1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #if V8_TARGET_ARCH_IA32
8
9 #include "src/base/bits.h"
10 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h"
12 #include "src/codegen.h"
13 #include "src/ic/handler-compiler.h"
14 #include "src/ic/ic.h"
15 #include "src/isolate.h"
16 #include "src/jsregexp.h"
17 #include "src/regexp-macro-assembler.h"
18 #include "src/runtime.h"
19
20 namespace v8 {
21 namespace internal {
22
23
InitializeArrayConstructorDescriptor(Isolate * isolate,CodeStubDescriptor * descriptor,int constant_stack_parameter_count)24 static void InitializeArrayConstructorDescriptor(
25 Isolate* isolate, CodeStubDescriptor* descriptor,
26 int constant_stack_parameter_count) {
27 // register state
28 // eax -- number of arguments
29 // edi -- function
30 // ebx -- allocation site with elements kind
31 Address deopt_handler = Runtime::FunctionForId(
32 Runtime::kArrayConstructor)->entry;
33
34 if (constant_stack_parameter_count == 0) {
35 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
36 JS_FUNCTION_STUB_MODE);
37 } else {
38 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
39 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
40 }
41 }
42
43
InitializeInternalArrayConstructorDescriptor(Isolate * isolate,CodeStubDescriptor * descriptor,int constant_stack_parameter_count)44 static void InitializeInternalArrayConstructorDescriptor(
45 Isolate* isolate, CodeStubDescriptor* descriptor,
46 int constant_stack_parameter_count) {
47 // register state
48 // eax -- number of arguments
49 // edi -- constructor function
50 Address deopt_handler = Runtime::FunctionForId(
51 Runtime::kInternalArrayConstructor)->entry;
52
53 if (constant_stack_parameter_count == 0) {
54 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
55 JS_FUNCTION_STUB_MODE);
56 } else {
57 descriptor->Initialize(eax, deopt_handler, constant_stack_parameter_count,
58 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
59 }
60 }
61
62
InitializeDescriptor(CodeStubDescriptor * descriptor)63 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
64 CodeStubDescriptor* descriptor) {
65 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
66 }
67
68
InitializeDescriptor(CodeStubDescriptor * descriptor)69 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
70 CodeStubDescriptor* descriptor) {
71 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
72 }
73
74
InitializeDescriptor(CodeStubDescriptor * descriptor)75 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
76 CodeStubDescriptor* descriptor) {
77 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
78 }
79
80
InitializeDescriptor(CodeStubDescriptor * descriptor)81 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
82 CodeStubDescriptor* descriptor) {
83 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
84 }
85
86
InitializeDescriptor(CodeStubDescriptor * descriptor)87 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
88 CodeStubDescriptor* descriptor) {
89 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
90 }
91
92
InitializeDescriptor(CodeStubDescriptor * descriptor)93 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
94 CodeStubDescriptor* descriptor) {
95 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
96 }
97
98
99 #define __ ACCESS_MASM(masm)
100
101
GenerateLightweightMiss(MacroAssembler * masm,ExternalReference miss)102 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
103 ExternalReference miss) {
104 // Update the static counter each time a new code stub is generated.
105 isolate()->counters()->code_stubs()->Increment();
106
107 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
108 int param_count = descriptor.GetEnvironmentParameterCount();
109 {
110 // Call the runtime system in a fresh internal frame.
111 FrameScope scope(masm, StackFrame::INTERNAL);
112 DCHECK(param_count == 0 ||
113 eax.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
114 // Push arguments
115 for (int i = 0; i < param_count; ++i) {
116 __ push(descriptor.GetEnvironmentParameterRegister(i));
117 }
118 __ CallExternalReference(miss, param_count);
119 }
120
121 __ ret(0);
122 }
123
124
Generate(MacroAssembler * masm)125 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
126 // We don't allow a GC during a store buffer overflow so there is no need to
127 // store the registers in any particular way, but we do have to store and
128 // restore them.
129 __ pushad();
130 if (save_doubles()) {
131 __ sub(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
132 for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
133 XMMRegister reg = XMMRegister::from_code(i);
134 __ movsd(Operand(esp, i * kDoubleSize), reg);
135 }
136 }
137 const int argument_count = 1;
138
139 AllowExternalCallThatCantCauseGC scope(masm);
140 __ PrepareCallCFunction(argument_count, ecx);
141 __ mov(Operand(esp, 0 * kPointerSize),
142 Immediate(ExternalReference::isolate_address(isolate())));
143 __ CallCFunction(
144 ExternalReference::store_buffer_overflow_function(isolate()),
145 argument_count);
146 if (save_doubles()) {
147 for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
148 XMMRegister reg = XMMRegister::from_code(i);
149 __ movsd(reg, Operand(esp, i * kDoubleSize));
150 }
151 __ add(esp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
152 }
153 __ popad();
154 __ ret(0);
155 }
156
157
158 class FloatingPointHelper : public AllStatic {
159 public:
160 enum ArgLocation {
161 ARGS_ON_STACK,
162 ARGS_IN_REGISTERS
163 };
164
165 // Code pattern for loading a floating point value. Input value must
166 // be either a smi or a heap number object (fp value). Requirements:
167 // operand in register number. Returns operand as floating point number
168 // on FPU stack.
169 static void LoadFloatOperand(MacroAssembler* masm, Register number);
170
171 // Test if operands are smi or number objects (fp). Requirements:
172 // operand_1 in eax, operand_2 in edx; falls through on float
173 // operands, jumps to the non_float label otherwise.
174 static void CheckFloatOperands(MacroAssembler* masm,
175 Label* non_float,
176 Register scratch);
177
178 // Test if operands are numbers (smi or HeapNumber objects), and load
179 // them into xmm0 and xmm1 if they are. Jump to label not_numbers if
180 // either operand is not a number. Operands are in edx and eax.
181 // Leaves operands unchanged.
182 static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
183 };
184
185
Generate(MacroAssembler * masm)186 void DoubleToIStub::Generate(MacroAssembler* masm) {
187 Register input_reg = this->source();
188 Register final_result_reg = this->destination();
189 DCHECK(is_truncating());
190
191 Label check_negative, process_64_bits, done, done_no_stash;
192
193 int double_offset = offset();
194
195 // Account for return address and saved regs if input is esp.
196 if (input_reg.is(esp)) double_offset += 3 * kPointerSize;
197
198 MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
199 MemOperand exponent_operand(MemOperand(input_reg,
200 double_offset + kDoubleSize / 2));
201
202 Register scratch1;
203 {
204 Register scratch_candidates[3] = { ebx, edx, edi };
205 for (int i = 0; i < 3; i++) {
206 scratch1 = scratch_candidates[i];
207 if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
208 }
209 }
210 // Since we must use ecx for shifts below, use some other register (eax)
211 // to calculate the result if ecx is the requested return register.
212 Register result_reg = final_result_reg.is(ecx) ? eax : final_result_reg;
213 // Save ecx if it isn't the return register and therefore volatile, or if it
214 // is the return register, then save the temp register we use in its stead for
215 // the result.
216 Register save_reg = final_result_reg.is(ecx) ? eax : ecx;
217 __ push(scratch1);
218 __ push(save_reg);
219
220 bool stash_exponent_copy = !input_reg.is(esp);
221 __ mov(scratch1, mantissa_operand);
222 if (CpuFeatures::IsSupported(SSE3)) {
223 CpuFeatureScope scope(masm, SSE3);
224 // Load x87 register with heap number.
225 __ fld_d(mantissa_operand);
226 }
227 __ mov(ecx, exponent_operand);
228 if (stash_exponent_copy) __ push(ecx);
229
230 __ and_(ecx, HeapNumber::kExponentMask);
231 __ shr(ecx, HeapNumber::kExponentShift);
232 __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
233 __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
234 __ j(below, &process_64_bits);
235
236 // Result is entirely in lower 32-bits of mantissa
237 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
238 if (CpuFeatures::IsSupported(SSE3)) {
239 __ fstp(0);
240 }
241 __ sub(ecx, Immediate(delta));
242 __ xor_(result_reg, result_reg);
243 __ cmp(ecx, Immediate(31));
244 __ j(above, &done);
245 __ shl_cl(scratch1);
246 __ jmp(&check_negative);
247
248 __ bind(&process_64_bits);
249 if (CpuFeatures::IsSupported(SSE3)) {
250 CpuFeatureScope scope(masm, SSE3);
251 if (stash_exponent_copy) {
252 // Already a copy of the exponent on the stack, overwrite it.
253 STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
254 __ sub(esp, Immediate(kDoubleSize / 2));
255 } else {
256 // Reserve space for 64 bit answer.
257 __ sub(esp, Immediate(kDoubleSize)); // Nolint.
258 }
259 // Do conversion, which cannot fail because we checked the exponent.
260 __ fisttp_d(Operand(esp, 0));
261 __ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result
262 __ add(esp, Immediate(kDoubleSize));
263 __ jmp(&done_no_stash);
264 } else {
265 // Result must be extracted from shifted 32-bit mantissa
266 __ sub(ecx, Immediate(delta));
267 __ neg(ecx);
268 if (stash_exponent_copy) {
269 __ mov(result_reg, MemOperand(esp, 0));
270 } else {
271 __ mov(result_reg, exponent_operand);
272 }
273 __ and_(result_reg,
274 Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
275 __ add(result_reg,
276 Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
277 __ shrd(result_reg, scratch1);
278 __ shr_cl(result_reg);
279 __ test(ecx, Immediate(32));
280 __ cmov(not_equal, scratch1, result_reg);
281 }
282
283 // If the double was negative, negate the integer result.
284 __ bind(&check_negative);
285 __ mov(result_reg, scratch1);
286 __ neg(result_reg);
287 if (stash_exponent_copy) {
288 __ cmp(MemOperand(esp, 0), Immediate(0));
289 } else {
290 __ cmp(exponent_operand, Immediate(0));
291 }
292 __ cmov(greater, result_reg, scratch1);
293
294 // Restore registers
295 __ bind(&done);
296 if (stash_exponent_copy) {
297 __ add(esp, Immediate(kDoubleSize / 2));
298 }
299 __ bind(&done_no_stash);
300 if (!final_result_reg.is(result_reg)) {
301 DCHECK(final_result_reg.is(ecx));
302 __ mov(final_result_reg, result_reg);
303 }
304 __ pop(save_reg);
305 __ pop(scratch1);
306 __ ret(0);
307 }
308
309
LoadFloatOperand(MacroAssembler * masm,Register number)310 void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
311 Register number) {
312 Label load_smi, done;
313
314 __ JumpIfSmi(number, &load_smi, Label::kNear);
315 __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
316 __ jmp(&done, Label::kNear);
317
318 __ bind(&load_smi);
319 __ SmiUntag(number);
320 __ push(number);
321 __ fild_s(Operand(esp, 0));
322 __ pop(number);
323
324 __ bind(&done);
325 }
326
327
LoadSSE2Operands(MacroAssembler * masm,Label * not_numbers)328 void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
329 Label* not_numbers) {
330 Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
331 // Load operand in edx into xmm0, or branch to not_numbers.
332 __ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
333 Factory* factory = masm->isolate()->factory();
334 __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
335 __ j(not_equal, not_numbers); // Argument in edx is not a number.
336 __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
337 __ bind(&load_eax);
338 // Load operand in eax into xmm1, or branch to not_numbers.
339 __ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
340 __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
341 __ j(equal, &load_float_eax, Label::kNear);
342 __ jmp(not_numbers); // Argument in eax is not a number.
343 __ bind(&load_smi_edx);
344 __ SmiUntag(edx); // Untag smi before converting to float.
345 __ Cvtsi2sd(xmm0, edx);
346 __ SmiTag(edx); // Retag smi for heap number overwriting test.
347 __ jmp(&load_eax);
348 __ bind(&load_smi_eax);
349 __ SmiUntag(eax); // Untag smi before converting to float.
350 __ Cvtsi2sd(xmm1, eax);
351 __ SmiTag(eax); // Retag smi for heap number overwriting test.
352 __ jmp(&done, Label::kNear);
353 __ bind(&load_float_eax);
354 __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
355 __ bind(&done);
356 }
357
358
CheckFloatOperands(MacroAssembler * masm,Label * non_float,Register scratch)359 void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
360 Label* non_float,
361 Register scratch) {
362 Label test_other, done;
363 // Test if both operands are floats or smi -> scratch=k_is_float;
364 // Otherwise scratch = k_not_float.
365 __ JumpIfSmi(edx, &test_other, Label::kNear);
366 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
367 Factory* factory = masm->isolate()->factory();
368 __ cmp(scratch, factory->heap_number_map());
369 __ j(not_equal, non_float); // argument in edx is not a number -> NaN
370
371 __ bind(&test_other);
372 __ JumpIfSmi(eax, &done, Label::kNear);
373 __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
374 __ cmp(scratch, factory->heap_number_map());
375 __ j(not_equal, non_float); // argument in eax is not a number -> NaN
376
377 // Fall-through: Both operands are numbers.
378 __ bind(&done);
379 }
380
381
Generate(MacroAssembler * masm)382 void MathPowStub::Generate(MacroAssembler* masm) {
383 Factory* factory = isolate()->factory();
384 const Register exponent = MathPowTaggedDescriptor::exponent();
385 DCHECK(exponent.is(eax));
386 const Register base = edx;
387 const Register scratch = ecx;
388 const XMMRegister double_result = xmm3;
389 const XMMRegister double_base = xmm2;
390 const XMMRegister double_exponent = xmm1;
391 const XMMRegister double_scratch = xmm4;
392
393 Label call_runtime, done, exponent_not_smi, int_exponent;
394
395 // Save 1 in double_result - we need this several times later on.
396 __ mov(scratch, Immediate(1));
397 __ Cvtsi2sd(double_result, scratch);
398
399 if (exponent_type() == ON_STACK) {
400 Label base_is_smi, unpack_exponent;
401 // The exponent and base are supplied as arguments on the stack.
402 // This can only happen if the stub is called from non-optimized code.
403 // Load input parameters from stack.
404 __ mov(base, Operand(esp, 2 * kPointerSize));
405 __ mov(exponent, Operand(esp, 1 * kPointerSize));
406
407 __ JumpIfSmi(base, &base_is_smi, Label::kNear);
408 __ cmp(FieldOperand(base, HeapObject::kMapOffset),
409 factory->heap_number_map());
410 __ j(not_equal, &call_runtime);
411
412 __ movsd(double_base, FieldOperand(base, HeapNumber::kValueOffset));
413 __ jmp(&unpack_exponent, Label::kNear);
414
415 __ bind(&base_is_smi);
416 __ SmiUntag(base);
417 __ Cvtsi2sd(double_base, base);
418
419 __ bind(&unpack_exponent);
420 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
421 __ SmiUntag(exponent);
422 __ jmp(&int_exponent);
423
424 __ bind(&exponent_not_smi);
425 __ cmp(FieldOperand(exponent, HeapObject::kMapOffset),
426 factory->heap_number_map());
427 __ j(not_equal, &call_runtime);
428 __ movsd(double_exponent,
429 FieldOperand(exponent, HeapNumber::kValueOffset));
430 } else if (exponent_type() == TAGGED) {
431 __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
432 __ SmiUntag(exponent);
433 __ jmp(&int_exponent);
434
435 __ bind(&exponent_not_smi);
436 __ movsd(double_exponent,
437 FieldOperand(exponent, HeapNumber::kValueOffset));
438 }
439
440 if (exponent_type() != INTEGER) {
441 Label fast_power, try_arithmetic_simplification;
442 __ DoubleToI(exponent, double_exponent, double_scratch,
443 TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
444 &try_arithmetic_simplification,
445 &try_arithmetic_simplification);
446 __ jmp(&int_exponent);
447
448 __ bind(&try_arithmetic_simplification);
449 // Skip to runtime if possibly NaN (indicated by the indefinite integer).
450 __ cvttsd2si(exponent, Operand(double_exponent));
451 __ cmp(exponent, Immediate(0x1));
452 __ j(overflow, &call_runtime);
453
454 if (exponent_type() == ON_STACK) {
455 // Detect square root case. Crankshaft detects constant +/-0.5 at
456 // compile time and uses DoMathPowHalf instead. We then skip this check
457 // for non-constant cases of +/-0.5 as these hardly occur.
458 Label continue_sqrt, continue_rsqrt, not_plus_half;
459 // Test for 0.5.
460 // Load double_scratch with 0.5.
461 __ mov(scratch, Immediate(0x3F000000u));
462 __ movd(double_scratch, scratch);
463 __ cvtss2sd(double_scratch, double_scratch);
464 // Already ruled out NaNs for exponent.
465 __ ucomisd(double_scratch, double_exponent);
466 __ j(not_equal, ¬_plus_half, Label::kNear);
467
468 // Calculates square root of base. Check for the special case of
469 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
470 // According to IEEE-754, single-precision -Infinity has the highest
471 // 9 bits set and the lowest 23 bits cleared.
472 __ mov(scratch, 0xFF800000u);
473 __ movd(double_scratch, scratch);
474 __ cvtss2sd(double_scratch, double_scratch);
475 __ ucomisd(double_base, double_scratch);
476 // Comparing -Infinity with NaN results in "unordered", which sets the
477 // zero flag as if both were equal. However, it also sets the carry flag.
478 __ j(not_equal, &continue_sqrt, Label::kNear);
479 __ j(carry, &continue_sqrt, Label::kNear);
480
481 // Set result to Infinity in the special case.
482 __ xorps(double_result, double_result);
483 __ subsd(double_result, double_scratch);
484 __ jmp(&done);
485
486 __ bind(&continue_sqrt);
487 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
488 __ xorps(double_scratch, double_scratch);
489 __ addsd(double_scratch, double_base); // Convert -0 to +0.
490 __ sqrtsd(double_result, double_scratch);
491 __ jmp(&done);
492
493 // Test for -0.5.
494 __ bind(¬_plus_half);
495 // Load double_exponent with -0.5 by substracting 1.
496 __ subsd(double_scratch, double_result);
497 // Already ruled out NaNs for exponent.
498 __ ucomisd(double_scratch, double_exponent);
499 __ j(not_equal, &fast_power, Label::kNear);
500
501 // Calculates reciprocal of square root of base. Check for the special
502 // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
503 // According to IEEE-754, single-precision -Infinity has the highest
504 // 9 bits set and the lowest 23 bits cleared.
505 __ mov(scratch, 0xFF800000u);
506 __ movd(double_scratch, scratch);
507 __ cvtss2sd(double_scratch, double_scratch);
508 __ ucomisd(double_base, double_scratch);
509 // Comparing -Infinity with NaN results in "unordered", which sets the
510 // zero flag as if both were equal. However, it also sets the carry flag.
