
128         fBisectors[cur].normalize();
129         fBisectors[cur].negate();      // make the bisector face in
130 
131         SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
132     }
133 }
134 
135 // The general idea here is to, conceptually, start with the original polygon and slide
136 // the vertices along the bisectors until the first intersection. At that
137 // point two of the edges collapse and the process repeats on the new polygon.
138 // The polygon state is captured in the Ring class while the GrAAConvexTessellator
139 // controls the iteration. The CandidateVerts holds the formative points for the
140 // next ring.
tessellate(const SkMatrix & m,const SkPath & path)141 bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
142     static const int kMaxNumRings = 8;
143 
144     SkDEBUGCODE(fShouldCheckDepths = true;)
145 
146     if (!this->extractFromPath(m, path)) {
147         return false;
148     }
149 
150     this->createOuterRing();
151 
152     // the bisectors are only needed for the computation of the outer ring
153     fBisectors.rewind();
154 
155     Ring* lastRing = &fInitialRing;
156     int i;
157     for (i = 0; i < kMaxNumRings; ++i) {
158         Ring* nextRing = this->getNextRing(lastRing);
159 
160         if (this->createInsetRing(*lastRing, nextRing)) {
161             break;
162         }
163 
164         nextRing->init(*this);
165         lastRing = nextRing;
166     }
167 
168     if (kMaxNumRings == i) {
169         // If we've exceeded the amount of time we want to throw at this, set
170         // the depth of all points in the final ring to 'fTargetDepth' and
171         // create a fan.
172         this->terminate(*lastRing);
173         SkDEBUGCODE(fShouldCheckDepths = false;)
174     }
175 
176 #ifdef SK_DEBUG
177     this->validate();
178     if (fShouldCheckDepths) {
179         SkDEBUGCODE(this->checkAllDepths();)
180     }
181 #endif
182     return true;
183 }
184 
computeDepthFromEdge(int edgeIdx,const SkPoint & p) const185 SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
186     SkASSERT(edgeIdx < fNorms.count());
187 
188     SkPoint v = p - fPts[edgeIdx];
189     SkScalar depth = -fNorms[edgeIdx].dot(v);
190     SkASSERT(depth >= 0.0f);
191     return depth;
192 }
193 
194 // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
195 // along the 'bisector' from the 'startIdx'-th point.
computePtAlongBisector(int startIdx,const SkVector & bisector,int edgeIdx,SkScalar desiredDepth,SkPoint * result) const196 bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
197                                                    const SkVector& bisector,
198                                                    int edgeIdx,
199                                                    SkScalar desiredDepth,
200                                                    SkPoint* result) const {
201     const SkPoint& norm = fNorms[edgeIdx];
202 
203     // First find the point where the edge and the bisector intersect
204     SkPoint newP;
205     SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
206     if (SkScalarNearlyEqual(t, 0.0f)) {
207         // the start point was one of the original ring points
208         SkASSERT(startIdx < fNorms.count());
209         newP = fPts[startIdx];
210     } else if (t > 0.0f) {
211         SkASSERT(t < 0.0f);
212         newP = bisector;
213         newP.scale(t);
214         newP += fPts[startIdx];
215     } else {
216         return false;
217     }
218 
219     // Then offset along the bisector from that point the correct distance
220     t = -desiredDepth / bisector.dot(norm);
221     SkASSERT(t > 0.0f);
222     *result = bisector;
223     result->scale(t);
224     *result += newP;
225 
226 
227     return true;
228 }
229 
extractFromPath(const SkMatrix & m,const SkPath & path)230 bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
231     SkASSERT(SkPath::kLine_SegmentMask == path.getSegmentMasks());
232     SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
233 
234     // Outer ring: 3*numPts
235     // Middle ring: numPts
236     // Presumptive inner ring: numPts
237     this->reservePts(5*path.countPoints());
238     // Outer ring: 12*numPts
239     // Middle ring: 0
240     // Presumptive inner ring: 6*numPts + 6
241     fIndices.setReserve(18*path.countPoints() + 6);
242 
243     fNorms.setReserve(path.countPoints());
244 
245     SkScalar minCross = SK_ScalarMax, maxCross = -SK_ScalarMax;
246 
247     // TODO: is there a faster way to extract the points from the path? Perhaps
248     // get all the points via a new entry point, transform them all in bulk
249     // and then walk them to find duplicates?
250     SkPath::Iter iter(path, true);
251     SkPoint pts[4];
252     SkPath::Verb verb;
253     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
254         switch (verb) {
255             case SkPath::kLine_Verb:
256                 m.mapPoints(&pts[1], 1);
257                 if (this->numPts() > 0 && duplicate_pt(pts[1], this->lastPoint())) {
258                     continue;
259                 }
260 
261                 SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1);
262                 if (this->numPts() >= 2 &&
263                     abs_dist_from_line(fPts.top(), fNorms.top(), pts[1]) < kClose) {
264                     // The old last point is on the line from the second to last to the new point
265                     this->popLastPt();
266                     fNorms.pop();
267                 }
268 
269                 this->addPt(pts[1], 0.0f, false);
270                 if (this->numPts() > 1) {
271                     *fNorms.push() = fPts.top() - fPts[fPts.count()-2];
272                     SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
273                     SkASSERT(len > 0.0f);
274                     SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length()));
275                 }
276 
277                 if (this->numPts() >= 3) {
278                     int cur = this->numPts()-1;
279                     SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2]);
280                     maxCross = SkTMax(maxCross, cross);
281                     minCross = SkTMin(minCross, cross);
282                 }
283                 break;
284             case SkPath::kQuad_Verb:
285             case SkPath::kConic_Verb:
286             case SkPath::kCubic_Verb:
287                 SkASSERT(false);
288                 break;
289             case SkPath::kMove_Verb:
290             case SkPath::kClose_Verb:
291             case SkPath::kDone_Verb:
292                 break;
293         }
294     }
295 
296     if (this->numPts() < 3) {
297         return false;
298     }
299 
300     // check if last point is a duplicate of the first point. If so, remove it.
301     if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
302         this->popLastPt();
303         fNorms.pop();
304     }
305 
306     SkASSERT(fPts.count() == fNorms.count()+1);
307     if (this->numPts() >= 3 &&
308         abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) {
309         // The last point is on the line from the second to last to the first point.
310         this->popLastPt();
311         fNorms.pop();
312     }
313 
314     if (this->numPts() < 3) {
315         return false;
316     }
317 
318     *fNorms.push() = fPts[0] - fPts.top();
319     SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
320     SkASSERT(len > 0.0f);
321     SkASSERT(fPts.count() == fNorms.count());
322 
323     if (abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) {
324         // The first point is on the line from the last to the second.
325         this->popFirstPtShuffle();
326         fNorms.removeShuffle(0);
327         fNorms[0] = fPts[1] - fPts[0];
328         SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]);
329         SkASSERT(len > 0.0f);
330         SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
331     }
332 
333     if (this->numPts() < 3) {
334         return false;
335     }
336 
337     // Check the cross produce of the final trio
338     SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
339     maxCross = SkTMax(maxCross, cross);
340     minCross = SkTMin(minCross, cross);
341 
342     if (maxCross > 0.0f) {
343         SkASSERT(minCross >= 0.0f);
344         fSide = SkPoint::kRight_Side;
345     } else {
346         SkASSERT(minCross <= 0.0f);
347         fSide = SkPoint::kLeft_Side;
348     }
349 
350     // Make all the normals face outwards rather than along the edge
351     for (int cur = 0; cur < fNorms.count(); ++cur) {
352         fNorms[cur].setOrthog(fNorms[cur], fSide);
353         SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length()));
354     }
355 
356     this->computeBisectors();
357 
358     fCandidateVerts.setReserve(this->numPts());
359     fInitialRing.setReserve(this->numPts());
360     for (int i = 0; i < this->numPts(); ++i) {
361         fInitialRing.addIdx(i, i);
362     }
363     fInitialRing.init(fNorms, fBisectors);
364 
365     this->validate();
366     return true;
367 }
368 
getNextRing(Ring * lastRing)369 GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
370 #if GR_AA_CONVEX_TESSELLATOR_VIZ
371     Ring* ring = *fRings.push() = SkNEW(Ring);
372     ring->setReserve(fInitialRing.numPts());
373     ring->rewind();
374     return ring;
375 #else
376     // Flip flop back and forth between fRings[0] & fRings[1]
377     int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
378     fRings[nextRing].setReserve(fInitialRing.numPts());
379     fRings[nextRing].rewind();
380     return &fRings[nextRing];
381 #endif
382 }
383 
fanRing(const Ring & ring)384 void GrAAConvexTessellator::fanRing(const Ring& ring) {
385     // fan out from point 0
386     for (int cur = 1; cur < ring.numPts()-1; ++cur) {
387         this->addTri(ring.index(0), ring.index(cur), ring.index(cur+1));
388     }
389 }
390 
createOuterRing()391 void GrAAConvexTessellator::createOuterRing() {
392     // For now, we're only generating one outer ring (at the start). This
393     // could be relaxed for stroking use cases.