511 __ j(not_equal, &continue_rsqrt, Label::kNear);
512 __ j(carry, &continue_rsqrt, Label::kNear);
513
514 // Set result to 0 in the special case.
515 __ xorps(double_result, double_result);
516 __ jmp(&done);
517
518 __ bind(&continue_rsqrt);
519 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
520 __ xorps(double_exponent, double_exponent);
521 __ addsd(double_exponent, double_base); // Convert -0 to +0.
522 __ sqrtsd(double_exponent, double_exponent);
523 __ divsd(double_result, double_exponent);
524 __ jmp(&done);
525 }
526
527 // Using FPU instructions to calculate power.
528 Label fast_power_failed;
529 __ bind(&fast_power);
530 __ fnclex(); // Clear flags to catch exceptions later.
531 // Transfer (B)ase and (E)xponent onto the FPU register stack.
532 __ sub(esp, Immediate(kDoubleSize));
533 __ movsd(Operand(esp, 0), double_exponent);
534 __ fld_d(Operand(esp, 0)); // E
535 __ movsd(Operand(esp, 0), double_base);
536 __ fld_d(Operand(esp, 0)); // B, E
537
538 // Exponent is in st(1) and base is in st(0)
539 // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
540 // FYL2X calculates st(1) * log2(st(0))
541 __ fyl2x(); // X
542 __ fld(0); // X, X
543 __ frndint(); // rnd(X), X
544 __ fsub(1); // rnd(X), X-rnd(X)
545 __ fxch(1); // X - rnd(X), rnd(X)
546 // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
547 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
548 __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
549 __ faddp(1); // 2^(X-rnd(X)), rnd(X)
550 // FSCALE calculates st(0) * 2^st(1)
551 __ fscale(); // 2^X, rnd(X)
552 __ fstp(1); // 2^X
553 // Bail out to runtime in case of exceptions in the status word.
554 __ fnstsw_ax();
555 __ test_b(eax, 0x5F); // We check for all but precision exception.
556 __ j(not_zero, &fast_power_failed, Label::kNear);
557 __ fstp_d(Operand(esp, 0));
558 __ movsd(double_result, Operand(esp, 0));
559 __ add(esp, Immediate(kDoubleSize));
560 __ jmp(&done);
561
562 __ bind(&fast_power_failed);
563 __ fninit();
564 __ add(esp, Immediate(kDoubleSize));
565 __ jmp(&call_runtime);
566 }
567
568 // Calculate power with integer exponent.
569 __ bind(&int_exponent);
570 const XMMRegister double_scratch2 = double_exponent;
571 __ mov(scratch, exponent); // Back up exponent.
572 __ movsd(double_scratch, double_base); // Back up base.
573 __ movsd(double_scratch2, double_result); // Load double_exponent with 1.
574
575 // Get absolute value of exponent.
576 Label no_neg, while_true, while_false;
577 __ test(scratch, scratch);
578 __ j(positive, &no_neg, Label::kNear);
579 __ neg(scratch);
580 __ bind(&no_neg);
581
582 __ j(zero, &while_false, Label::kNear);
583 __ shr(scratch, 1);
584 // Above condition means CF==0 && ZF==0. This means that the
585 // bit that has been shifted out is 0 and the result is not 0.
586 __ j(above, &while_true, Label::kNear);
587 __ movsd(double_result, double_scratch);
588 __ j(zero, &while_false, Label::kNear);
589
590 __ bind(&while_true);
591 __ shr(scratch, 1);
592 __ mulsd(double_scratch, double_scratch);
593 __ j(above, &while_true, Label::kNear);
594 __ mulsd(double_result, double_scratch);
595 __ j(not_zero, &while_true);
596
597 __ bind(&while_false);
598 // scratch has the original value of the exponent - if the exponent is
599 // negative, return 1/result.
600 __ test(exponent, exponent);
601 __ j(positive, &done);
602 __ divsd(double_scratch2, double_result);
603 __ movsd(double_result, double_scratch2);
604 // Test whether result is zero. Bail out to check for subnormal result.
605 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
606 __ xorps(double_scratch2, double_scratch2);
607 __ ucomisd(double_scratch2, double_result); // Result cannot be NaN.
608 // double_exponent aliased as double_scratch2 has already been overwritten
609 // and may not have contained the exponent value in the first place when the
610 // exponent is a smi. We reset it with exponent value before bailing out.
611 __ j(not_equal, &done);
612 __ Cvtsi2sd(double_exponent, exponent);
613
614 // Returning or bailing out.
615 Counters* counters = isolate()->counters();
616 if (exponent_type() == ON_STACK) {
617 // The arguments are still on the stack.
618 __ bind(&call_runtime);
619 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
620
621 // The stub is called from non-optimized code, which expects the result
622 // as heap number in exponent.
623 __ bind(&done);
624 __ AllocateHeapNumber(eax, scratch, base, &call_runtime);
625 __ movsd(FieldOperand(eax, HeapNumber::kValueOffset), double_result);
626 __ IncrementCounter(counters->math_pow(), 1);
627 __ ret(2 * kPointerSize);
628 } else {
629 __ bind(&call_runtime);
630 {
631 AllowExternalCallThatCantCauseGC scope(masm);
632 __ PrepareCallCFunction(4, scratch);
633 __ movsd(Operand(esp, 0 * kDoubleSize), double_base);
634 __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent);
635 __ CallCFunction(
636 ExternalReference::power_double_double_function(isolate()), 4);
637 }
638 // Return value is in st(0) on ia32.
639 // Store it into the (fixed) result register.
640 __ sub(esp, Immediate(kDoubleSize));
641 __ fstp_d(Operand(esp, 0));
642 __ movsd(double_result, Operand(esp, 0));
643 __ add(esp, Immediate(kDoubleSize));
644
645 __ bind(&done);
646 __ IncrementCounter(counters->math_pow(), 1);
647 __ ret(0);
648 }
649 }
650
651
Generate(MacroAssembler * masm)652 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
653 Label miss;
654 Register receiver = LoadDescriptor::ReceiverRegister();
655
656 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, eax,
657 ebx, &miss);
658 __ bind(&miss);
659 PropertyAccessCompiler::TailCallBuiltin(
660 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
661 }
662
663
Generate(MacroAssembler * masm)664 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
665 // Return address is on the stack.
666 Label slow;
667
668 Register receiver = LoadDescriptor::ReceiverRegister();
669 Register key = LoadDescriptor::NameRegister();
670 Register scratch = eax;
671 DCHECK(!scratch.is(receiver) && !scratch.is(key));
672
673 // Check that the key is an array index, that is Uint32.
674 __ test(key, Immediate(kSmiTagMask | kSmiSignMask));
675 __ j(not_zero, &slow);
676
677 // Everything is fine, call runtime.
678 __ pop(scratch);
679 __ push(receiver); // receiver
680 __ push(key); // key
681 __ push(scratch); // return address
682
683 // Perform tail call to the entry.
684 ExternalReference ref = ExternalReference(
685 IC_Utility(IC::kLoadElementWithInterceptor), masm->isolate());
686 __ TailCallExternalReference(ref, 2, 1);
687
688 __ bind(&slow);
689 PropertyAccessCompiler::TailCallBuiltin(
690 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
691 }
692
693
GenerateReadElement(MacroAssembler * masm)694 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
695 // The key is in edx and the parameter count is in eax.
696 DCHECK(edx.is(ArgumentsAccessReadDescriptor::index()));
697 DCHECK(eax.is(ArgumentsAccessReadDescriptor::parameter_count()));
698
699 // The displacement is used for skipping the frame pointer on the
700 // stack. It is the offset of the last parameter (if any) relative
701 // to the frame pointer.
702 static const int kDisplacement = 1 * kPointerSize;
703
704 // Check that the key is a smi.
705 Label slow;
706 __ JumpIfNotSmi(edx, &slow, Label::kNear);
707
708 // Check if the calling frame is an arguments adaptor frame.
709 Label adaptor;
710 __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
711 __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
712 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
713 __ j(equal, &adaptor, Label::kNear);
714
715 // Check index against formal parameters count limit passed in
716 // through register eax. Use unsigned comparison to get negative
717 // check for free.
718 __ cmp(edx, eax);
719 __ j(above_equal, &slow, Label::kNear);
720
721 // Read the argument from the stack and return it.
722 STATIC_ASSERT(kSmiTagSize == 1);
723 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
724 __ lea(ebx, Operand(ebp, eax, times_2, 0));
725 __ neg(edx);
726 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
727 __ ret(0);
728
729 // Arguments adaptor case: Check index against actual arguments
730 // limit found in the arguments adaptor frame. Use unsigned
731 // comparison to get negative check for free.
732 __ bind(&adaptor);
733 __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
734 __ cmp(edx, ecx);
735 __ j(above_equal, &slow, Label::kNear);
736
737 // Read the argument from the stack and return it.
738 STATIC_ASSERT(kSmiTagSize == 1);
739 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
740 __ lea(ebx, Operand(ebx, ecx, times_2, 0));
741 __ neg(edx);
742 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
743 __ ret(0);
744
745 // Slow-case: Handle non-smi or out-of-bounds access to arguments
746 // by calling the runtime system.
747 __ bind(&slow);
748 __ pop(ebx); // Return address.
749 __ push(edx);
750 __ push(ebx);
751 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
752 }
753
754
GenerateNewSloppySlow(MacroAssembler * masm)755 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
756 // esp[0] : return address
757 // esp[4] : number of parameters
758 // esp[8] : receiver displacement
759 // esp[12] : function
760
761 // Check if the calling frame is an arguments adaptor frame.
762 Label runtime;
763 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
764 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
765 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
766 __ j(not_equal, &runtime, Label::kNear);
767
768 // Patch the arguments.length and the parameters pointer.
769 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
770 __ mov(Operand(esp, 1 * kPointerSize), ecx);
771 __ lea(edx, Operand(edx, ecx, times_2,
772 StandardFrameConstants::kCallerSPOffset));
773 __ mov(Operand(esp, 2 * kPointerSize), edx);
774
775 __ bind(&runtime);
776 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
777 }
778
779
GenerateNewSloppyFast(MacroAssembler * masm)780 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
781 // esp[0] : return address
782 // esp[4] : number of parameters (tagged)
783 // esp[8] : receiver displacement
784 // esp[12] : function
785
786 // ebx = parameter count (tagged)
787 __ mov(ebx, Operand(esp, 1 * kPointerSize));
788
789 // Check if the calling frame is an arguments adaptor frame.
790 // TODO(rossberg): Factor out some of the bits that are shared with the other
791 // Generate* functions.
792 Label runtime;
793 Label adaptor_frame, try_allocate;
794 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
795 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
796 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
797 __ j(equal, &adaptor_frame, Label::kNear);
798
799 // No adaptor, parameter count = argument count.
800 __ mov(ecx, ebx);
801 __ jmp(&try_allocate, Label::kNear);
802
803 // We have an adaptor frame. Patch the parameters pointer.
804 __ bind(&adaptor_frame);
805 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
806 __ lea(edx, Operand(edx, ecx, times_2,
807 StandardFrameConstants::kCallerSPOffset));
808 __ mov(Operand(esp, 2 * kPointerSize), edx);
809
810 // ebx = parameter count (tagged)
811 // ecx = argument count (smi-tagged)
812 // esp[4] = parameter count (tagged)
813 // esp[8] = address of receiver argument
814 // Compute the mapped parameter count = min(ebx, ecx) in ebx.
815 __ cmp(ebx, ecx);
816 __ j(less_equal, &try_allocate, Label::kNear);
817 __ mov(ebx, ecx);
818
819 __ bind(&try_allocate);
820
821 // Save mapped parameter count.
822 __ push(ebx);
823
824 // Compute the sizes of backing store, parameter map, and arguments object.
825 // 1. Parameter map, has 2 extra words containing context and backing store.
826 const int kParameterMapHeaderSize =
827 FixedArray::kHeaderSize + 2 * kPointerSize;
828 Label no_parameter_map;
829 __ test(ebx, ebx);
830 __ j(zero, &no_parameter_map, Label::kNear);
831 __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
832 __ bind(&no_parameter_map);
833
834 // 2. Backing store.
835 __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
836
837 // 3. Arguments object.
838 __ add(ebx, Immediate(Heap::kSloppyArgumentsObjectSize));
839
840 // Do the allocation of all three objects in one go.
841 __ Allocate(ebx, eax, edx, edi, &runtime, TAG_OBJECT);
842
843 // eax = address of new object(s) (tagged)
844 // ecx = argument count (smi-tagged)
845 // esp[0] = mapped parameter count (tagged)
846 // esp[8] = parameter count (tagged)
847 // esp[12] = address of receiver argument
848 // Get the arguments map from the current native context into edi.
849 Label has_mapped_parameters, instantiate;
850 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
851 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
852 __ mov(ebx, Operand(esp, 0 * kPointerSize));
853 __ test(ebx, ebx);
854 __ j(not_zero, &has_mapped_parameters, Label::kNear);
855 __ mov(
856 edi,
857 Operand(edi, Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX)));
858 __ jmp(&instantiate, Label::kNear);
859
860 __ bind(&has_mapped_parameters);
861 __ mov(
862 edi,
863 Operand(edi, Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX)));
864 __ bind(&instantiate);
865
866 // eax = address of new object (tagged)
867 // ebx = mapped parameter count (tagged)
868 // ecx = argument count (smi-tagged)
869 // edi = address of arguments map (tagged)
870 // esp[0] = mapped parameter count (tagged)
871 // esp[8] = parameter count (tagged)
872 // esp[12] = address of receiver argument
873 // Copy the JS object part.
874 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
875 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
876 masm->isolate()->factory()->empty_fixed_array());
877 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
878 masm->isolate()->factory()->empty_fixed_array());
879
880 // Set up the callee in-object property.
881 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
882 __ mov(edx, Operand(esp, 4 * kPointerSize));
883 __ AssertNotSmi(edx);
884 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
885 Heap::kArgumentsCalleeIndex * kPointerSize),
886 edx);
887
888 // Use the length (smi tagged) and set that as an in-object property too.
889 __ AssertSmi(ecx);
890 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
891 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
892 Heap::kArgumentsLengthIndex * kPointerSize),
893 ecx);
894
895 // Set up the elements pointer in the allocated arguments object.
896 // If we allocated a parameter map, edi will point there, otherwise to the
897 // backing store.
898 __ lea(edi, Operand(eax, Heap::kSloppyArgumentsObjectSize));
899 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
900
901 // eax = address of new object (tagged)
902 // ebx = mapped parameter count (tagged)
903 // ecx = argument count (tagged)
904 // edi = address of parameter map or backing store (tagged)
905 // esp[0] = mapped parameter count (tagged)
906 // esp[8] = parameter count (tagged)
907 // esp[12] = address of receiver argument
908 // Free a register.
909 __ push(eax);
910
911 // Initialize parameter map. If there are no mapped arguments, we're done.
912 Label skip_parameter_map;
913 __ test(ebx, ebx);
914 __ j(zero, &skip_parameter_map);
915
916 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
917 Immediate(isolate()->factory()->sloppy_arguments_elements_map()));
918 __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
919 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
920 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
921 __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
922 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
923
924 // Copy the parameter slots and the holes in the arguments.
925 // We need to fill in mapped_parameter_count slots. They index the context,
926 // where parameters are stored in reverse order, at
927 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
928 // The mapped parameter thus need to get indices
929 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
930 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
931 // We loop from right to left.
932 Label parameters_loop, parameters_test;
933 __ push(ecx);
934 __ mov(eax, Operand(esp, 2 * kPointerSize));
935 __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
936 __ add(ebx, Operand(esp, 4 * kPointerSize));
937 __ sub(ebx, eax);
938 __ mov(ecx, isolate()->factory()->the_hole_value());
939 __ mov(edx, edi);
940 __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
941 // eax = loop variable (tagged)
942 // ebx = mapping index (tagged)
943 // ecx = the hole value
944 // edx = address of parameter map (tagged)
945 // edi = address of backing store (tagged)
946 // esp[0] = argument count (tagged)
947 // esp[4] = address of new object (tagged)
948 // esp[8] = mapped parameter count (tagged)
949 // esp[16] = parameter count (tagged)
950 // esp[20] = address of receiver argument
951 __ jmp(¶meters_test, Label::kNear);
952
953 __ bind(¶meters_loop);
954 __ sub(eax, Immediate(Smi::FromInt(1)));
955 __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
956 __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
957 __ add(ebx, Immediate(Smi::FromInt(1)));
958 __ bind(¶meters_test);
959 __ test(eax, eax);
960 __ j(not_zero, ¶meters_loop, Label::kNear);
961 __ pop(ecx);
962
963 __ bind(&skip_parameter_map);
964
965 // ecx = argument count (tagged)
966 // edi = address of backing store (tagged)
967 // esp[0] = address of new object (tagged)
968 // esp[4] = mapped parameter count (tagged)
969 // esp[12] = parameter count (tagged)
970 // esp[16] = address of receiver argument
971 // Copy arguments header and remaining slots (if there are any).
972 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
973 Immediate(isolate()->factory()->fixed_array_map()));
974 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
975
976 Label arguments_loop, arguments_test;
977 __ mov(ebx, Operand(esp, 1 * kPointerSize));
978 __ mov(edx, Operand(esp, 4 * kPointerSize));
979 __ sub(edx, ebx); // Is there a smarter way to do negative scaling?
980 __ sub(edx, ebx);
981 __ jmp(&arguments_test, Label::kNear);
982
983 __ bind(&arguments_loop);
984 __ sub(edx, Immediate(kPointerSize));
985 __ mov(eax, Operand(edx, 0));
986 __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
987 __ add(ebx, Immediate(Smi::FromInt(1)));
988
989 __ bind(&arguments_test);
990 __ cmp(ebx, ecx);
991 __ j(less, &arguments_loop, Label::kNear);
992
993 // Restore.
994 __ pop(eax); // Address of arguments object.
995 __ pop(ebx); // Parameter count.
996
997 // Return and remove the on-stack parameters.
998 __ ret(3 * kPointerSize);
999
1000 // Do the runtime call to allocate the arguments object.
1001 __ bind(&runtime);
1002 __ pop(eax); // Remove saved parameter count.
1003 __ mov(Operand(esp, 1 * kPointerSize), ecx); // Patch argument count.
1004 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1005 }
1006
1007
GenerateNewStrict(MacroAssembler * masm)1008 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1009 // esp[0] : return address
1010 // esp[4] : number of parameters
1011 // esp[8] : receiver displacement
1012 // esp[12] : function
1013
1014 // Check if the calling frame is an arguments adaptor frame.
1015 Label adaptor_frame, try_allocate, runtime;
1016 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
1017 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
1018 __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1019 __ j(equal, &adaptor_frame, Label::kNear);
1020
1021 // Get the length from the frame.
1022 __ mov(ecx, Operand(esp, 1 * kPointerSize));
1023 __ jmp(&try_allocate, Label::kNear);
1024
1025 // Patch the arguments.length and the parameters pointer.
1026 __ bind(&adaptor_frame);
1027 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
1028 __ mov(Operand(esp, 1 * kPointerSize), ecx);
1029 __ lea(edx, Operand(edx, ecx, times_2,
1030 StandardFrameConstants::kCallerSPOffset));
1031 __ mov(Operand(esp, 2 * kPointerSize), edx);
1032
1033 // Try the new space allocation. Start out with computing the size of
1034 // the arguments object and the elements array.
1035 Label add_arguments_object;
1036 __ bind(&try_allocate);
1037 __ test(ecx, ecx);
1038 __ j(zero, &add_arguments_object, Label::kNear);
1039 __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
1040 __ bind(&add_arguments_object);
1041 __ add(ecx, Immediate(Heap::kStrictArgumentsObjectSize));
1042
1043 // Do the allocation of both objects in one go.
1044 __ Allocate(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
1045
1046 // Get the arguments map from the current native context.
1047 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1048 __ mov(edi, FieldOperand(edi, GlobalObject::kNativeContextOffset));
1049 const int offset = Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX);
1050 __ mov(edi, Operand(edi, offset));
1051
1052 __ mov(FieldOperand(eax, JSObject::kMapOffset), edi);
1053 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset),
1054 masm->isolate()->factory()->empty_fixed_array());
1055 __ mov(FieldOperand(eax, JSObject::kElementsOffset),
1056 masm->isolate()->factory()->empty_fixed_array());
1057
1058 // Get the length (smi tagged) and set that as an in-object property too.
1059 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1060 __ mov(ecx, Operand(esp, 1 * kPointerSize));
1061 __ AssertSmi(ecx);
1062 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
1063 Heap::kArgumentsLengthIndex * kPointerSize),
1064 ecx);
1065
1066 // If there are no actual arguments, we're done.
1067 Label done;
1068 __ test(ecx, ecx);
1069 __ j(zero, &done, Label::kNear);
1070
1071 // Get the parameters pointer from the stack.
1072 __ mov(edx, Operand(esp, 2 * kPointerSize));
1073
1074 // Set up the elements pointer in the allocated arguments object and
1075 // initialize the header in the elements fixed array.
1076 __ lea(edi, Operand(eax, Heap::kStrictArgumentsObjectSize));
1077 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
1078 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
1079 Immediate(isolate()->factory()->fixed_array_map()));
1080
1081 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
1082 // Untag the length for the loop below.
1083 __ SmiUntag(ecx);
1084
1085 // Copy the fixed array slots.
1086 Label loop;
1087 __ bind(&loop);
1088 __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver.
1089 __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
1090 __ add(edi, Immediate(kPointerSize));
1091 __ sub(edx, Immediate(kPointerSize));
1092 __ dec(ecx);
1093 __ j(not_zero, &loop);
1094
1095 // Return and remove the on-stack parameters.
1096 __ bind(&done);
1097 __ ret(3 * kPointerSize);
1098
1099 // Do the runtime call to allocate the arguments object.
1100 __ bind(&runtime);
1101 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
1102 }
1103
1104
Generate(MacroAssembler * masm)1105 void RegExpExecStub::Generate(MacroAssembler* masm) {
1106 // Just jump directly to runtime if native RegExp is not selected at compile
1107 // time or if regexp entry in generated code is turned off runtime switch or
1108 // at compilation.
1109 #ifdef V8_INTERPRETED_REGEXP
1110 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
1111 #else // V8_INTERPRETED_REGEXP
1112
1113 // Stack frame on entry.
1114 // esp[0]: return address
1115 // esp[4]: last_match_info (expected JSArray)
1116 // esp[8]: previous index
1117 // esp[12]: subject string
1118 // esp[16]: JSRegExp object
1119
1120 static const int kLastMatchInfoOffset = 1 * kPointerSize;
1121 static const int kPreviousIndexOffset = 2 * kPointerSize;
1122 static const int kSubjectOffset = 3 * kPointerSize;
1123 static const int kJSRegExpOffset = 4 * kPointerSize;
1124
1125 Label runtime;
1126 Factory* factory = isolate()->factory();
1127
1128 // Ensure that a RegExp stack is allocated.
1129 ExternalReference address_of_regexp_stack_memory_address =
1130 ExternalReference::address_of_regexp_stack_memory_address(isolate());
1131 ExternalReference address_of_regexp_stack_memory_size =
1132 ExternalReference::address_of_regexp_stack_memory_size(isolate());
1133 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
1134 __ test(ebx, ebx);
1135 __ j(zero, &runtime);
1136
1137 // Check that the first argument is a JSRegExp object.
1138 __ mov(eax, Operand(esp, kJSRegExpOffset));
1139 STATIC_ASSERT(kSmiTag == 0);
1140 __ JumpIfSmi(eax, &runtime);
1141 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
1142 __ j(not_equal, &runtime);
1143
1144 // Check that the RegExp has been compiled (data contains a fixed array).
1145 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
1146 if (FLAG_debug_code) {
1147 __ test(ecx, Immediate(kSmiTagMask));
1148 __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1149 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
1150 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1151 }
1152
1153 // ecx: RegExp data (FixedArray)
1154 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1155 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
1156 __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
1157 __ j(not_equal, &runtime);
1158
1159 // ecx: RegExp data (FixedArray)
1160 // Check that the number of captures fit in the static offsets vector buffer.
1161 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
1162 // Check (number_of_captures + 1) * 2 <= offsets vector size
1163 // Or number_of_captures * 2 <= offsets vector size - 2
1164 // Multiplying by 2 comes for free since edx is smi-tagged.
1165 STATIC_ASSERT(kSmiTag == 0);
1166 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1167 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1168 __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
1169 __ j(above, &runtime);
1170
1171 // Reset offset for possibly sliced string.
1172 __ Move(edi, Immediate(0));
1173 __ mov(eax, Operand(esp, kSubjectOffset));
1174 __ JumpIfSmi(eax, &runtime);
1175 __ mov(edx, eax); // Make a copy of the original subject string.
1176 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1177 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1178
1179 // eax: subject string
1180 // edx: subject string
1181 // ebx: subject string instance type
1182 // ecx: RegExp data (FixedArray)
1183 // Handle subject string according to its encoding and representation:
1184 // (1) Sequential two byte? If yes, go to (9).
1185 // (2) Sequential one byte? If yes, go to (6).
1186 // (3) Anything but sequential or cons? If yes, go to (7).
1187 // (4) Cons string. If the string is flat, replace subject with first string.
1188 // Otherwise bailout.
1189 // (5a) Is subject sequential two byte? If yes, go to (9).
1190 // (5b) Is subject external? If yes, go to (8).
1191 // (6) One byte sequential. Load regexp code for one byte.
1192 // (E) Carry on.
1193 /// [...]
1194
1195 // Deferred code at the end of the stub:
1196 // (7) Not a long external string? If yes, go to (10).
1197 // (8) External string. Make it, offset-wise, look like a sequential string.
1198 // (8a) Is the external string one byte? If yes, go to (6).
1199 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1200 // (10) Short external string or not a string? If yes, bail out to runtime.
1201 // (11) Sliced string. Replace subject with parent. Go to (5a).
1202
1203 Label seq_one_byte_string /* 6 */, seq_two_byte_string /* 9 */,
1204 external_string /* 8 */, check_underlying /* 5a */,
1205 not_seq_nor_cons /* 7 */, check_code /* E */,
1206 not_long_external /* 10 */;
1207
1208 // (1) Sequential two byte? If yes, go to (9).
1209 __ and_(ebx, kIsNotStringMask |
1210 kStringRepresentationMask |
1211 kStringEncodingMask |
1212 kShortExternalStringMask);
1213 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
1214 __ j(zero, &seq_two_byte_string); // Go to (9).
1215
1216 // (2) Sequential one byte? If yes, go to (6).
1217 // Any other sequential string must be one byte.
1218 __ and_(ebx, Immediate(kIsNotStringMask |
1219 kStringRepresentationMask |
1220 kShortExternalStringMask));
1221 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (6).
1222
1223 // (3) Anything but sequential or cons? If yes, go to (7).
1224 // We check whether the subject string is a cons, since sequential strings
1225 // have already been covered.
1226 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1227 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1228 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1229 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1230 __ cmp(ebx, Immediate(kExternalStringTag));
1231 __ j(greater_equal, ¬_seq_nor_cons); // Go to (7).
1232
1233 // (4) Cons string. Check that it's flat.
1234 // Replace subject with first string and reload instance type.
1235 __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string());
1236 __ j(not_equal, &runtime);
1237 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
1238 __ bind(&check_underlying);
1239 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1240 __ mov(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1241
1242 // (5a) Is subject sequential two byte? If yes, go to (9).
1243 __ test_b(ebx, kStringRepresentationMask | kStringEncodingMask);
1244 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
1245 __ j(zero, &seq_two_byte_string); // Go to (9).
1246 // (5b) Is subject external? If yes, go to (8).
1247 __ test_b(ebx, kStringRepresentationMask);
1248 // The underlying external string is never a short external string.
1249 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
1250 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
1251 __ j(not_zero, &external_string); // Go to (8).
1252
1253 // eax: sequential subject string (or look-alike, external string)
1254 // edx: original subject string
1255 // ecx: RegExp data (FixedArray)
1256 // (6) One byte sequential. Load regexp code for one byte.
1257 __ bind(&seq_one_byte_string);
1258 // Load previous index and check range before edx is overwritten. We have
1259 // to use edx instead of eax here because it might have been only made to
1260 // look like a sequential string when it actually is an external string.
1261 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1262 __ JumpIfNotSmi(ebx, &runtime);
1263 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1264 __ j(above_equal, &runtime);
1265 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset));
1266 __ Move(ecx, Immediate(1)); // Type is one byte.
1267
1268 // (E) Carry on. String handling is done.
1269 __ bind(&check_code);
1270 // edx: irregexp code
1271 // Check that the irregexp code has been generated for the actual string
1272 // encoding. If it has, the field contains a code object otherwise it contains
1273 // a smi (code flushing support).
1274 __ JumpIfSmi(edx, &runtime);
1275
1276 // eax: subject string
1277 // ebx: previous index (smi)
1278 // edx: code
1279 // ecx: encoding of subject string (1 if one_byte, 0 if two_byte);
1280 // All checks done. Now push arguments for native regexp code.
1281 Counters* counters = isolate()->counters();
1282 __ IncrementCounter(counters->regexp_entry_native(), 1);
1283
1284 // Isolates: note we add an additional parameter here (isolate pointer).
1285 static const int kRegExpExecuteArguments = 9;
1286 __ EnterApiExitFrame(kRegExpExecuteArguments);
1287
1288 // Argument 9: Pass current isolate address.
1289 __ mov(Operand(esp, 8 * kPointerSize),
1290 Immediate(ExternalReference::isolate_address(isolate())));
1291
1292 // Argument 8: Indicate that this is a direct call from JavaScript.
1293 __ mov(Operand(esp, 7 * kPointerSize), Immediate(1));
1294
1295 // Argument 7: Start (high end) of backtracking stack memory area.
1296 __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address));
1297 __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size));
1298 __ mov(Operand(esp, 6 * kPointerSize), esi);
1299
1300 // Argument 6: Set the number of capture registers to zero to force global
1301 // regexps to behave as non-global. This does not affect non-global regexps.
1302 __ mov(Operand(esp, 5 * kPointerSize), Immediate(0));
1303
1304 // Argument 5: static offsets vector buffer.
1305 __ mov(Operand(esp, 4 * kPointerSize),
1306 Immediate(ExternalReference::address_of_static_offsets_vector(
1307 isolate())));
1308
1309 // Argument 2: Previous index.
1310 __ SmiUntag(ebx);
1311 __ mov(Operand(esp, 1 * kPointerSize), ebx);
1312
1313 // Argument 1: Original subject string.
1314 // The original subject is in the previous stack frame. Therefore we have to
1315 // use ebp, which points exactly to one pointer size below the previous esp.
1316 // (Because creating a new stack frame pushes the previous ebp onto the stack
1317 // and thereby moves up esp by one kPointerSize.)
1318 __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize));
1319 __ mov(Operand(esp, 0 * kPointerSize), esi);
1320
1321 // esi: original subject string
1322 // eax: underlying subject string
1323 // ebx: previous index
1324 // ecx: encoding of subject string (1 if one_byte 0 if two_byte);
1325 // edx: code
1326 // Argument 4: End of string data
1327 // Argument 3: Start of string data
1328 // Prepare start and end index of the input.
1329 // Load the length from the original sliced string if that is the case.
1330 __ mov(esi, FieldOperand(esi, String::kLengthOffset));
1331 __ add(esi, edi); // Calculate input end wrt offset.
1332 __ SmiUntag(edi);
1333 __ add(ebx, edi); // Calculate input start wrt offset.
1334
1335 // ebx: start index of the input string
1336 // esi: end index of the input string
1337 Label setup_two_byte, setup_rest;
1338 __ test(ecx, ecx);
1339 __ j(zero, &setup_two_byte, Label::kNear);
1340 __ SmiUntag(esi);
1341 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize));
1342 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1343 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize));
1344 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1345 __ jmp(&setup_rest, Label::kNear);
1346
1347 __ bind(&setup_two_byte);
1348 STATIC_ASSERT(kSmiTag == 0);
1349 STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2).
1350 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize));
1351 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
1352 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
1353 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
1354
1355 __ bind(&setup_rest);
1356
1357 // Locate the code entry and call it.
1358 __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
1359 __ call(edx);
1360
1361 // Drop arguments and come back to JS mode.
1362 __ LeaveApiExitFrame(true);
1363
1364 // Check the result.
1365 Label success;
1366 __ cmp(eax, 1);
1367 // We expect exactly one result since we force the called regexp to behave
1368 // as non-global.
1369 __ j(equal, &success);
1370 Label failure;
1371 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
1372 __ j(equal, &failure);
1373 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
1374 // If not exception it can only be retry. Handle that in the runtime system.
1375 __ j(not_equal, &runtime);
1376 // Result must now be exception. If there is no pending exception already a
1377 // stack overflow (on the backtrack stack) was detected in RegExp code but
1378 // haven't created the exception yet. Handle that in the runtime system.
1379 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1380 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
1381 isolate());
1382 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
1383 __ mov(eax, Operand::StaticVariable(pending_exception));
1384 __ cmp(edx, eax);
1385 __ j(equal, &runtime);
1386 // For exception, throw the exception again.
1387
1388 // Clear the pending exception variable.
1389 __ mov(Operand::StaticVariable(pending_exception), edx);
1390
1391 // Special handling of termination exceptions which are uncatchable
1392 // by javascript code.
1393 __ cmp(eax, factory->termination_exception());
1394 Label throw_termination_exception;
1395 __ j(equal, &throw_termination_exception, Label::kNear);
1396
1397 // Handle normal exception by following handler chain.
1398 __ Throw(eax);
1399
1400 __ bind(&throw_termination_exception);
1401 __ ThrowUncatchable(eax);
1402
1403 __ bind(&failure);
1404 // For failure to match, return null.
1405 __ mov(eax, factory->null_value());
1406 __ ret(4 * kPointerSize);
1407
1408 // Load RegExp data.
1409 __ bind(&success);
1410 __ mov(eax, Operand(esp, kJSRegExpOffset));
1411 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
1412 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
1413 // Calculate number of capture registers (number_of_captures + 1) * 2.
1414 STATIC_ASSERT(kSmiTag == 0);
1415 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
1416 __ add(edx, Immediate(2)); // edx was a smi.
1417
1418 // edx: Number of capture registers
1419 // Load last_match_info which is still known to be a fast case JSArray.
1420 // Check that the fourth object is a JSArray object.
1421 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1422 __ JumpIfSmi(eax, &runtime);
1423 __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
1424 __ j(not_equal, &runtime);
1425 // Check that the JSArray is in fast case.
1426 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
1427 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
1428 __ cmp(eax, factory->fixed_array_map());
1429 __ j(not_equal, &runtime);
1430 // Check that the last match info has space for the capture registers and the
1431 // additional information.
1432 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
1433 __ SmiUntag(eax);
1434 __ sub(eax, Immediate(RegExpImpl::kLastMatchOverhead));
1435 __ cmp(edx, eax);
1436 __ j(greater, &runtime);
1437
1438 // ebx: last_match_info backing store (FixedArray)
1439 // edx: number of capture registers
1440 // Store the capture count.
1441 __ SmiTag(edx); // Number of capture registers to smi.
1442 __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
1443 __ SmiUntag(edx); // Number of capture registers back from smi.
1444 // Store last subject and last input.
1445 __ mov(eax, Operand(esp, kSubjectOffset));
1446 __ mov(ecx, eax);
1447 __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
1448 __ RecordWriteField(ebx,
1449 RegExpImpl::kLastSubjectOffset,
1450 eax,
1451 edi,
1452 kDontSaveFPRegs);
1453 __ mov(eax, ecx);
1454 __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
1455 __ RecordWriteField(ebx,
1456 RegExpImpl::kLastInputOffset,
1457 eax,
1458 edi,
1459 kDontSaveFPRegs);
1460
1461 // Get the static offsets vector filled by the native regexp code.
1462 ExternalReference address_of_static_offsets_vector =
1463 ExternalReference::address_of_static_offsets_vector(isolate());
1464 __ mov(ecx, Immediate(address_of_static_offsets_vector));
1465
1466 // ebx: last_match_info backing store (FixedArray)
1467 // ecx: offsets vector
1468 // edx: number of capture registers
1469 Label next_capture, done;
1470 // Capture register counter starts from number of capture registers and
1471 // counts down until wraping after zero.
1472 __ bind(&next_capture);
1473 __ sub(edx, Immediate(1));
1474 __ j(negative, &done, Label::kNear);
1475 // Read the value from the static offsets vector buffer.
1476 __ mov(edi, Operand(ecx, edx, times_int_size, 0));
1477 __ SmiTag(edi);
1478 // Store the smi value in the last match info.
1479 __ mov(FieldOperand(ebx,
1480 edx,
1481 times_pointer_size,
1482 RegExpImpl::kFirstCaptureOffset),
1483 edi);
1484 __ jmp(&next_capture);
1485 __ bind(&done);
1486
1487 // Return last match info.
1488 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
1489 __ ret(4 * kPointerSize);
1490
1491 // Do the runtime call to execute the regexp.
1492 __ bind(&runtime);
1493 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
1494
1495 // Deferred code for string handling.
1496 // (7) Not a long external string? If yes, go to (10).
1497 __ bind(¬_seq_nor_cons);
1498 // Compare flags are still set from (3).