394     SkASSERT(0 == fIndices.count());
395     SkASSERT(fPts.count() == fNorms.count());
396 
397     const int numPts = fPts.count();
398 
399     // For each vertex of the original polygon we add three points to the
400     // outset polygon - one extending perpendicular to each impinging edge
401     // and one along the bisector. Two triangles are added for each corner
402     // and two are added along each edge.
403     int prev = numPts - 1;
404     int lastPerpIdx = -1, firstPerpIdx = -1, newIdx0, newIdx1, newIdx2;
405     for (int cur = 0; cur < numPts; ++cur) {
406         // The perpendicular point for the last edge
407         SkPoint temp = fNorms[prev];
408         temp.scale(fTargetDepth);
409         temp += fPts[cur];
410 
411         // We know it isn't a duplicate of the prior point (since it and this
412         // one are just perpendicular offsets from the non-merged polygon points)
413         newIdx0 = this->addPt(temp, -fTargetDepth, false);
414 
415         // The bisector outset point
416         temp = fBisectors[cur];
417         temp.scale(-fTargetDepth);  // the bisectors point in
418         temp += fPts[cur];
419 
420         // For very shallow angles all the corner points could fuse
421         if (duplicate_pt(temp, this->point(newIdx0))) {
422             newIdx1 = newIdx0;
423         } else {
424             newIdx1 = this->addPt(temp, -fTargetDepth, false);
425         }
426 
427         // The perpendicular point for the next edge.
428         temp = fNorms[cur];
429         temp.scale(fTargetDepth);
430         temp += fPts[cur];
431 
432         // For very shallow angles all the corner points could fuse.
433         if (duplicate_pt(temp, this->point(newIdx1))) {
434             newIdx2 = newIdx1;
435         } else {
436             newIdx2 = this->addPt(temp, -fTargetDepth, false);
437         }
438 
439         if (0 == cur) {
440             // Store the index of the first perpendicular point to finish up
441             firstPerpIdx = newIdx0;
442             SkASSERT(-1 == lastPerpIdx);
443         } else {
444             // The triangles for the previous edge
445             this->addTri(prev, newIdx0, cur);
446             this->addTri(prev, lastPerpIdx, newIdx0);
447         }
448 
449         // The two triangles for the corner
450         this->addTri(cur, newIdx0, newIdx1);
451         this->addTri(cur, newIdx1, newIdx2);
452 
453         prev = cur;
454         // Track the last perpendicular outset point so we can construct the
455         // trailing edge triangles.
456         lastPerpIdx = newIdx2;
457     }
458 
459     // pick up the final edge rect
460     this->addTri(numPts-1, firstPerpIdx, 0);
461     this->addTri(numPts-1, lastPerpIdx, firstPerpIdx);
462 
463     this->validate();
464 }
465 
466 // Something went wrong in the creation of the next ring. Mark the last good
467 // ring as being at the desired depth and fan it.
terminate(const Ring & ring)468 void GrAAConvexTessellator::terminate(const Ring& ring) {
469     for (int i = 0; i < ring.numPts(); ++i) {
470         fDepths[ring.index(i)] = fTargetDepth;
471     }
472 
473     this->fanRing(ring);
474 }
475 
476 // return true when processing is complete
createInsetRing(const Ring & lastRing,Ring * nextRing)477 bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing) {
478     bool done = false;
479 
480     fCandidateVerts.rewind();
481 
482     // Loop through all the points in the ring and find the intersection with the smallest depth
483     SkScalar minDist = SK_ScalarMax, minT = 0.0f;
484     int minEdgeIdx = -1;
485 
486     for (int cur = 0; cur < lastRing.numPts(); ++cur) {
487         int next = (cur + 1) % lastRing.numPts();
488 
489         SkScalar t = intersect(this->point(lastRing.index(cur)),  lastRing.bisector(cur),
490                                this->point(lastRing.index(next)), lastRing.bisector(next));
491         SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
492 
493         if (minDist > dist) {
494             minDist = dist;
495             minT = t;
496             minEdgeIdx = cur;
497         }
498     }
499 
500     SkPoint newPt = lastRing.bisector(minEdgeIdx);
501     newPt.scale(minT);
502     newPt += this->point(lastRing.index(minEdgeIdx));
503 
504     SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
505     if (depth >= fTargetDepth) {
506         // None of the bisectors intersect before reaching the desired depth.