1499 __ j(greater, ¬_long_external, Label::kNear); // Go to (10).
1500
1501 // (8) External string. Short external strings have been ruled out.
1502 __ bind(&external_string);
1503 // Reload instance type.
1504 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
1505 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
1506 if (FLAG_debug_code) {
1507 // Assert that we do not have a cons or slice (indirect strings) here.
1508 // Sequential strings have already been ruled out.
1509 __ test_b(ebx, kIsIndirectStringMask);
1510 __ Assert(zero, kExternalStringExpectedButNotFound);
1511 }
1512 __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset));
1513 // Move the pointer so that offset-wise, it looks like a sequential string.
1514 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1515 __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1516 STATIC_ASSERT(kTwoByteStringTag == 0);
1517 // (8a) Is the external string one byte? If yes, go to (6).
1518 __ test_b(ebx, kStringEncodingMask);
1519 __ j(not_zero, &seq_one_byte_string); // Goto (6).
1520
1521 // eax: sequential subject string (or look-alike, external string)
1522 // edx: original subject string
1523 // ecx: RegExp data (FixedArray)
1524 // (9) Two byte sequential. Load regexp code for one byte. Go to (E).
1525 __ bind(&seq_two_byte_string);
1526 // Load previous index and check range before edx is overwritten. We have
1527 // to use edx instead of eax here because it might have been only made to
1528 // look like a sequential string when it actually is an external string.
1529 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
1530 __ JumpIfNotSmi(ebx, &runtime);
1531 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset));
1532 __ j(above_equal, &runtime);
1533 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
1534 __ Move(ecx, Immediate(0)); // Type is two byte.
1535 __ jmp(&check_code); // Go to (E).
1536
1537 // (10) Not a string or a short external string? If yes, bail out to runtime.
1538 __ bind(¬_long_external);
1539 // Catch non-string subject or short external string.
1540 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
1541 __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag));
1542 __ j(not_zero, &runtime);
1543
1544 // (11) Sliced string. Replace subject with parent. Go to (5a).
1545 // Load offset into edi and replace subject string with parent.
1546 __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset));
1547 __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset));
1548 __ jmp(&check_underlying); // Go to (5a).
1549 #endif // V8_INTERPRETED_REGEXP
1550 }
1551
1552
NegativeComparisonResult(Condition cc)1553 static int NegativeComparisonResult(Condition cc) {
1554 DCHECK(cc != equal);
1555 DCHECK((cc == less) || (cc == less_equal)
1556 || (cc == greater) || (cc == greater_equal));
1557 return (cc == greater || cc == greater_equal) ? LESS : GREATER;
1558 }
1559
1560
CheckInputType(MacroAssembler * masm,Register input,CompareICState::State expected,Label * fail)1561 static void CheckInputType(MacroAssembler* masm, Register input,
1562 CompareICState::State expected, Label* fail) {
1563 Label ok;
1564 if (expected == CompareICState::SMI) {
1565 __ JumpIfNotSmi(input, fail);
1566 } else if (expected == CompareICState::NUMBER) {
1567 __ JumpIfSmi(input, &ok);
1568 __ cmp(FieldOperand(input, HeapObject::kMapOffset),
1569 Immediate(masm->isolate()->factory()->heap_number_map()));
1570 __ j(not_equal, fail);
1571 }
1572 // We could be strict about internalized/non-internalized here, but as long as
1573 // hydrogen doesn't care, the stub doesn't have to care either.
1574 __ bind(&ok);
1575 }
1576
1577
BranchIfNotInternalizedString(MacroAssembler * masm,Label * label,Register object,Register scratch)1578 static void BranchIfNotInternalizedString(MacroAssembler* masm,
1579 Label* label,
1580 Register object,
1581 Register scratch) {
1582 __ JumpIfSmi(object, label);
1583 __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
1584 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
1585 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
1586 __ test(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
1587 __ j(not_zero, label);
1588 }
1589
1590
GenerateGeneric(MacroAssembler * masm)1591 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
1592 Label check_unequal_objects;
1593 Condition cc = GetCondition();
1594
1595 Label miss;
1596 CheckInputType(masm, edx, left(), &miss);
1597 CheckInputType(masm, eax, right(), &miss);
1598
1599 // Compare two smis.
1600 Label non_smi, smi_done;
1601 __ mov(ecx, edx);
1602 __ or_(ecx, eax);
1603 __ JumpIfNotSmi(ecx, &non_smi, Label::kNear);
1604 __ sub(edx, eax); // Return on the result of the subtraction.
1605 __ j(no_overflow, &smi_done, Label::kNear);
1606 __ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
1607 __ bind(&smi_done);
1608 __ mov(eax, edx);
1609 __ ret(0);
1610 __ bind(&non_smi);
1611
1612 // NOTICE! This code is only reached after a smi-fast-case check, so
1613 // it is certain that at least one operand isn't a smi.
1614
1615 // Identical objects can be compared fast, but there are some tricky cases
1616 // for NaN and undefined.
1617 Label generic_heap_number_comparison;
1618 {
1619 Label not_identical;
1620 __ cmp(eax, edx);
1621 __ j(not_equal, ¬_identical);
1622
1623 if (cc != equal) {
1624 // Check for undefined. undefined OP undefined is false even though
1625 // undefined == undefined.
1626 Label check_for_nan;
1627 __ cmp(edx, isolate()->factory()->undefined_value());
1628 __ j(not_equal, &check_for_nan, Label::kNear);
1629 __ Move(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1630 __ ret(0);
1631 __ bind(&check_for_nan);
1632 }
1633
1634 // Test for NaN. Compare heap numbers in a general way,
1635 // to hanlde NaNs correctly.
1636 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
1637 Immediate(isolate()->factory()->heap_number_map()));
1638 __ j(equal, &generic_heap_number_comparison, Label::kNear);
1639 if (cc != equal) {
1640 // Call runtime on identical JSObjects. Otherwise return equal.
1641 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1642 __ j(above_equal, ¬_identical);
1643 }
1644 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
1645 __ ret(0);
1646
1647
1648 __ bind(¬_identical);
1649 }
1650
1651 // Strict equality can quickly decide whether objects are equal.
1652 // Non-strict object equality is slower, so it is handled later in the stub.
1653 if (cc == equal && strict()) {
1654 Label slow; // Fallthrough label.
1655 Label not_smis;
1656 // If we're doing a strict equality comparison, we don't have to do
1657 // type conversion, so we generate code to do fast comparison for objects
1658 // and oddballs. Non-smi numbers and strings still go through the usual
1659 // slow-case code.
1660 // If either is a Smi (we know that not both are), then they can only
1661 // be equal if the other is a HeapNumber. If so, use the slow case.
1662 STATIC_ASSERT(kSmiTag == 0);
1663 DCHECK_EQ(0, Smi::FromInt(0));
1664 __ mov(ecx, Immediate(kSmiTagMask));
1665 __ and_(ecx, eax);
1666 __ test(ecx, edx);
1667 __ j(not_zero, ¬_smis, Label::kNear);
1668 // One operand is a smi.
1669
1670 // Check whether the non-smi is a heap number.
1671 STATIC_ASSERT(kSmiTagMask == 1);
1672 // ecx still holds eax & kSmiTag, which is either zero or one.
1673 __ sub(ecx, Immediate(0x01));
1674 __ mov(ebx, edx);
1675 __ xor_(ebx, eax);
1676 __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx.
1677 __ xor_(ebx, eax);
1678 // if eax was smi, ebx is now edx, else eax.
1679
1680 // Check if the non-smi operand is a heap number.
1681 __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
1682 Immediate(isolate()->factory()->heap_number_map()));
1683 // If heap number, handle it in the slow case.
1684 __ j(equal, &slow, Label::kNear);
1685 // Return non-equal (ebx is not zero)
1686 __ mov(eax, ebx);
1687 __ ret(0);
1688
1689 __ bind(¬_smis);
1690 // If either operand is a JSObject or an oddball value, then they are not
1691 // equal since their pointers are different
1692 // There is no test for undetectability in strict equality.
1693
1694 // Get the type of the first operand.
1695 // If the first object is a JS object, we have done pointer comparison.
1696 Label first_non_object;
1697 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
1698 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1699 __ j(below, &first_non_object, Label::kNear);
1700
1701 // Return non-zero (eax is not zero)
1702 Label return_not_equal;
1703 STATIC_ASSERT(kHeapObjectTag != 0);
1704 __ bind(&return_not_equal);
1705 __ ret(0);
1706
1707 __ bind(&first_non_object);
1708 // Check for oddballs: true, false, null, undefined.
1709 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1710 __ j(equal, &return_not_equal);
1711
1712 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx);
1713 __ j(above_equal, &return_not_equal);
1714
1715 // Check for oddballs: true, false, null, undefined.
1716 __ CmpInstanceType(ecx, ODDBALL_TYPE);
1717 __ j(equal, &return_not_equal);
1718
1719 // Fall through to the general case.
1720 __ bind(&slow);
1721 }
1722
1723 // Generate the number comparison code.
1724 Label non_number_comparison;
1725 Label unordered;
1726 __ bind(&generic_heap_number_comparison);
1727
1728 FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
1729 __ ucomisd(xmm0, xmm1);
1730 // Don't base result on EFLAGS when a NaN is involved.
1731 __ j(parity_even, &unordered, Label::kNear);
1732
1733 __ mov(eax, 0); // equal
1734 __ mov(ecx, Immediate(Smi::FromInt(1)));
1735 __ cmov(above, eax, ecx);
1736 __ mov(ecx, Immediate(Smi::FromInt(-1)));
1737 __ cmov(below, eax, ecx);
1738 __ ret(0);
1739
1740 // If one of the numbers was NaN, then the result is always false.
1741 // The cc is never not-equal.
1742 __ bind(&unordered);
1743 DCHECK(cc != not_equal);
1744 if (cc == less || cc == less_equal) {
1745 __ mov(eax, Immediate(Smi::FromInt(1)));
1746 } else {
1747 __ mov(eax, Immediate(Smi::FromInt(-1)));
1748 }
1749 __ ret(0);
1750
1751 // The number comparison code did not provide a valid result.
1752 __ bind(&non_number_comparison);
1753
1754 // Fast negative check for internalized-to-internalized equality.
1755 Label check_for_strings;
1756 if (cc == equal) {
1757 BranchIfNotInternalizedString(masm, &check_for_strings, eax, ecx);
1758 BranchIfNotInternalizedString(masm, &check_for_strings, edx, ecx);
1759
1760 // We've already checked for object identity, so if both operands
1761 // are internalized they aren't equal. Register eax already holds a
1762 // non-zero value, which indicates not equal, so just return.
1763 __ ret(0);
1764 }
1765
1766 __ bind(&check_for_strings);
1767
1768 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx,
1769 &check_unequal_objects);
1770
1771 // Inline comparison of one-byte strings.
1772 if (cc == equal) {
1773 StringHelper::GenerateFlatOneByteStringEquals(masm, edx, eax, ecx, ebx);
1774 } else {
1775 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
1776 edi);
1777 }
1778 #ifdef DEBUG
1779 __ Abort(kUnexpectedFallThroughFromStringComparison);
1780 #endif
1781
1782 __ bind(&check_unequal_objects);
1783 if (cc == equal && !strict()) {
1784 // Non-strict equality. Objects are unequal if
1785 // they are both JSObjects and not undetectable,
1786 // and their pointers are different.
1787 Label not_both_objects;
1788 Label return_unequal;
1789 // At most one is a smi, so we can test for smi by adding the two.
1790 // A smi plus a heap object has the low bit set, a heap object plus
1791 // a heap object has the low bit clear.
1792 STATIC_ASSERT(kSmiTag == 0);
1793 STATIC_ASSERT(kSmiTagMask == 1);
1794 __ lea(ecx, Operand(eax, edx, times_1, 0));
1795 __ test(ecx, Immediate(kSmiTagMask));
1796 __ j(not_zero, ¬_both_objects, Label::kNear);
1797 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
1798 __ j(below, ¬_both_objects, Label::kNear);
1799 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx);
1800 __ j(below, ¬_both_objects, Label::kNear);
1801 // We do not bail out after this point. Both are JSObjects, and
1802 // they are equal if and only if both are undetectable.
1803 // The and of the undetectable flags is 1 if and only if they are equal.
1804 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
1805 1 << Map::kIsUndetectable);
1806 __ j(zero, &return_unequal, Label::kNear);
1807 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
1808 1 << Map::kIsUndetectable);
1809 __ j(zero, &return_unequal, Label::kNear);
1810 // The objects are both undetectable, so they both compare as the value
1811 // undefined, and are equal.
1812 __ Move(eax, Immediate(EQUAL));
1813 __ bind(&return_unequal);
1814 // Return non-equal by returning the non-zero object pointer in eax,
1815 // or return equal if we fell through to here.
1816 __ ret(0); // rax, rdx were pushed
1817 __ bind(¬_both_objects);
1818 }
1819
1820 // Push arguments below the return address.
1821 __ pop(ecx);
1822 __ push(edx);
1823 __ push(eax);
1824
1825 // Figure out which native to call and setup the arguments.
1826 Builtins::JavaScript builtin;
1827 if (cc == equal) {
1828 builtin = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1829 } else {
1830 builtin = Builtins::COMPARE;
1831 __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc))));
1832 }
1833
1834 // Restore return address on the stack.
1835 __ push(ecx);
1836
1837 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1838 // tagged as a small integer.
1839 __ InvokeBuiltin(builtin, JUMP_FUNCTION);
1840
1841 __ bind(&miss);
1842 GenerateMiss(masm);
1843 }
1844
1845
GenerateRecordCallTarget(MacroAssembler * masm)1846 static void GenerateRecordCallTarget(MacroAssembler* masm) {
1847 // Cache the called function in a feedback vector slot. Cache states
1848 // are uninitialized, monomorphic (indicated by a JSFunction), and
1849 // megamorphic.
1850 // eax : number of arguments to the construct function
1851 // ebx : Feedback vector
1852 // edx : slot in feedback vector (Smi)
1853 // edi : the function to call
1854 Isolate* isolate = masm->isolate();
1855 Label initialize, done, miss, megamorphic, not_array_function;
1856
1857 // Load the cache state into ecx.
1858 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
1859 FixedArray::kHeaderSize));
1860
1861 // A monomorphic cache hit or an already megamorphic state: invoke the
1862 // function without changing the state.
1863 __ cmp(ecx, edi);
1864 __ j(equal, &done, Label::kFar);
1865 __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1866 __ j(equal, &done, Label::kFar);
1867
1868 if (!FLAG_pretenuring_call_new) {
1869 // If we came here, we need to see if we are the array function.
1870 // If we didn't have a matching function, and we didn't find the megamorph
1871 // sentinel, then we have in the slot either some other function or an
1872 // AllocationSite. Do a map check on the object in ecx.
1873 Handle<Map> allocation_site_map = isolate->factory()->allocation_site_map();
1874 __ cmp(FieldOperand(ecx, 0), Immediate(allocation_site_map));
1875 __ j(not_equal, &miss);
1876
1877 // Make sure the function is the Array() function
1878 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1879 __ cmp(edi, ecx);
1880 __ j(not_equal, &megamorphic);
1881 __ jmp(&done, Label::kFar);
1882 }
1883
1884 __ bind(&miss);
1885
1886 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
1887 // megamorphic.
1888 __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
1889 __ j(equal, &initialize);
1890 // MegamorphicSentinel is an immortal immovable object (undefined) so no
1891 // write-barrier is needed.
1892 __ bind(&megamorphic);
1893 __ mov(
1894 FieldOperand(ebx, edx, times_half_pointer_size, FixedArray::kHeaderSize),
1895 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
1896 __ jmp(&done, Label::kFar);
1897
1898 // An uninitialized cache is patched with the function or sentinel to
1899 // indicate the ElementsKind if function is the Array constructor.
1900 __ bind(&initialize);
1901 if (!FLAG_pretenuring_call_new) {
1902 // Make sure the function is the Array() function
1903 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
1904 __ cmp(edi, ecx);
1905 __ j(not_equal, ¬_array_function);
1906
1907 // The target function is the Array constructor,
1908 // Create an AllocationSite if we don't already have it, store it in the
1909 // slot.
1910 {
1911 FrameScope scope(masm, StackFrame::INTERNAL);
1912
1913 // Arguments register must be smi-tagged to call out.
1914 __ SmiTag(eax);
1915 __ push(eax);
1916 __ push(edi);
1917 __ push(edx);
1918 __ push(ebx);
1919
1920 CreateAllocationSiteStub create_stub(isolate);
1921 __ CallStub(&create_stub);
1922
1923 __ pop(ebx);
1924 __ pop(edx);
1925 __ pop(edi);
1926 __ pop(eax);
1927 __ SmiUntag(eax);
1928 }
1929 __ jmp(&done);
1930
1931 __ bind(¬_array_function);
1932 }
1933
1934 __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
1935 FixedArray::kHeaderSize),
1936 edi);
1937 // We won't need edx or ebx anymore, just save edi
1938 __ push(edi);
1939 __ push(ebx);
1940 __ push(edx);
1941 __ RecordWriteArray(ebx, edi, edx, kDontSaveFPRegs,
1942 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
1943 __ pop(edx);
1944 __ pop(ebx);
1945 __ pop(edi);
1946
1947 __ bind(&done);
1948 }
1949
1950
EmitContinueIfStrictOrNative(MacroAssembler * masm,Label * cont)1951 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
1952 // Do not transform the receiver for strict mode functions.
1953 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
1954 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
1955 1 << SharedFunctionInfo::kStrictModeBitWithinByte);
1956 __ j(not_equal, cont);
1957
1958 // Do not transform the receiver for natives (shared already in ecx).
1959 __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
1960 1 << SharedFunctionInfo::kNativeBitWithinByte);
1961 __ j(not_equal, cont);
1962 }
1963
1964
EmitSlowCase(Isolate * isolate,MacroAssembler * masm,int argc,Label * non_function)1965 static void EmitSlowCase(Isolate* isolate,
1966 MacroAssembler* masm,
1967 int argc,
1968 Label* non_function) {
1969 // Check for function proxy.
1970 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
1971 __ j(not_equal, non_function);
1972 __ pop(ecx);
1973 __ push(edi); // put proxy as additional argument under return address
1974 __ push(ecx);
1975 __ Move(eax, Immediate(argc + 1));
1976 __ Move(ebx, Immediate(0));
1977 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
1978 {
1979 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
1980 __ jmp(adaptor, RelocInfo::CODE_TARGET);
1981 }
1982
1983 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
1984 // of the original receiver from the call site).
1985 __ bind(non_function);
1986 __ mov(Operand(esp, (argc + 1) * kPointerSize), edi);
1987 __ Move(eax, Immediate(argc));
1988 __ Move(ebx, Immediate(0));
1989 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
1990 Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline();
1991 __ jmp(adaptor, RelocInfo::CODE_TARGET);
1992 }
1993
1994
EmitWrapCase(MacroAssembler * masm,int argc,Label * cont)1995 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
1996 // Wrap the receiver and patch it back onto the stack.
1997 { FrameScope frame_scope(masm, StackFrame::INTERNAL);
1998 __ push(edi);
1999 __ push(eax);
2000 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2001 __ pop(edi);
2002 }
2003 __ mov(Operand(esp, (argc + 1) * kPointerSize), eax);
2004 __ jmp(cont);
2005 }
2006
2007
CallFunctionNoFeedback(MacroAssembler * masm,int argc,bool needs_checks,bool call_as_method)2008 static void CallFunctionNoFeedback(MacroAssembler* masm,
2009 int argc, bool needs_checks,
2010 bool call_as_method) {
2011 // edi : the function to call
2012 Label slow, non_function, wrap, cont;
2013
2014 if (needs_checks) {
2015 // Check that the function really is a JavaScript function.
2016 __ JumpIfSmi(edi, &non_function);
2017
2018 // Goto slow case if we do not have a function.
2019 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2020 __ j(not_equal, &slow);
2021 }
2022
2023 // Fast-case: Just invoke the function.
2024 ParameterCount actual(argc);
2025
2026 if (call_as_method) {
2027 if (needs_checks) {
2028 EmitContinueIfStrictOrNative(masm, &cont);
2029 }
2030
2031 // Load the receiver from the stack.
2032 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
2033
2034 if (needs_checks) {
2035 __ JumpIfSmi(eax, &wrap);
2036
2037 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
2038 __ j(below, &wrap);
2039 } else {
2040 __ jmp(&wrap);
2041 }
2042
2043 __ bind(&cont);
2044 }
2045
2046 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
2047
2048 if (needs_checks) {
2049 // Slow-case: Non-function called.
2050 __ bind(&slow);
2051 // (non_function is bound in EmitSlowCase)
2052 EmitSlowCase(masm->isolate(), masm, argc, &non_function);
2053 }
2054
2055 if (call_as_method) {
2056 __ bind(&wrap);
2057 EmitWrapCase(masm, argc, &cont);
2058 }
2059 }
2060
2061
Generate(MacroAssembler * masm)2062 void CallFunctionStub::Generate(MacroAssembler* masm) {
2063 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
2064 }
2065
2066
Generate(MacroAssembler * masm)2067 void CallConstructStub::Generate(MacroAssembler* masm) {
2068 // eax : number of arguments
2069 // ebx : feedback vector
2070 // edx : (only if ebx is not the megamorphic symbol) slot in feedback
2071 // vector (Smi)
2072 // edi : constructor function
2073 Label slow, non_function_call;
2074
2075 // Check that function is not a smi.
2076 __ JumpIfSmi(edi, &non_function_call);
2077 // Check that function is a JSFunction.
2078 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2079 __ j(not_equal, &slow);
2080
2081 if (RecordCallTarget()) {
2082 GenerateRecordCallTarget(masm);
2083
2084 if (FLAG_pretenuring_call_new) {
2085 // Put the AllocationSite from the feedback vector into ebx.
2086 // By adding kPointerSize we encode that we know the AllocationSite
2087 // entry is at the feedback vector slot given by edx + 1.
2088 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
2089 FixedArray::kHeaderSize + kPointerSize));
2090 } else {
2091 Label feedback_register_initialized;
2092 // Put the AllocationSite from the feedback vector into ebx, or undefined.
2093 __ mov(ebx, FieldOperand(ebx, edx, times_half_pointer_size,
2094 FixedArray::kHeaderSize));
2095 Handle<Map> allocation_site_map =
2096 isolate()->factory()->allocation_site_map();
2097 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
2098 __ j(equal, &feedback_register_initialized);
2099 __ mov(ebx, isolate()->factory()->undefined_value());
2100 __ bind(&feedback_register_initialized);
2101 }
2102
2103 __ AssertUndefinedOrAllocationSite(ebx);
2104 }
2105
2106 // Jump to the function-specific construct stub.
2107 Register jmp_reg = ecx;
2108 __ mov(jmp_reg, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2109 __ mov(jmp_reg, FieldOperand(jmp_reg,
2110 SharedFunctionInfo::kConstructStubOffset));
2111 __ lea(jmp_reg, FieldOperand(jmp_reg, Code::kHeaderSize));
2112 __ jmp(jmp_reg);
2113
2114 // edi: called object
2115 // eax: number of arguments
2116 // ecx: object map
2117 Label do_call;
2118 __ bind(&slow);
2119 __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
2120 __ j(not_equal, &non_function_call);
2121 __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
2122 __ jmp(&do_call);
2123
2124 __ bind(&non_function_call);
2125 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
2126 __ bind(&do_call);
2127 // Set expected number of arguments to zero (not changing eax).
2128 __ Move(ebx, Immediate(0));
2129 Handle<Code> arguments_adaptor =
2130 isolate()->builtins()->ArgumentsAdaptorTrampoline();
2131 __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
2132 }
2133
2134
EmitLoadTypeFeedbackVector(MacroAssembler * masm,Register vector)2135 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2136 __ mov(vector, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
2137 __ mov(vector, FieldOperand(vector, JSFunction::kSharedFunctionInfoOffset));
2138 __ mov(vector, FieldOperand(vector,
2139 SharedFunctionInfo::kFeedbackVectorOffset));
2140 }
2141
2142
Generate(MacroAssembler * masm)2143 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
2144 // edi - function
2145 // edx - slot id
2146 Label miss;
2147 int argc = arg_count();
2148 ParameterCount actual(argc);
2149
2150 EmitLoadTypeFeedbackVector(masm, ebx);
2151
2152 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, ecx);
2153 __ cmp(edi, ecx);
2154 __ j(not_equal, &miss);
2155
2156 __ mov(eax, arg_count());
2157 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
2158 FixedArray::kHeaderSize));
2159
2160 // Verify that ecx contains an AllocationSite
2161 Factory* factory = masm->isolate()->factory();
2162 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
2163 factory->allocation_site_map());
2164 __ j(not_equal, &miss);
2165
2166 __ mov(ebx, ecx);
2167 ArrayConstructorStub stub(masm->isolate(), arg_count());
2168 __ TailCallStub(&stub);
2169
2170 __ bind(&miss);
2171 GenerateMiss(masm);
2172
2173 // The slow case, we need this no matter what to complete a call after a miss.
2174 CallFunctionNoFeedback(masm,
2175 arg_count(),
2176 true,
2177 CallAsMethod());
2178
2179 // Unreachable.
2180 __ int3();
2181 }
2182
2183
Generate(MacroAssembler * masm)2184 void CallICStub::Generate(MacroAssembler* masm) {
2185 // edi - function
2186 // edx - slot id
2187 Isolate* isolate = masm->isolate();
2188 Label extra_checks_or_miss, slow_start;
2189 Label slow, non_function, wrap, cont;
2190 Label have_js_function;
2191 int argc = arg_count();
2192 ParameterCount actual(argc);
2193
2194 EmitLoadTypeFeedbackVector(masm, ebx);
2195
2196 // The checks. First, does edi match the recorded monomorphic target?
2197 __ cmp(edi, FieldOperand(ebx, edx, times_half_pointer_size,
2198 FixedArray::kHeaderSize));
2199 __ j(not_equal, &extra_checks_or_miss);
2200
2201 __ bind(&have_js_function);
2202 if (CallAsMethod()) {
2203 EmitContinueIfStrictOrNative(masm, &cont);
2204
2205 // Load the receiver from the stack.
2206 __ mov(eax, Operand(esp, (argc + 1) * kPointerSize));
2207
2208 __ JumpIfSmi(eax, &wrap);
2209
2210 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
2211 __ j(below, &wrap);
2212
2213 __ bind(&cont);
2214 }
2215
2216 __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper());
2217
2218 __ bind(&slow);
2219 EmitSlowCase(isolate, masm, argc, &non_function);
2220
2221 if (CallAsMethod()) {
2222 __ bind(&wrap);
2223 EmitWrapCase(masm, argc, &cont);
2224 }
2225
2226 __ bind(&extra_checks_or_miss);
2227 Label miss;
2228
2229 __ mov(ecx, FieldOperand(ebx, edx, times_half_pointer_size,
2230 FixedArray::kHeaderSize));
2231 __ cmp(ecx, Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2232 __ j(equal, &slow_start);
2233 __ cmp(ecx, Immediate(TypeFeedbackVector::UninitializedSentinel(isolate)));
2234 __ j(equal, &miss);
2235
2236 if (!FLAG_trace_ic) {
2237 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2238 // to handle it here. More complex cases are dealt with in the runtime.
2239 __ AssertNotSmi(ecx);
2240 __ CmpObjectType(ecx, JS_FUNCTION_TYPE, ecx);
2241 __ j(not_equal, &miss);
2242 __ mov(FieldOperand(ebx, edx, times_half_pointer_size,
2243 FixedArray::kHeaderSize),
2244 Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate)));
2245 __ jmp(&slow_start);
2246 }
2247
2248 // We are here because tracing is on or we are going monomorphic.
2249 __ bind(&miss);
2250 GenerateMiss(masm);
2251
2252 // the slow case
2253 __ bind(&slow_start);
2254
2255 // Check that the function really is a JavaScript function.
2256 __ JumpIfSmi(edi, &non_function);
2257
2258 // Goto slow case if we do not have a function.
2259 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2260 __ j(not_equal, &slow);
2261 __ jmp(&have_js_function);
2262
2263 // Unreachable
2264 __ int3();
2265 }
2266
2267
GenerateMiss(MacroAssembler * masm)2268 void CallICStub::GenerateMiss(MacroAssembler* masm) {
2269 // Get the receiver of the function from the stack; 1 ~ return address.
2270 __ mov(ecx, Operand(esp, (arg_count() + 1) * kPointerSize));
2271
2272 {
2273 FrameScope scope(masm, StackFrame::INTERNAL);
2274
2275 // Push the receiver and the function and feedback info.
2276 __ push(ecx);
2277 __ push(edi);
2278 __ push(ebx);
2279 __ push(edx);
2280
2281 // Call the entry.
2282 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
2283 : IC::kCallIC_Customization_Miss;
2284
2285 ExternalReference miss = ExternalReference(IC_Utility(id),
2286 masm->isolate());
2287 __ CallExternalReference(miss, 4);
2288
2289 // Move result to edi and exit the internal frame.
2290 __ mov(edi, eax);
2291 }
2292 }
2293
2294
NeedsImmovableCode()2295 bool CEntryStub::NeedsImmovableCode() {
2296 return false;
2297 }
2298
2299
GenerateStubsAheadOfTime(Isolate * isolate)2300 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
2301 CEntryStub::GenerateAheadOfTime(isolate);
2302 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
2303 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
2304 // It is important that the store buffer overflow stubs are generated first.
2305 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
2306 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
2307 BinaryOpICStub::GenerateAheadOfTime(isolate);
2308 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
2309 }
2310
2311
GenerateFPStubs(Isolate * isolate)2312 void CodeStub::GenerateFPStubs(Isolate* isolate) {
2313 // Generate if not already in cache.
2314 CEntryStub(isolate, 1, kSaveFPRegs).GetCode();
2315 isolate->set_fp_stubs_generated(true);
2316 }
2317
2318
GenerateAheadOfTime(Isolate * isolate)2319 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
2320 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
2321 stub.GetCode();
2322 }
2323
2324
Generate(MacroAssembler * masm)2325 void CEntryStub::Generate(MacroAssembler* masm) {
2326 // eax: number of arguments including receiver
2327 // ebx: pointer to C function (C callee-saved)
2328 // ebp: frame pointer (restored after C call)
2329 // esp: stack pointer (restored after C call)
2330 // esi: current context (C callee-saved)
2331 // edi: JS function of the caller (C callee-saved)
2332
2333 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2334
2335 // Enter the exit frame that transitions from JavaScript to C++.
2336 __ EnterExitFrame(save_doubles());
2337
2338 // ebx: pointer to C function (C callee-saved)
2339 // ebp: frame pointer (restored after C call)
2340 // esp: stack pointer (restored after C call)
2341 // edi: number of arguments including receiver (C callee-saved)
2342 // esi: pointer to the first argument (C callee-saved)
2343
2344 // Result returned in eax, or eax+edx if result size is 2.
2345
2346 // Check stack alignment.
2347 if (FLAG_debug_code) {
2348 __ CheckStackAlignment();
2349 }
2350
2351 // Call C function.
2352 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
2353 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
2354 __ mov(Operand(esp, 2 * kPointerSize),
2355 Immediate(ExternalReference::isolate_address(isolate())));
2356 __ call(ebx);
2357 // Result is in eax or edx:eax - do not destroy these registers!
2358
2359 // Runtime functions should not return 'the hole'. Allowing it to escape may
2360 // lead to crashes in the IC code later.
2361 if (FLAG_debug_code) {
2362 Label okay;
2363 __ cmp(eax, isolate()->factory()->the_hole_value());
2364 __ j(not_equal, &okay, Label::kNear);
2365 __ int3();
2366 __ bind(&okay);
2367 }
2368
2369 // Check result for exception sentinel.
2370 Label exception_returned;
2371 __ cmp(eax, isolate()->factory()->exception());
2372 __ j(equal, &exception_returned);
2373
2374 ExternalReference pending_exception_address(
2375 Isolate::kPendingExceptionAddress, isolate());
2376
2377 // Check that there is no pending exception, otherwise we
2378 // should have returned the exception sentinel.
2379 if (FLAG_debug_code) {
2380 __ push(edx);
2381 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2382 Label okay;
2383 __ cmp(edx, Operand::StaticVariable(pending_exception_address));
2384 // Cannot use check here as it attempts to generate call into runtime.
2385 __ j(equal, &okay, Label::kNear);
2386 __ int3();
2387 __ bind(&okay);
2388 __ pop(edx);
2389 }
2390
2391 // Exit the JavaScript to C++ exit frame.
2392 __ LeaveExitFrame(save_doubles());
2393 __ ret(0);
2394
2395 // Handling of exception.
2396 __ bind(&exception_returned);
2397
2398 // Retrieve the pending exception.
2399 __ mov(eax, Operand::StaticVariable(pending_exception_address));
2400
2401 // Clear the pending exception.
2402 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2403 __ mov(Operand::StaticVariable(pending_exception_address), edx);
2404
2405 // Special handling of termination exceptions which are uncatchable
2406 // by javascript code.
2407 Label throw_termination_exception;
2408 __ cmp(eax, isolate()->factory()->termination_exception());
2409 __ j(equal, &throw_termination_exception);
2410
2411 // Handle normal exception.
2412 __ Throw(eax);
2413
2414 __ bind(&throw_termination_exception);
2415 __ ThrowUncatchable(eax);
2416 }
2417
2418
Generate(MacroAssembler * masm)2419 void JSEntryStub::Generate(MacroAssembler* masm) {
2420 Label invoke, handler_entry, exit;
2421 Label not_outermost_js, not_outermost_js_2;
2422
2423 ProfileEntryHookStub::MaybeCallEntryHook(masm);
2424
2425 // Set up frame.
2426 __ push(ebp);
2427 __ mov(ebp, esp);
2428
2429 // Push marker in two places.
2430 int marker = type();
2431 __ push(Immediate(Smi::FromInt(marker))); // context slot
2432 __ push(Immediate(Smi::FromInt(marker))); // function slot
2433 // Save callee-saved registers (C calling conventions).
2434 __ push(edi);
2435 __ push(esi);
2436 __ push(ebx);
2437
2438 // Save copies of the top frame descriptor on the stack.
2439 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
2440 __ push(Operand::StaticVariable(c_entry_fp));
2441
2442 // If this is the outermost JS call, set js_entry_sp value.
2443 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
2444 __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
2445 __ j(not_equal, ¬_outermost_js, Label::kNear);
2446 __ mov(Operand::StaticVariable(js_entry_sp), ebp);
2447 __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2448 __ jmp(&invoke, Label::kNear);
2449 __ bind(¬_outermost_js);
2450 __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
2451
2452 // Jump to a faked try block that does the invoke, with a faked catch
2453 // block that sets the pending exception.
2454 __ jmp(&invoke);
2455 __ bind(&handler_entry);
2456 handler_offset_ = handler_entry.pos();
2457 // Caught exception: Store result (exception) in the pending exception
2458 // field in the JSEnv and return a failure sentinel.
2459 ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
2460 isolate());
2461 __ mov(Operand::StaticVariable(pending_exception), eax);
2462 __ mov(eax, Immediate(isolate()->factory()->exception()));
2463 __ jmp(&exit);
2464
2465 // Invoke: Link this frame into the handler chain. There's only one
2466 // handler block in this code object, so its index is 0.
2467 __ bind(&invoke);
2468 __ PushTryHandler(StackHandler::JS_ENTRY, 0);
2469
2470 // Clear any pending exceptions.
2471 __ mov(edx, Immediate(isolate()->factory()->the_hole_value()));
2472 __ mov(Operand::StaticVariable(pending_exception), edx);
2473
2474 // Fake a receiver (NULL).
2475 __ push(Immediate(0)); // receiver
2476
2477 // Invoke the function by calling through JS entry trampoline builtin and
2478 // pop the faked function when we return. Notice that we cannot store a
2479 // reference to the trampoline code directly in this stub, because the
2480 // builtin stubs may not have been generated yet.
2481 if (type() == StackFrame::ENTRY_CONSTRUCT) {
2482 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
2483 isolate());
2484 __ mov(edx, Immediate(construct_entry));
2485 } else {
2486 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
2487 __ mov(edx, Immediate(entry));
2488 }
2489 __ mov(edx, Operand(edx, 0)); // deref address
2490 __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
2491 __ call(edx);
2492
2493 // Unlink this frame from the handler chain.
2494 __ PopTryHandler();
2495
2496 __ bind(&exit);
2497 // Check if the current stack frame is marked as the outermost JS frame.
2498 __ pop(ebx);
2499 __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
2500 __ j(not_equal, ¬_outermost_js_2);
2501 __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
2502 __ bind(¬_outermost_js_2);
2503
2504 // Restore the top frame descriptor from the stack.
2505 __ pop(Operand::StaticVariable(ExternalReference(
2506 Isolate::kCEntryFPAddress, isolate())));
2507
2508 // Restore callee-saved registers (C calling conventions).
2509 __ pop(ebx);
2510 __ pop(esi);
2511 __ pop(edi);
2512 __ add(esp, Immediate(2 * kPointerSize)); // remove markers
2513
2514 // Restore frame pointer and return.