507         // Just step them all to the desired depth
508         depth = fTargetDepth;
509         done = true;
510     }
511 
512     // 'dst' stores where each point in the last ring maps to/transforms into
513     // in the next ring.
514     SkTDArray<int> dst;
515     dst.setCount(lastRing.numPts());
516 
517     // Create the first point (who compares with no one)
518     if (!this->computePtAlongBisector(lastRing.index(0),
519                                       lastRing.bisector(0),
520                                       lastRing.origEdgeID(0),
521                                       depth, &newPt)) {
522         this->terminate(lastRing);
523         SkDEBUGCODE(fShouldCheckDepths = false;)
524         return true;
525     }
526     dst[0] = fCandidateVerts.addNewPt(newPt,
527                                       lastRing.index(0), lastRing.origEdgeID(0),
528                                       !this->movable(lastRing.index(0)));
529 
530     // Handle the middle points (who only compare with the prior point)
531     for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
532         if (!this->computePtAlongBisector(lastRing.index(cur),
533                                           lastRing.bisector(cur),
534                                           lastRing.origEdgeID(cur),
535                                           depth, &newPt)) {
536             this->terminate(lastRing);
537             SkDEBUGCODE(fShouldCheckDepths = false;)
538             return true;
539         }
540         if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
541             dst[cur] = fCandidateVerts.addNewPt(newPt,
542                                                 lastRing.index(cur), lastRing.origEdgeID(cur),
543                                                 !this->movable(lastRing.index(cur)));
544         } else {
545             dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
546         }
547     }
548 
549     // Check on the last point (handling the wrap around)
550     int cur = lastRing.numPts()-1;
551     if  (!this->computePtAlongBisector(lastRing.index(cur),
552                                        lastRing.bisector(cur),
553                                        lastRing.origEdgeID(cur),
554                                        depth, &newPt)) {
555         this->terminate(lastRing);
556         SkDEBUGCODE(fShouldCheckDepths = false;)
557         return true;
558     }
559     bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
560     bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
561 
562     if (!dupPrev && !dupNext) {
563         dst[cur] = fCandidateVerts.addNewPt(newPt,
564                                             lastRing.index(cur), lastRing.origEdgeID(cur),
565                                             !this->movable(lastRing.index(cur)));
566     } else if (dupPrev && !dupNext) {
567         dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
568     } else if (!dupPrev && dupNext) {
569         dst[cur] = fCandidateVerts.fuseWithNext();
570     } else {
571         bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
572 
573         if (!dupPrevVsNext) {
574             dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
575         } else {
576             dst[cur] = dst[cur-1] = fCandidateVerts.fuseWithBoth();
577         }
578     }
579 
580     // Fold the new ring's points into the global pool
581     for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
582         int newIdx;
583         if (fCandidateVerts.needsToBeNew(i)) {
584             // if the originating index is still valid then this point wasn't
585             // fused (and is thus movable)
586             newIdx = this->addPt(fCandidateVerts.point(i), depth,
587                                  fCandidateVerts.originatingIdx(i) != -1);
588         } else {
589             SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
590             this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth);
591             newIdx = fCandidateVerts.originatingIdx(i);
592         }
593 
594         nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
595     }
596 
597     // 'dst' currently has indices into the ring. Remap these to be indices
598     // into the global pool since the triangulation operates in that space.
599     for (int i = 0; i < dst.count(); ++i) {
600         dst[i] = nextRing->index(dst[i]);
601     }
602 
603     for (int cur = 0; cur < lastRing.numPts(); ++cur) {
604         int next = (cur + 1) % lastRing.numPts();
605 
606         this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]);
607         this->addTri(lastRing.index(cur), dst[next], dst[cur]);
608     }
609 
610     if (done) {
611         this->fanRing(*nextRing);
612     }
613 
614     if (nextRing->numPts() < 3) {
615         done = true;
616     }
617 
618     return done;
619 }
620 
validate() const621 void GrAAConvexTessellator::validate() const {
622     SkASSERT(fPts.count() == fDepths.count());
623     SkASSERT(fPts.count() == fMovable.count());
624     SkASSERT(0 == (fIndices.count() % 3));
625 }
626 
627 //////////////////////////////////////////////////////////////////////////////
init(const GrAAConvexTessellator & tess)628 void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
629     this->computeNormals(tess);
630     this->computeBisectors();
631     SkASSERT(this->isConvex(tess));
632 }
633 
init(const SkTDArray<SkVector> & norms,const SkTDArray<SkVector> & bisectors)634 void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
635                                        const SkTDArray<SkVector>& bisectors) {
636     for (int i = 0; i < fPts.count(); ++i) {
637         fPts[i].fNorm = norms[i];
638         fPts[i].fBisector = bisectors[i];
639     }
640 }
641 
642 // Compute the outward facing normal at each vertex.