2515 __ pop(ebp);
2516 __ ret(0);
2517 }
2518
2519
2520 // Generate stub code for instanceof.
2521 // This code can patch a call site inlined cache of the instance of check,
2522 // which looks like this.
2523 //
2524 // 81 ff XX XX XX XX cmp edi, <the hole, patched to a map>
2525 // 75 0a jne <some near label>
2526 // b8 XX XX XX XX mov eax, <the hole, patched to either true or false>
2527 //
2528 // If call site patching is requested the stack will have the delta from the
2529 // return address to the cmp instruction just below the return address. This
2530 // also means that call site patching can only take place with arguments in
2531 // registers. TOS looks like this when call site patching is requested
2532 //
2533 // esp[0] : return address
2534 // esp[4] : delta from return address to cmp instruction
2535 //
Generate(MacroAssembler * masm)2536 void InstanceofStub::Generate(MacroAssembler* masm) {
2537 // Call site inlining and patching implies arguments in registers.
2538 DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
2539
2540 // Fixed register usage throughout the stub.
2541 Register object = eax; // Object (lhs).
2542 Register map = ebx; // Map of the object.
2543 Register function = edx; // Function (rhs).
2544 Register prototype = edi; // Prototype of the function.
2545 Register scratch = ecx;
2546
2547 // Constants describing the call site code to patch.
2548 static const int kDeltaToCmpImmediate = 2;
2549 static const int kDeltaToMov = 8;
2550 static const int kDeltaToMovImmediate = 9;
2551 static const int8_t kCmpEdiOperandByte1 = bit_cast<int8_t, uint8_t>(0x3b);
2552 static const int8_t kCmpEdiOperandByte2 = bit_cast<int8_t, uint8_t>(0x3d);
2553 static const int8_t kMovEaxImmediateByte = bit_cast<int8_t, uint8_t>(0xb8);
2554
2555 DCHECK_EQ(object.code(), InstanceofStub::left().code());
2556 DCHECK_EQ(function.code(), InstanceofStub::right().code());
2557
2558 // Get the object and function - they are always both needed.
2559 Label slow, not_js_object;
2560 if (!HasArgsInRegisters()) {
2561 __ mov(object, Operand(esp, 2 * kPointerSize));
2562 __ mov(function, Operand(esp, 1 * kPointerSize));
2563 }
2564
2565 // Check that the left hand is a JS object.
2566 __ JumpIfSmi(object, ¬_js_object);
2567 __ IsObjectJSObjectType(object, map, scratch, ¬_js_object);
2568
2569 // If there is a call site cache don't look in the global cache, but do the
2570 // real lookup and update the call site cache.
2571 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
2572 // Look up the function and the map in the instanceof cache.
2573 Label miss;
2574 __ CompareRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2575 __ j(not_equal, &miss, Label::kNear);
2576 __ CompareRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2577 __ j(not_equal, &miss, Label::kNear);
2578 __ LoadRoot(eax, Heap::kInstanceofCacheAnswerRootIndex);
2579 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2580 __ bind(&miss);
2581 }
2582
2583 // Get the prototype of the function.
2584 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
2585
2586 // Check that the function prototype is a JS object.
2587 __ JumpIfSmi(prototype, &slow);
2588 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
2589
2590 // Update the global instanceof or call site inlined cache with the current
2591 // map and function. The cached answer will be set when it is known below.
2592 if (!HasCallSiteInlineCheck()) {
2593 __ StoreRoot(map, scratch, Heap::kInstanceofCacheMapRootIndex);
2594 __ StoreRoot(function, scratch, Heap::kInstanceofCacheFunctionRootIndex);
2595 } else {
2596 // The constants for the code patching are based on no push instructions
2597 // at the call site.
2598 DCHECK(HasArgsInRegisters());
2599 // Get return address and delta to inlined map check.
2600 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2601 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2602 if (FLAG_debug_code) {
2603 __ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1);
2604 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp1);
2605 __ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2);
2606 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheCmp2);
2607 }
2608 __ mov(scratch, Operand(scratch, kDeltaToCmpImmediate));
2609 __ mov(Operand(scratch, 0), map);
2610 }
2611
2612 // Loop through the prototype chain of the object looking for the function
2613 // prototype.
2614 __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
2615 Label loop, is_instance, is_not_instance;
2616 __ bind(&loop);
2617 __ cmp(scratch, prototype);
2618 __ j(equal, &is_instance, Label::kNear);
2619 Factory* factory = isolate()->factory();
2620 __ cmp(scratch, Immediate(factory->null_value()));
2621 __ j(equal, &is_not_instance, Label::kNear);
2622 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
2623 __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
2624 __ jmp(&loop);
2625
2626 __ bind(&is_instance);
2627 if (!HasCallSiteInlineCheck()) {
2628 __ mov(eax, Immediate(0));
2629 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2630 if (ReturnTrueFalseObject()) {
2631 __ mov(eax, factory->true_value());
2632 }
2633 } else {
2634 // Get return address and delta to inlined map check.
2635 __ mov(eax, factory->true_value());
2636 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2637 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2638 if (FLAG_debug_code) {
2639 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2640 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2641 }
2642 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2643 if (!ReturnTrueFalseObject()) {
2644 __ Move(eax, Immediate(0));
2645 }
2646 }
2647 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2648
2649 __ bind(&is_not_instance);
2650 if (!HasCallSiteInlineCheck()) {
2651 __ mov(eax, Immediate(Smi::FromInt(1)));
2652 __ StoreRoot(eax, scratch, Heap::kInstanceofCacheAnswerRootIndex);
2653 if (ReturnTrueFalseObject()) {
2654 __ mov(eax, factory->false_value());
2655 }
2656 } else {
2657 // Get return address and delta to inlined map check.
2658 __ mov(eax, factory->false_value());
2659 __ mov(scratch, Operand(esp, 0 * kPointerSize));
2660 __ sub(scratch, Operand(esp, 1 * kPointerSize));
2661 if (FLAG_debug_code) {
2662 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
2663 __ Assert(equal, kInstanceofStubUnexpectedCallSiteCacheMov);
2664 }
2665 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
2666 if (!ReturnTrueFalseObject()) {
2667 __ Move(eax, Immediate(Smi::FromInt(1)));
2668 }
2669 }
2670 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2671
2672 Label object_not_null, object_not_null_or_smi;
2673 __ bind(¬_js_object);
2674 // Before null, smi and string value checks, check that the rhs is a function
2675 // as for a non-function rhs an exception needs to be thrown.
2676 __ JumpIfSmi(function, &slow, Label::kNear);
2677 __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
2678 __ j(not_equal, &slow, Label::kNear);
2679
2680 // Null is not instance of anything.
2681 __ cmp(object, factory->null_value());
2682 __ j(not_equal, &object_not_null, Label::kNear);
2683 if (ReturnTrueFalseObject()) {
2684 __ mov(eax, factory->false_value());
2685 } else {
2686 __ Move(eax, Immediate(Smi::FromInt(1)));
2687 }
2688 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2689
2690 __ bind(&object_not_null);
2691 // Smi values is not instance of anything.
2692 __ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear);
2693 if (ReturnTrueFalseObject()) {
2694 __ mov(eax, factory->false_value());
2695 } else {
2696 __ Move(eax, Immediate(Smi::FromInt(1)));
2697 }
2698 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2699
2700 __ bind(&object_not_null_or_smi);
2701 // String values is not instance of anything.
2702 Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
2703 __ j(NegateCondition(is_string), &slow, Label::kNear);
2704 if (ReturnTrueFalseObject()) {
2705 __ mov(eax, factory->false_value());
2706 } else {
2707 __ Move(eax, Immediate(Smi::FromInt(1)));
2708 }
2709 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2710
2711 // Slow-case: Go through the JavaScript implementation.
2712 __ bind(&slow);
2713 if (!ReturnTrueFalseObject()) {
2714 // Tail call the builtin which returns 0 or 1.
2715 if (HasArgsInRegisters()) {
2716 // Push arguments below return address.
2717 __ pop(scratch);
2718 __ push(object);
2719 __ push(function);
2720 __ push(scratch);
2721 }
2722 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
2723 } else {
2724 // Call the builtin and convert 0/1 to true/false.
2725 {
2726 FrameScope scope(masm, StackFrame::INTERNAL);
2727 __ push(object);
2728 __ push(function);
2729 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
2730 }
2731 Label true_value, done;
2732 __ test(eax, eax);
2733 __ j(zero, &true_value, Label::kNear);
2734 __ mov(eax, factory->false_value());
2735 __ jmp(&done, Label::kNear);
2736 __ bind(&true_value);
2737 __ mov(eax, factory->true_value());
2738 __ bind(&done);
2739 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
2740 }
2741 }
2742
2743
2744 // -------------------------------------------------------------------------
2745 // StringCharCodeAtGenerator
2746
GenerateFast(MacroAssembler * masm)2747 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2748 // If the receiver is a smi trigger the non-string case.
2749 STATIC_ASSERT(kSmiTag == 0);
2750 __ JumpIfSmi(object_, receiver_not_string_);
2751
2752 // Fetch the instance type of the receiver into result register.
2753 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2754 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2755 // If the receiver is not a string trigger the non-string case.
2756 __ test(result_, Immediate(kIsNotStringMask));
2757 __ j(not_zero, receiver_not_string_);
2758
2759 // If the index is non-smi trigger the non-smi case.
2760 STATIC_ASSERT(kSmiTag == 0);
2761 __ JumpIfNotSmi(index_, &index_not_smi_);
2762 __ bind(&got_smi_index_);
2763
2764 // Check for index out of range.
2765 __ cmp(index_, FieldOperand(object_, String::kLengthOffset));
2766 __ j(above_equal, index_out_of_range_);
2767
2768 __ SmiUntag(index_);
2769
2770 Factory* factory = masm->isolate()->factory();
2771 StringCharLoadGenerator::Generate(
2772 masm, factory, object_, index_, result_, &call_runtime_);
2773
2774 __ SmiTag(result_);
2775 __ bind(&exit_);
2776 }
2777
2778
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)2779 void StringCharCodeAtGenerator::GenerateSlow(
2780 MacroAssembler* masm,
2781 const RuntimeCallHelper& call_helper) {
2782 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2783
2784 // Index is not a smi.
2785 __ bind(&index_not_smi_);
2786 // If index is a heap number, try converting it to an integer.
2787 __ CheckMap(index_,
2788 masm->isolate()->factory()->heap_number_map(),
2789 index_not_number_,
2790 DONT_DO_SMI_CHECK);
2791 call_helper.BeforeCall(masm);
2792 __ push(object_);
2793 __ push(index_); // Consumed by runtime conversion function.
2794 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2795 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2796 } else {
2797 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2798 // NumberToSmi discards numbers that are not exact integers.
2799 __ CallRuntime(Runtime::kNumberToSmi, 1);
2800 }
2801 if (!index_.is(eax)) {
2802 // Save the conversion result before the pop instructions below
2803 // have a chance to overwrite it.
2804 __ mov(index_, eax);
2805 }
2806 __ pop(object_);
2807 // Reload the instance type.
2808 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
2809 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
2810 call_helper.AfterCall(masm);
2811 // If index is still not a smi, it must be out of range.
2812 STATIC_ASSERT(kSmiTag == 0);
2813 __ JumpIfNotSmi(index_, index_out_of_range_);
2814 // Otherwise, return to the fast path.
2815 __ jmp(&got_smi_index_);
2816
2817 // Call runtime. We get here when the receiver is a string and the
2818 // index is a number, but the code of getting the actual character
2819 // is too complex (e.g., when the string needs to be flattened).
2820 __ bind(&call_runtime_);
2821 call_helper.BeforeCall(masm);
2822 __ push(object_);
2823 __ SmiTag(index_);
2824 __ push(index_);
2825 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
2826 if (!result_.is(eax)) {
2827 __ mov(result_, eax);
2828 }
2829 call_helper.AfterCall(masm);
2830 __ jmp(&exit_);
2831
2832 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2833 }
2834
2835
2836 // -------------------------------------------------------------------------
2837 // StringCharFromCodeGenerator
2838
GenerateFast(MacroAssembler * masm)2839 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2840 // Fast case of Heap::LookupSingleCharacterStringFromCode.
2841 STATIC_ASSERT(kSmiTag == 0);
2842 STATIC_ASSERT(kSmiShiftSize == 0);
2843 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
2844 __ test(code_,
2845 Immediate(kSmiTagMask |
2846 ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
2847 __ j(not_zero, &slow_case_);
2848
2849 Factory* factory = masm->isolate()->factory();
2850 __ Move(result_, Immediate(factory->single_character_string_cache()));
2851 STATIC_ASSERT(kSmiTag == 0);
2852 STATIC_ASSERT(kSmiTagSize == 1);
2853 STATIC_ASSERT(kSmiShiftSize == 0);
2854 // At this point code register contains smi tagged one byte char code.
2855 __ mov(result_, FieldOperand(result_,
2856 code_, times_half_pointer_size,
2857 FixedArray::kHeaderSize));
2858 __ cmp(result_, factory->undefined_value());
2859 __ j(equal, &slow_case_);
2860 __ bind(&exit_);
2861 }
2862
2863
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)2864 void StringCharFromCodeGenerator::GenerateSlow(
2865 MacroAssembler* masm,
2866 const RuntimeCallHelper& call_helper) {
2867 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2868
2869 __ bind(&slow_case_);
2870 call_helper.BeforeCall(masm);
2871 __ push(code_);
2872 __ CallRuntime(Runtime::kCharFromCode, 1);
2873 if (!result_.is(eax)) {
2874 __ mov(result_, eax);
2875 }
2876 call_helper.AfterCall(masm);
2877 __ jmp(&exit_);
2878
2879 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2880 }
2881
2882
GenerateCopyCharacters(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch,String::Encoding encoding)2883 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
2884 Register dest,
2885 Register src,
2886 Register count,
2887 Register scratch,
2888 String::Encoding encoding) {
2889 DCHECK(!scratch.is(dest));
2890 DCHECK(!scratch.is(src));
2891 DCHECK(!scratch.is(count));
2892
2893 // Nothing to do for zero characters.
2894 Label done;
2895 __ test(count, count);
2896 __ j(zero, &done);
2897
2898 // Make count the number of bytes to copy.
2899 if (encoding == String::TWO_BYTE_ENCODING) {
2900 __ shl(count, 1);
2901 }
2902
2903 Label loop;
2904 __ bind(&loop);
2905 __ mov_b(scratch, Operand(src, 0));
2906 __ mov_b(Operand(dest, 0), scratch);
2907 __ inc(src);
2908 __ inc(dest);
2909 __ dec(count);
2910 __ j(not_zero, &loop);
2911
2912 __ bind(&done);
2913 }
2914
2915
Generate(MacroAssembler * masm)2916 void SubStringStub::Generate(MacroAssembler* masm) {
2917 Label runtime;
2918
2919 // Stack frame on entry.
2920 // esp[0]: return address
2921 // esp[4]: to
2922 // esp[8]: from
2923 // esp[12]: string
2924
2925 // Make sure first argument is a string.
2926 __ mov(eax, Operand(esp, 3 * kPointerSize));
2927 STATIC_ASSERT(kSmiTag == 0);
2928 __ JumpIfSmi(eax, &runtime);
2929 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
2930 __ j(NegateCondition(is_string), &runtime);
2931
2932 // eax: string
2933 // ebx: instance type
2934
2935 // Calculate length of sub string using the smi values.
2936 __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
2937 __ JumpIfNotSmi(ecx, &runtime);
2938 __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index.
2939 __ JumpIfNotSmi(edx, &runtime);
2940 __ sub(ecx, edx);
2941 __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
2942 Label not_original_string;
2943 // Shorter than original string's length: an actual substring.
2944 __ j(below, ¬_original_string, Label::kNear);
2945 // Longer than original string's length or negative: unsafe arguments.
2946 __ j(above, &runtime);
2947 // Return original string.
2948 Counters* counters = isolate()->counters();
2949 __ IncrementCounter(counters->sub_string_native(), 1);
2950 __ ret(3 * kPointerSize);
2951 __ bind(¬_original_string);
2952
2953 Label single_char;
2954 __ cmp(ecx, Immediate(Smi::FromInt(1)));
2955 __ j(equal, &single_char);
2956
2957 // eax: string
2958 // ebx: instance type
2959 // ecx: sub string length (smi)
2960 // edx: from index (smi)
2961 // Deal with different string types: update the index if necessary
2962 // and put the underlying string into edi.
2963 Label underlying_unpacked, sliced_string, seq_or_external_string;
2964 // If the string is not indirect, it can only be sequential or external.
2965 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
2966 STATIC_ASSERT(kIsIndirectStringMask != 0);
2967 __ test(ebx, Immediate(kIsIndirectStringMask));
2968 __ j(zero, &seq_or_external_string, Label::kNear);
2969
2970 Factory* factory = isolate()->factory();
2971 __ test(ebx, Immediate(kSlicedNotConsMask));
2972 __ j(not_zero, &sliced_string, Label::kNear);
2973 // Cons string. Check whether it is flat, then fetch first part.
2974 // Flat cons strings have an empty second part.
2975 __ cmp(FieldOperand(eax, ConsString::kSecondOffset),
2976 factory->empty_string());
2977 __ j(not_equal, &runtime);
2978 __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset));
2979 // Update instance type.
2980 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
2981 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
2982 __ jmp(&underlying_unpacked, Label::kNear);
2983
2984 __ bind(&sliced_string);
2985 // Sliced string. Fetch parent and adjust start index by offset.
2986 __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset));
2987 __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset));
2988 // Update instance type.
2989 __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset));
2990 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
2991 __ jmp(&underlying_unpacked, Label::kNear);
2992
2993 __ bind(&seq_or_external_string);
2994 // Sequential or external string. Just move string to the expected register.
2995 __ mov(edi, eax);
2996
2997 __ bind(&underlying_unpacked);
2998
2999 if (FLAG_string_slices) {
3000 Label copy_routine;
3001 // edi: underlying subject string
3002 // ebx: instance type of underlying subject string
3003 // edx: adjusted start index (smi)
3004 // ecx: length (smi)
3005 __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength)));
3006 // Short slice. Copy instead of slicing.
3007 __ j(less, ©_routine);
3008 // Allocate new sliced string. At this point we do not reload the instance
3009 // type including the string encoding because we simply rely on the info
3010 // provided by the original string. It does not matter if the original
3011 // string's encoding is wrong because we always have to recheck encoding of
3012 // the newly created string's parent anyways due to externalized strings.