computeNormals(const GrAAConvexTessellator & tess)643 void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
644     for (int cur = 0; cur < fPts.count(); ++cur) {
645         int next = (cur + 1) % fPts.count();
646 
647         fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
648         SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fPts[cur].fNorm);
649         SkASSERT(len > 0.0f);
650         fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side());
651 
652         SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fNorm.length()));
653     }
654 }
655 
computeBisectors()656 void GrAAConvexTessellator::Ring::computeBisectors() {
657     int prev = fPts.count() - 1;
658     for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
659         fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
660         fPts[cur].fBisector.normalize();
661         fPts[cur].fBisector.negate();      // make the bisector face in
662 
663         SkASSERT(SkScalarNearlyEqual(1.0f, fPts[cur].fBisector.length()));
664     }
665 }
666 
667 //////////////////////////////////////////////////////////////////////////////
668 #ifdef SK_DEBUG
669 // Is this ring convex?
isConvex(const GrAAConvexTessellator & tess) const670 bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
671     if (fPts.count() < 3) {
672         return false;
673     }
674 
675     SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
676     SkPoint cur  = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
677     SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
678     SkScalar maxDot = minDot;
679 
680     prev = cur;
681     for (int i = 1; i < fPts.count(); ++i) {
682         int next = (i + 1) % fPts.count();
683 
684         cur  = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
685         SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
686 
687         minDot = SkMinScalar(minDot, dot);
688         maxDot = SkMaxScalar(maxDot, dot);
689 
690         prev = cur;
691     }
692 
693     return (maxDot > 0.0f) == (minDot >= 0.0f);
694 }
695 
capsule_depth(const SkPoint & p0,const SkPoint & p1,const SkPoint & test,SkPoint::Side side,int * sign)696 static SkScalar capsule_depth(const SkPoint& p0, const SkPoint& p1,
697                               const SkPoint& test, SkPoint::Side side,
698                               int* sign) {
699     *sign = -1;
700     SkPoint edge = p1 - p0;
701     SkScalar len = SkPoint::Normalize(&edge);
702 
703     SkPoint testVec = test - p0;
704 
705     SkScalar d0 = edge.dot(testVec);
706     if (d0 < 0.0f) {
707         return SkPoint::Distance(p0, test);
708     }
709     if (d0 > len) {
710         return SkPoint::Distance(p1, test);
711     }
712 
713     SkScalar perpDist = testVec.fY * edge.fX - testVec.fX * edge.fY;
714     if (SkPoint::kRight_Side == side) {
715         perpDist = -perpDist;
716     }
717 
718     if (perpDist < 0.0f) {
719         perpDist = -perpDist;
720     } else {
721         *sign = 1;
722     }
723     return perpDist;
724 }
725 
computeRealDepth(const SkPoint & p) const726 SkScalar GrAAConvexTessellator::computeRealDepth(const SkPoint& p) const {
727     SkScalar minDist = SK_ScalarMax;
728     int closestSign, sign;
729 
730     for (int edge = 0; edge < fNorms.count(); ++edge) {
731         SkScalar dist = capsule_depth(this->point(edge),
732                                       this->point((edge+1) % fNorms.count()),
733                                       p, fSide, &sign);
734         SkASSERT(dist >= 0.0f);
735 
736         if (minDist > dist) {
737             minDist = dist;
738             closestSign = sign;
739         }
740     }
741 
742     return closestSign * minDist;
743 }
744 
745 // Verify that the incrementally computed depths are close to the actual depths.