3013 Label two_byte_slice, set_slice_header;
3014 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3015 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3016 __ test(ebx, Immediate(kStringEncodingMask));
3017 __ j(zero, &two_byte_slice, Label::kNear);
3018 __ AllocateOneByteSlicedString(eax, ebx, no_reg, &runtime);
3019 __ jmp(&set_slice_header, Label::kNear);
3020 __ bind(&two_byte_slice);
3021 __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime);
3022 __ bind(&set_slice_header);
3023 __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx);
3024 __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset),
3025 Immediate(String::kEmptyHashField));
3026 __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi);
3027 __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx);
3028 __ IncrementCounter(counters->sub_string_native(), 1);
3029 __ ret(3 * kPointerSize);
3030
3031 __ bind(©_routine);
3032 }
3033
3034 // edi: underlying subject string
3035 // ebx: instance type of underlying subject string
3036 // edx: adjusted start index (smi)
3037 // ecx: length (smi)
3038 // The subject string can only be external or sequential string of either
3039 // encoding at this point.
3040 Label two_byte_sequential, runtime_drop_two, sequential_string;
3041 STATIC_ASSERT(kExternalStringTag != 0);
3042 STATIC_ASSERT(kSeqStringTag == 0);
3043 __ test_b(ebx, kExternalStringTag);
3044 __ j(zero, &sequential_string);
3045
3046 // Handle external string.
3047 // Rule out short external strings.
3048 STATIC_ASSERT(kShortExternalStringTag != 0);
3049 __ test_b(ebx, kShortExternalStringMask);
3050 __ j(not_zero, &runtime);
3051 __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset));
3052 // Move the pointer so that offset-wise, it looks like a sequential string.
3053 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3054 __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3055
3056 __ bind(&sequential_string);
3057 // Stash away (adjusted) index and (underlying) string.
3058 __ push(edx);
3059 __ push(edi);
3060 __ SmiUntag(ecx);
3061 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3062 __ test_b(ebx, kStringEncodingMask);
3063 __ j(zero, &two_byte_sequential);
3064
3065 // Sequential one byte string. Allocate the result.
3066 __ AllocateOneByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
3067
3068 // eax: result string
3069 // ecx: result string length
3070 // Locate first character of result.
3071 __ mov(edi, eax);
3072 __ add(edi, Immediate(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3073 // Load string argument and locate character of sub string start.
3074 __ pop(edx);
3075 __ pop(ebx);
3076 __ SmiUntag(ebx);
3077 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqOneByteString::kHeaderSize));
3078
3079 // eax: result string
3080 // ecx: result length
3081 // edi: first character of result
3082 // edx: character of sub string start
3083 StringHelper::GenerateCopyCharacters(
3084 masm, edi, edx, ecx, ebx, String::ONE_BYTE_ENCODING);
3085 __ IncrementCounter(counters->sub_string_native(), 1);
3086 __ ret(3 * kPointerSize);
3087
3088 __ bind(&two_byte_sequential);
3089 // Sequential two-byte string. Allocate the result.
3090 __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two);
3091
3092 // eax: result string
3093 // ecx: result string length
3094 // Locate first character of result.
3095 __ mov(edi, eax);
3096 __ add(edi,
3097 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3098 // Load string argument and locate character of sub string start.
3099 __ pop(edx);
3100 __ pop(ebx);
3101 // As from is a smi it is 2 times the value which matches the size of a two
3102 // byte character.
3103 STATIC_ASSERT(kSmiTag == 0);
3104 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
3105 __ lea(edx, FieldOperand(edx, ebx, times_1, SeqTwoByteString::kHeaderSize));
3106
3107 // eax: result string
3108 // ecx: result length
3109 // edi: first character of result
3110 // edx: character of sub string start
3111 StringHelper::GenerateCopyCharacters(
3112 masm, edi, edx, ecx, ebx, String::TWO_BYTE_ENCODING);
3113 __ IncrementCounter(counters->sub_string_native(), 1);
3114 __ ret(3 * kPointerSize);
3115
3116 // Drop pushed values on the stack before tail call.
3117 __ bind(&runtime_drop_two);
3118 __ Drop(2);
3119
3120 // Just jump to runtime to create the sub string.
3121 __ bind(&runtime);
3122 __ TailCallRuntime(Runtime::kSubString, 3, 1);
3123
3124 __ bind(&single_char);
3125 // eax: string
3126 // ebx: instance type
3127 // ecx: sub string length (smi)
3128 // edx: from index (smi)
3129 StringCharAtGenerator generator(
3130 eax, edx, ecx, eax, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
3131 generator.GenerateFast(masm);
3132 __ ret(3 * kPointerSize);
3133 generator.SkipSlow(masm, &runtime);
3134 }
3135
3136
GenerateFlatOneByteStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2)3137 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
3138 Register left,
3139 Register right,
3140 Register scratch1,
3141 Register scratch2) {
3142 Register length = scratch1;
3143
3144 // Compare lengths.
3145 Label strings_not_equal, check_zero_length;
3146 __ mov(length, FieldOperand(left, String::kLengthOffset));
3147 __ cmp(length, FieldOperand(right, String::kLengthOffset));
3148 __ j(equal, &check_zero_length, Label::kNear);
3149 __ bind(&strings_not_equal);
3150 __ Move(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
3151 __ ret(0);
3152
3153 // Check if the length is zero.
3154 Label compare_chars;
3155 __ bind(&check_zero_length);
3156 STATIC_ASSERT(kSmiTag == 0);
3157 __ test(length, length);
3158 __ j(not_zero, &compare_chars, Label::kNear);
3159 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3160 __ ret(0);
3161
3162 // Compare characters.
3163 __ bind(&compare_chars);
3164 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
3165 &strings_not_equal, Label::kNear);
3166
3167 // Characters are equal.
3168 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3169 __ ret(0);
3170 }
3171
3172
GenerateCompareFlatOneByteStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)3173 void StringHelper::GenerateCompareFlatOneByteStrings(
3174 MacroAssembler* masm, Register left, Register right, Register scratch1,
3175 Register scratch2, Register scratch3) {
3176 Counters* counters = masm->isolate()->counters();
3177 __ IncrementCounter(counters->string_compare_native(), 1);
3178
3179 // Find minimum length.
3180 Label left_shorter;
3181 __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
3182 __ mov(scratch3, scratch1);
3183 __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
3184
3185 Register length_delta = scratch3;
3186
3187 __ j(less_equal, &left_shorter, Label::kNear);
3188 // Right string is shorter. Change scratch1 to be length of right string.
3189 __ sub(scratch1, length_delta);
3190 __ bind(&left_shorter);
3191
3192 Register min_length = scratch1;
3193
3194 // If either length is zero, just compare lengths.
3195 Label compare_lengths;
3196 __ test(min_length, min_length);
3197 __ j(zero, &compare_lengths, Label::kNear);
3198
3199 // Compare characters.
3200 Label result_not_equal;
3201 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3202 &result_not_equal, Label::kNear);
3203
3204 // Compare lengths - strings up to min-length are equal.
3205 __ bind(&compare_lengths);
3206 __ test(length_delta, length_delta);
3207 Label length_not_equal;
3208 __ j(not_zero, &length_not_equal, Label::kNear);
3209
3210 // Result is EQUAL.
3211 STATIC_ASSERT(EQUAL == 0);
3212 STATIC_ASSERT(kSmiTag == 0);
3213 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3214 __ ret(0);
3215
3216 Label result_greater;
3217 Label result_less;
3218 __ bind(&length_not_equal);
3219 __ j(greater, &result_greater, Label::kNear);
3220 __ jmp(&result_less, Label::kNear);
3221 __ bind(&result_not_equal);
3222 __ j(above, &result_greater, Label::kNear);
3223 __ bind(&result_less);
3224
3225 // Result is LESS.
3226 __ Move(eax, Immediate(Smi::FromInt(LESS)));
3227 __ ret(0);
3228
3229 // Result is GREATER.
3230 __ bind(&result_greater);
3231 __ Move(eax, Immediate(Smi::FromInt(GREATER)));
3232 __ ret(0);
3233 }
3234
3235
GenerateOneByteCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch,Label * chars_not_equal,Label::Distance chars_not_equal_near)3236 void StringHelper::GenerateOneByteCharsCompareLoop(
3237 MacroAssembler* masm, Register left, Register right, Register length,
3238 Register scratch, Label* chars_not_equal,
3239 Label::Distance chars_not_equal_near) {
3240 // Change index to run from -length to -1 by adding length to string
3241 // start. This means that loop ends when index reaches zero, which
3242 // doesn't need an additional compare.
3243 __ SmiUntag(length);
3244 __ lea(left,
3245 FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
3246 __ lea(right,
3247 FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
3248 __ neg(length);
3249 Register index = length; // index = -length;
3250
3251 // Compare loop.
3252 Label loop;
3253 __ bind(&loop);
3254 __ mov_b(scratch, Operand(left, index, times_1, 0));
3255 __ cmpb(scratch, Operand(right, index, times_1, 0));
3256 __ j(not_equal, chars_not_equal, chars_not_equal_near);
3257 __ inc(index);
3258 __ j(not_zero, &loop);
3259 }
3260
3261
Generate(MacroAssembler * masm)3262 void StringCompareStub::Generate(MacroAssembler* masm) {
3263 Label runtime;
3264
3265 // Stack frame on entry.
3266 // esp[0]: return address
3267 // esp[4]: right string
3268 // esp[8]: left string
3269
3270 __ mov(edx, Operand(esp, 2 * kPointerSize)); // left
3271 __ mov(eax, Operand(esp, 1 * kPointerSize)); // right
3272
3273 Label not_same;
3274 __ cmp(edx, eax);
3275 __ j(not_equal, ¬_same, Label::kNear);
3276 STATIC_ASSERT(EQUAL == 0);
3277 STATIC_ASSERT(kSmiTag == 0);
3278 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3279 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1);
3280 __ ret(2 * kPointerSize);
3281
3282 __ bind(¬_same);
3283
3284 // Check that both objects are sequential one-byte strings.
3285 __ JumpIfNotBothSequentialOneByteStrings(edx, eax, ecx, ebx, &runtime);
3286
3287 // Compare flat one-byte strings.
3288 // Drop arguments from the stack.
3289 __ pop(ecx);
3290 __ add(esp, Immediate(2 * kPointerSize));
3291 __ push(ecx);
3292 StringHelper::GenerateCompareFlatOneByteStrings(masm, edx, eax, ecx, ebx,
3293 edi);
3294
3295 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
3296 // tagged as a small integer.
3297 __ bind(&runtime);
3298 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3299 }
3300
3301
Generate(MacroAssembler * masm)3302 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3303 // ----------- S t a t e -------------
3304 // -- edx : left
3305 // -- eax : right
3306 // -- esp[0] : return address
3307 // -----------------------------------
3308
3309 // Load ecx with the allocation site. We stick an undefined dummy value here
3310 // and replace it with the real allocation site later when we instantiate this
3311 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3312 __ mov(ecx, handle(isolate()->heap()->undefined_value()));
3313
3314 // Make sure that we actually patched the allocation site.
3315 if (FLAG_debug_code) {
3316 __ test(ecx, Immediate(kSmiTagMask));
3317 __ Assert(not_equal, kExpectedAllocationSite);
3318 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
3319 isolate()->factory()->allocation_site_map());
3320 __ Assert(equal, kExpectedAllocationSite);
3321 }
3322
3323 // Tail call into the stub that handles binary operations with allocation
3324 // sites.
3325 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3326 __ TailCallStub(&stub);
3327 }
3328
3329
GenerateSmis(MacroAssembler * masm)3330 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3331 DCHECK(state() == CompareICState::SMI);
3332 Label miss;
3333 __ mov(ecx, edx);
3334 __ or_(ecx, eax);
3335 __ JumpIfNotSmi(ecx, &miss, Label::kNear);
3336
3337 if (GetCondition() == equal) {
3338 // For equality we do not care about the sign of the result.
3339 __ sub(eax, edx);
3340 } else {
3341 Label done;
3342 __ sub(edx, eax);
3343 __ j(no_overflow, &done, Label::kNear);
3344 // Correct sign of result in case of overflow.
3345 __ not_(edx);
3346 __ bind(&done);
3347 __ mov(eax, edx);
3348 }
3349 __ ret(0);
3350
3351 __ bind(&miss);
3352 GenerateMiss(masm);
3353 }
3354
3355
GenerateNumbers(MacroAssembler * masm)3356 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3357 DCHECK(state() == CompareICState::NUMBER);
3358
3359 Label generic_stub;
3360 Label unordered, maybe_undefined1, maybe_undefined2;
3361 Label miss;
3362
3363 if (left() == CompareICState::SMI) {
3364 __ JumpIfNotSmi(edx, &miss);
3365 }
3366 if (right() == CompareICState::SMI) {
3367 __ JumpIfNotSmi(eax, &miss);
3368 }
3369
3370 // Load left and right operand.
3371 Label done, left, left_smi, right_smi;
3372 __ JumpIfSmi(eax, &right_smi, Label::kNear);
3373 __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
3374 isolate()->factory()->heap_number_map());
3375 __ j(not_equal, &maybe_undefined1, Label::kNear);
3376 __ movsd(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
3377 __ jmp(&left, Label::kNear);
3378 __ bind(&right_smi);
3379 __ mov(ecx, eax); // Can't clobber eax because we can still jump away.
3380 __ SmiUntag(ecx);
3381 __ Cvtsi2sd(xmm1, ecx);
3382
3383 __ bind(&left);
3384 __ JumpIfSmi(edx, &left_smi, Label::kNear);
3385 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
3386 isolate()->factory()->heap_number_map());
3387 __ j(not_equal, &maybe_undefined2, Label::kNear);
3388 __ movsd(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
3389 __ jmp(&done);
3390 __ bind(&left_smi);
3391 __ mov(ecx, edx); // Can't clobber edx because we can still jump away.
3392 __ SmiUntag(ecx);
3393 __ Cvtsi2sd(xmm0, ecx);
3394
3395 __ bind(&done);
3396 // Compare operands.
3397 __ ucomisd(xmm0, xmm1);
3398
3399 // Don't base result on EFLAGS when a NaN is involved.
3400 __ j(parity_even, &unordered, Label::kNear);
3401
3402 // Return a result of -1, 0, or 1, based on EFLAGS.
3403 // Performing mov, because xor would destroy the flag register.
3404 __ mov(eax, 0); // equal
3405 __ mov(ecx, Immediate(Smi::FromInt(1)));
3406 __ cmov(above, eax, ecx);
3407 __ mov(ecx, Immediate(Smi::FromInt(-1)));
3408 __ cmov(below, eax, ecx);
3409 __ ret(0);
3410
3411 __ bind(&unordered);
3412 __ bind(&generic_stub);
3413 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
3414 CompareICState::GENERIC, CompareICState::GENERIC);
3415 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
3416
3417 __ bind(&maybe_undefined1);
3418 if (Token::IsOrderedRelationalCompareOp(op())) {
3419 __ cmp(eax, Immediate(isolate()->factory()->undefined_value()));
3420 __ j(not_equal, &miss);
3421 __ JumpIfSmi(edx, &unordered);
3422 __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
3423 __ j(not_equal, &maybe_undefined2, Label::kNear);
3424 __ jmp(&unordered);
3425 }
3426
3427 __ bind(&maybe_undefined2);
3428 if (Token::IsOrderedRelationalCompareOp(op())) {
3429 __ cmp(edx, Immediate(isolate()->factory()->undefined_value()));
3430 __ j(equal, &unordered);
3431 }
3432
3433 __ bind(&miss);
3434 GenerateMiss(masm);
3435 }
3436
3437
GenerateInternalizedStrings(MacroAssembler * masm)3438 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3439 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3440 DCHECK(GetCondition() == equal);
3441
3442 // Registers containing left and right operands respectively.
3443 Register left = edx;
3444 Register right = eax;
3445 Register tmp1 = ecx;
3446 Register tmp2 = ebx;
3447
3448 // Check that both operands are heap objects.
3449 Label miss;
3450 __ mov(tmp1, left);
3451 STATIC_ASSERT(kSmiTag == 0);
3452 __ and_(tmp1, right);
3453 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3454
3455 // Check that both operands are internalized strings.
3456 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3457 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3458 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3459 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3460 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3461 __ or_(tmp1, tmp2);
3462 __ test(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
3463 __ j(not_zero, &miss, Label::kNear);
3464
3465 // Internalized strings are compared by identity.
3466 Label done;
3467 __ cmp(left, right);
3468 // Make sure eax is non-zero. At this point input operands are
3469 // guaranteed to be non-zero.
3470 DCHECK(right.is(eax));
3471 __ j(not_equal, &done, Label::kNear);
3472 STATIC_ASSERT(EQUAL == 0);
3473 STATIC_ASSERT(kSmiTag == 0);
3474 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3475 __ bind(&done);
3476 __ ret(0);
3477
3478 __ bind(&miss);
3479 GenerateMiss(masm);
3480 }
3481
3482
GenerateUniqueNames(MacroAssembler * masm)3483 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3484 DCHECK(state() == CompareICState::UNIQUE_NAME);
3485 DCHECK(GetCondition() == equal);
3486
3487 // Registers containing left and right operands respectively.
3488 Register left = edx;
3489 Register right = eax;
3490 Register tmp1 = ecx;
3491 Register tmp2 = ebx;
3492
3493 // Check that both operands are heap objects.
3494 Label miss;
3495 __ mov(tmp1, left);
3496 STATIC_ASSERT(kSmiTag == 0);
3497 __ and_(tmp1, right);
3498 __ JumpIfSmi(tmp1, &miss, Label::kNear);
3499
3500 // Check that both operands are unique names. This leaves the instance
3501 // types loaded in tmp1 and tmp2.
3502 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3503 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3504 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3505 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3506
3507 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
3508 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
3509
3510 // Unique names are compared by identity.
3511 Label done;
3512 __ cmp(left, right);
3513 // Make sure eax is non-zero. At this point input operands are
3514 // guaranteed to be non-zero.
3515 DCHECK(right.is(eax));
3516 __ j(not_equal, &done, Label::kNear);
3517 STATIC_ASSERT(EQUAL == 0);
3518 STATIC_ASSERT(kSmiTag == 0);
3519 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3520 __ bind(&done);
3521 __ ret(0);
3522
3523 __ bind(&miss);
3524 GenerateMiss(masm);
3525 }
3526
3527
GenerateStrings(MacroAssembler * masm)3528 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3529 DCHECK(state() == CompareICState::STRING);
3530 Label miss;
3531
3532 bool equality = Token::IsEqualityOp(op());
3533
3534 // Registers containing left and right operands respectively.
3535 Register left = edx;
3536 Register right = eax;
3537 Register tmp1 = ecx;
3538 Register tmp2 = ebx;
3539 Register tmp3 = edi;
3540
3541 // Check that both operands are heap objects.