checkAllDepths() const746 void GrAAConvexTessellator::checkAllDepths() const {
747     for (int cur = 0; cur < this->numPts(); ++cur) {
748         SkScalar realDepth = this->computeRealDepth(this->point(cur));
749         SkScalar computedDepth = this->depth(cur);
750         SkASSERT(SkScalarNearlyEqual(realDepth, computedDepth, 0.01f));
751     }
752 }
753 #endif
754 
755 //////////////////////////////////////////////////////////////////////////////
756 #if GR_AA_CONVEX_TESSELLATOR_VIZ
757 static const SkScalar kPointRadius = 0.02f;
758 static const SkScalar kArrowStrokeWidth = 0.0f;
759 static const SkScalar kArrowLength = 0.2f;
760 static const SkScalar kEdgeTextSize = 0.1f;
761 static const SkScalar kPointTextSize = 0.02f;
762 
draw_point(SkCanvas * canvas,const SkPoint & p,SkScalar paramValue,bool stroke)763 static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
764     SkPaint paint;
765     SkASSERT(paramValue <= 1.0f);
766     int gs = int(255*paramValue);
767     paint.setARGB(255, gs, gs, gs);
768 
769     canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
770 
771     if (stroke) {
772         SkPaint stroke;
773         stroke.setColor(SK_ColorYELLOW);
774         stroke.setStyle(SkPaint::kStroke_Style);
775         stroke.setStrokeWidth(kPointRadius/3.0f);
776         canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
777     }
778 }
779 
draw_line(SkCanvas * canvas,const SkPoint & p0,const SkPoint & p1,SkColor color)780 static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
781     SkPaint p;
782     p.setColor(color);
783 
784     canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
785 }
786 
draw_arrow(SkCanvas * canvas,const SkPoint & p,const SkPoint & n,SkScalar len,SkColor color)787 static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
788                        SkScalar len, SkColor color) {
789     SkPaint paint;
790     paint.setColor(color);
791     paint.setStrokeWidth(kArrowStrokeWidth);
792     paint.setStyle(SkPaint::kStroke_Style);
793 
794     canvas->drawLine(p.fX, p.fY,
795                      p.fX + len * n.fX, p.fY + len * n.fY,
796                      paint);
797 }
798 
draw(SkCanvas * canvas,const GrAAConvexTessellator & tess) const799 void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
800     SkPaint paint;
801     paint.setTextSize(kEdgeTextSize);
802 
803     for (int cur = 0; cur < fPts.count(); ++cur) {
804         int next = (cur + 1) % fPts.count();
805 
806         draw_line(canvas,
807                   tess.point(fPts[cur].fIndex),
808                   tess.point(fPts[next].fIndex),
809                   SK_ColorGREEN);
810 
811         SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
812         mid.scale(0.5f);
813 
814         if (fPts.count()) {
815             draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
816             mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
817             mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
818         }
819 
820         SkString num;
821         num.printf("%d", this->origEdgeID(cur));
822         canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint);
823 
824         if (fPts.count()) {
825             draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
826                        kArrowLength, SK_ColorBLUE);
827         }
828     }
829 }
830 
draw(SkCanvas * canvas) const831 void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
832     for (int i = 0; i < fIndices.count(); i += 3) {
833         SkASSERT(fIndices[i] < this->numPts()) ;
834         SkASSERT(fIndices[i+1] < this->numPts()) ;
835         SkASSERT(fIndices[i+2] < this->numPts()) ;
836 
837         draw_line(canvas,
838                   this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
839                   SK_ColorBLACK);
840         draw_line(canvas,
841                   this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
842                   SK_ColorBLACK);
843         draw_line(canvas,
844                   this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
845                   SK_ColorBLACK);
846     }
847 
848     fInitialRing.draw(canvas, *this);
849     for (int i = 0; i < fRings.count(); ++i) {
850         fRings[i]->draw(canvas, *this);
851     }
852 
853     for (int i = 0; i < this->numPts(); ++i) {
854         draw_point(canvas,
855                    this->point(i), 0.5f + (this->depth(i)/(2*fTargetDepth)),
856                    !this->movable(i));
857 
858         SkPaint paint;
859         paint.setTextSize(kPointTextSize);
860         paint.setTextAlign(SkPaint::kCenter_Align);
861         if (this->depth(i) <= -fTargetDepth) {
862             paint.setColor(SK_ColorWHITE);
863         }
864 
865         SkString num;
866         num.printf("%d", i);
867         canvas->drawText(num.c_str(), num.size(),
868                          this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
869                          paint);
870     }
871 }
872 
873 #endif
874 
875