3542 __ mov(tmp1, left);
3543 STATIC_ASSERT(kSmiTag == 0);
3544 __ and_(tmp1, right);
3545 __ JumpIfSmi(tmp1, &miss);
3546
3547 // Check that both operands are strings. This leaves the instance
3548 // types loaded in tmp1 and tmp2.
3549 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
3550 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
3551 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
3552 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
3553 __ mov(tmp3, tmp1);
3554 STATIC_ASSERT(kNotStringTag != 0);
3555 __ or_(tmp3, tmp2);
3556 __ test(tmp3, Immediate(kIsNotStringMask));
3557 __ j(not_zero, &miss);
3558
3559 // Fast check for identical strings.
3560 Label not_same;
3561 __ cmp(left, right);
3562 __ j(not_equal, ¬_same, Label::kNear);
3563 STATIC_ASSERT(EQUAL == 0);
3564 STATIC_ASSERT(kSmiTag == 0);
3565 __ Move(eax, Immediate(Smi::FromInt(EQUAL)));
3566 __ ret(0);
3567
3568 // Handle not identical strings.
3569 __ bind(¬_same);
3570
3571 // Check that both strings are internalized. If they are, we're done
3572 // because we already know they are not identical. But in the case of
3573 // non-equality compare, we still need to determine the order. We
3574 // also know they are both strings.
3575 if (equality) {
3576 Label do_compare;
3577 STATIC_ASSERT(kInternalizedTag == 0);
3578 __ or_(tmp1, tmp2);
3579 __ test(tmp1, Immediate(kIsNotInternalizedMask));
3580 __ j(not_zero, &do_compare, Label::kNear);
3581 // Make sure eax is non-zero. At this point input operands are
3582 // guaranteed to be non-zero.
3583 DCHECK(right.is(eax));
3584 __ ret(0);
3585 __ bind(&do_compare);
3586 }
3587
3588 // Check that both strings are sequential one-byte.
3589 Label runtime;
3590 __ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
3591
3592 // Compare flat one byte strings. Returns when done.
3593 if (equality) {
3594 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
3595 tmp2);
3596 } else {
3597 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3598 tmp2, tmp3);
3599 }
3600
3601 // Handle more complex cases in runtime.
3602 __ bind(&runtime);
3603 __ pop(tmp1); // Return address.
3604 __ push(left);
3605 __ push(right);
3606 __ push(tmp1);
3607 if (equality) {
3608 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3609 } else {
3610 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3611 }
3612
3613 __ bind(&miss);
3614 GenerateMiss(masm);
3615 }
3616
3617
GenerateObjects(MacroAssembler * masm)3618 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3619 DCHECK(state() == CompareICState::OBJECT);
3620 Label miss;
3621 __ mov(ecx, edx);
3622 __ and_(ecx, eax);
3623 __ JumpIfSmi(ecx, &miss, Label::kNear);
3624
3625 __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
3626 __ j(not_equal, &miss, Label::kNear);
3627 __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
3628 __ j(not_equal, &miss, Label::kNear);
3629
3630 DCHECK(GetCondition() == equal);
3631 __ sub(eax, edx);
3632 __ ret(0);
3633
3634 __ bind(&miss);
3635 GenerateMiss(masm);
3636 }
3637
3638
GenerateKnownObjects(MacroAssembler * masm)3639 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3640 Label miss;
3641 __ mov(ecx, edx);
3642 __ and_(ecx, eax);
3643 __ JumpIfSmi(ecx, &miss, Label::kNear);
3644
3645 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
3646 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
3647 __ cmp(ecx, known_map_);
3648 __ j(not_equal, &miss, Label::kNear);
3649 __ cmp(ebx, known_map_);
3650 __ j(not_equal, &miss, Label::kNear);
3651
3652 __ sub(eax, edx);
3653 __ ret(0);
3654
3655 __ bind(&miss);
3656 GenerateMiss(masm);
3657 }
3658
3659
GenerateMiss(MacroAssembler * masm)3660 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3661 {
3662 // Call the runtime system in a fresh internal frame.
3663 ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
3664 isolate());
3665 FrameScope scope(masm, StackFrame::INTERNAL);
3666 __ push(edx); // Preserve edx and eax.
3667 __ push(eax);
3668 __ push(edx); // And also use them as the arguments.
3669 __ push(eax);
3670 __ push(Immediate(Smi::FromInt(op())));
3671 __ CallExternalReference(miss, 3);
3672 // Compute the entry point of the rewritten stub.
3673 __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
3674 __ pop(eax);
3675 __ pop(edx);
3676 }
3677
3678 // Do a tail call to the rewritten stub.
3679 __ jmp(edi);
3680 }
3681
3682
3683 // Helper function used to check that the dictionary doesn't contain
3684 // the property. This function may return false negatives, so miss_label
3685 // must always call a backup property check that is complete.
3686 // This function is safe to call if the receiver has fast properties.
3687 // Name must be a unique name and receiver must be a heap object.
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register properties,Handle<Name> name,Register r0)3688 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3689 Label* miss,
3690 Label* done,
3691 Register properties,
3692 Handle<Name> name,
3693 Register r0) {
3694 DCHECK(name->IsUniqueName());
3695
3696 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3697 // not equal to the name and kProbes-th slot is not used (its name is the
3698 // undefined value), it guarantees the hash table doesn't contain the
3699 // property. It's true even if some slots represent deleted properties
3700 // (their names are the hole value).
3701 for (int i = 0; i < kInlinedProbes; i++) {
3702 // Compute the masked index: (hash + i + i * i) & mask.
3703 Register index = r0;
3704 // Capacity is smi 2^n.
3705 __ mov(index, FieldOperand(properties, kCapacityOffset));
3706 __ dec(index);
3707 __ and_(index,
3708 Immediate(Smi::FromInt(name->Hash() +
3709 NameDictionary::GetProbeOffset(i))));
3710
3711 // Scale the index by multiplying by the entry size.
3712 DCHECK(NameDictionary::kEntrySize == 3);
3713 __ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
3714 Register entity_name = r0;
3715 // Having undefined at this place means the name is not contained.
3716 DCHECK_EQ(kSmiTagSize, 1);
3717 __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
3718 kElementsStartOffset - kHeapObjectTag));
3719 __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
3720 __ j(equal, done);
3721
3722 // Stop if found the property.
3723 __ cmp(entity_name, Handle<Name>(name));
3724 __ j(equal, miss);
3725
3726 Label good;
3727 // Check for the hole and skip.
3728 __ cmp(entity_name, masm->isolate()->factory()->the_hole_value());
3729 __ j(equal, &good, Label::kNear);
3730
3731 // Check if the entry name is not a unique name.
3732 __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
3733 __ JumpIfNotUniqueNameInstanceType(
3734 FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
3735 __ bind(&good);
3736 }
3737
3738 NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
3739 NEGATIVE_LOOKUP);
3740 __ push(Immediate(Handle<Object>(name)));
3741 __ push(Immediate(name->Hash()));
3742 __ CallStub(&stub);
3743 __ test(r0, r0);
3744 __ j(not_zero, miss);
3745 __ jmp(done);
3746 }
3747
3748
3749 // Probe the name dictionary in the |elements| register. Jump to the
3750 // |done| label if a property with the given name is found leaving the
3751 // index into the dictionary in |r0|. Jump to the |miss| label
3752 // otherwise.
GeneratePositiveLookup(MacroAssembler * masm,Label * miss,Label * done,Register elements,Register name,Register r0,Register r1)3753 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3754 Label* miss,
3755 Label* done,
3756 Register elements,
3757 Register name,
3758 Register r0,
3759 Register r1) {
3760 DCHECK(!elements.is(r0));
3761 DCHECK(!elements.is(r1));
3762 DCHECK(!name.is(r0));
3763 DCHECK(!name.is(r1));
3764
3765 __ AssertName(name);
3766
3767 __ mov(r1, FieldOperand(elements, kCapacityOffset));
3768 __ shr(r1, kSmiTagSize); // convert smi to int
3769 __ dec(r1);
3770
3771 // Generate an unrolled loop that performs a few probes before
3772 // giving up. Measurements done on Gmail indicate that 2 probes
3773 // cover ~93% of loads from dictionaries.
3774 for (int i = 0; i < kInlinedProbes; i++) {
3775 // Compute the masked index: (hash + i + i * i) & mask.
3776 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
3777 __ shr(r0, Name::kHashShift);
3778 if (i > 0) {
3779 __ add(r0, Immediate(NameDictionary::GetProbeOffset(i)));
3780 }
3781 __ and_(r0, r1);
3782
3783 // Scale the index by multiplying by the entry size.
3784 DCHECK(NameDictionary::kEntrySize == 3);
3785 __ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3
3786
3787 // Check if the key is identical to the name.
3788 __ cmp(name, Operand(elements,
3789 r0,
3790 times_4,
3791 kElementsStartOffset - kHeapObjectTag));
3792 __ j(equal, done);
3793 }
3794
3795 NameDictionaryLookupStub stub(masm->isolate(), elements, r1, r0,
3796 POSITIVE_LOOKUP);
3797 __ push(name);
3798 __ mov(r0, FieldOperand(name, Name::kHashFieldOffset));
3799 __ shr(r0, Name::kHashShift);
3800 __ push(r0);
3801 __ CallStub(&stub);
3802
3803 __ test(r1, r1);
3804 __ j(zero, miss);
3805 __ jmp(done);
3806 }
3807
3808
Generate(MacroAssembler * masm)3809 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
3810 // This stub overrides SometimesSetsUpAFrame() to return false. That means
3811 // we cannot call anything that could cause a GC from this stub.
3812 // Stack frame on entry:
3813 // esp[0 * kPointerSize]: return address.
3814 // esp[1 * kPointerSize]: key's hash.
3815 // esp[2 * kPointerSize]: key.
3816 // Registers:
3817 // dictionary_: NameDictionary to probe.
3818 // result_: used as scratch.
3819 // index_: will hold an index of entry if lookup is successful.
3820 // might alias with result_.
3821 // Returns:
3822 // result_ is zero if lookup failed, non zero otherwise.
3823
3824 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
3825
3826 Register scratch = result();
3827
3828 __ mov(scratch, FieldOperand(dictionary(), kCapacityOffset));
3829 __ dec(scratch);
3830 __ SmiUntag(scratch);
3831 __ push(scratch);
3832
3833 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3834 // not equal to the name and kProbes-th slot is not used (its name is the
3835 // undefined value), it guarantees the hash table doesn't contain the
3836 // property. It's true even if some slots represent deleted properties
3837 // (their names are the null value).
3838 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
3839 // Compute the masked index: (hash + i + i * i) & mask.
3840 __ mov(scratch, Operand(esp, 2 * kPointerSize));
3841 if (i > 0) {
3842 __ add(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
3843 }
3844 __ and_(scratch, Operand(esp, 0));
3845
3846 // Scale the index by multiplying by the entry size.
3847 DCHECK(NameDictionary::kEntrySize == 3);
3848 __ lea(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3.
3849
3850 // Having undefined at this place means the name is not contained.
3851 DCHECK_EQ(kSmiTagSize, 1);
3852 __ mov(scratch, Operand(dictionary(), index(), times_pointer_size,
3853 kElementsStartOffset - kHeapObjectTag));
3854 __ cmp(scratch, isolate()->factory()->undefined_value());
3855 __ j(equal, ¬_in_dictionary);
3856
3857 // Stop if found the property.
3858 __ cmp(scratch, Operand(esp, 3 * kPointerSize));
3859 __ j(equal, &in_dictionary);
3860
3861 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
3862 // If we hit a key that is not a unique name during negative
3863 // lookup we have to bailout as this key might be equal to the
3864 // key we are looking for.
3865
3866 // Check if the entry name is not a unique name.
3867 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
3868 __ JumpIfNotUniqueNameInstanceType(
3869 FieldOperand(scratch, Map::kInstanceTypeOffset),
3870 &maybe_in_dictionary);
3871 }
3872 }
3873
3874 __ bind(&maybe_in_dictionary);
3875 // If we are doing negative lookup then probing failure should be
3876 // treated as a lookup success. For positive lookup probing failure
3877 // should be treated as lookup failure.
3878 if (mode() == POSITIVE_LOOKUP) {
3879 __ mov(result(), Immediate(0));
3880 __ Drop(1);
3881 __ ret(2 * kPointerSize);
3882 }
3883
3884 __ bind(&in_dictionary);
3885 __ mov(result(), Immediate(1));
3886 __ Drop(1);
3887 __ ret(2 * kPointerSize);
3888
3889 __ bind(¬_in_dictionary);
3890 __ mov(result(), Immediate(0));
3891 __ Drop(1);
3892 __ ret(2 * kPointerSize);
3893 }
3894
3895
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)3896 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
3897 Isolate* isolate) {
3898 StoreBufferOverflowStub stub(isolate, kDontSaveFPRegs);
3899 stub.GetCode();
3900 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
3901 stub2.GetCode();
3902 }
3903
3904
3905 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
3906 // the value has just been written into the object, now this stub makes sure
3907 // we keep the GC informed. The word in the object where the value has been
3908 // written is in the address register.
Generate(MacroAssembler * masm)3909 void RecordWriteStub::Generate(MacroAssembler* masm) {
3910 Label skip_to_incremental_noncompacting;
3911 Label skip_to_incremental_compacting;
3912
3913 // The first two instructions are generated with labels so as to get the
3914 // offset fixed up correctly by the bind(Label*) call. We patch it back and
3915 // forth between a compare instructions (a nop in this position) and the
3916 // real branch when we start and stop incremental heap marking.
3917 __ jmp(&skip_to_incremental_noncompacting, Label::kNear);
3918 __ jmp(&skip_to_incremental_compacting, Label::kFar);
3919
3920 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3921 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3922 MacroAssembler::kReturnAtEnd);
3923 } else {
3924 __ ret(0);
3925 }
3926
3927 __ bind(&skip_to_incremental_noncompacting);
3928 GenerateIncremental(masm, INCREMENTAL);
3929
3930 __ bind(&skip_to_incremental_compacting);
3931 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
3932
3933 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
3934 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
3935 masm->set_byte_at(0, kTwoByteNopInstruction);
3936 masm->set_byte_at(2, kFiveByteNopInstruction);
3937 }
3938
3939
GenerateIncremental(MacroAssembler * masm,Mode mode)3940 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3941 regs_.Save(masm);
3942
3943 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3944 Label dont_need_remembered_set;
3945
3946 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
3947 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
3948 regs_.scratch0(),
3949 &dont_need_remembered_set);
3950
3951 __ CheckPageFlag(regs_.object(),
3952 regs_.scratch0(),
3953 1 << MemoryChunk::SCAN_ON_SCAVENGE,
3954 not_zero,
3955 &dont_need_remembered_set);
3956
3957 // First notify the incremental marker if necessary, then update the
3958 // remembered set.
3959 CheckNeedsToInformIncrementalMarker(
3960 masm,
3961 kUpdateRememberedSetOnNoNeedToInformIncrementalMarker,
3962 mode);
3963 InformIncrementalMarker(masm);
3964 regs_.Restore(masm);
3965 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3966 MacroAssembler::kReturnAtEnd);
3967
3968 __ bind(&dont_need_remembered_set);
3969 }
3970
3971 CheckNeedsToInformIncrementalMarker(
3972 masm,
3973 kReturnOnNoNeedToInformIncrementalMarker,
3974 mode);
3975 InformIncrementalMarker(masm);
3976 regs_.Restore(masm);
3977 __ ret(0);
3978 }
3979
3980
InformIncrementalMarker(MacroAssembler * masm)3981 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
3982 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
3983 int argument_count = 3;
3984 __ PrepareCallCFunction(argument_count, regs_.scratch0());
3985 __ mov(Operand(esp, 0 * kPointerSize), regs_.object());
3986 __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot.
3987 __ mov(Operand(esp, 2 * kPointerSize),
3988 Immediate(ExternalReference::isolate_address(isolate())));
3989
3990 AllowExternalCallThatCantCauseGC scope(masm);
3991 __ CallCFunction(
3992 ExternalReference::incremental_marking_record_write_function(isolate()),
3993 argument_count);
3994
3995 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
3996 }
3997
3998
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)3999 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4000 MacroAssembler* masm,
4001 OnNoNeedToInformIncrementalMarker on_no_need,
4002 Mode mode) {
4003 Label object_is_black, need_incremental, need_incremental_pop_object;
4004
4005 __ mov(regs_.scratch0(), Immediate(~Page::kPageAlignmentMask));
4006 __ and_(regs_.scratch0(), regs_.object());
4007 __ mov(regs_.scratch1(),
4008 Operand(regs_.scratch0(),
4009 MemoryChunk::kWriteBarrierCounterOffset));
4010 __ sub(regs_.scratch1(), Immediate(1));
4011 __ mov(Operand(regs_.scratch0(),
4012 MemoryChunk::kWriteBarrierCounterOffset),
4013 regs_.scratch1());
4014 __ j(negative, &need_incremental);
4015
4016 // Let's look at the color of the object: If it is not black we don't have
4017 // to inform the incremental marker.
4018 __ JumpIfBlack(regs_.object(),
4019 regs_.scratch0(),
4020 regs_.scratch1(),
4021 &object_is_black,
4022 Label::kNear);
4023
4024 regs_.Restore(masm);
4025 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4026 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4027 MacroAssembler::kReturnAtEnd);
4028 } else {
4029 __ ret(0);
4030 }
4031
4032 __ bind(&object_is_black);
4033
4034 // Get the value from the slot.
4035 __ mov(regs_.scratch0(), Operand(regs_.address(), 0));
4036
4037 if (mode == INCREMENTAL_COMPACTION) {
4038 Label ensure_not_white;
4039
4040 __ CheckPageFlag(regs_.scratch0(), // Contains value.
4041 regs_.scratch1(), // Scratch.
4042 MemoryChunk::kEvacuationCandidateMask,
4043 zero,
4044 &ensure_not_white,
4045 Label::kNear);
4046
4047 __ CheckPageFlag(regs_.object(),
4048 regs_.scratch1(), // Scratch.
4049 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4050 not_zero,
4051 &ensure_not_white,
4052 Label::kNear);
4053
4054 __ jmp(&need_incremental);
4055
4056 __ bind(&ensure_not_white);
4057 }
4058
4059 // We need an extra register for this, so we push the object register
4060 // temporarily.
4061 __ push(regs_.object());
4062 __ EnsureNotWhite(regs_.scratch0(), // The value.
4063 regs_.scratch1(), // Scratch.
4064 regs_.object(), // Scratch.
4065 &need_incremental_pop_object,
4066 Label::kNear);
4067 __ pop(regs_.object());
4068
4069 regs_.Restore(masm);
4070 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4071 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4072 MacroAssembler::kReturnAtEnd);
4073 } else {
4074 __ ret(0);
4075 }
4076
4077 __ bind(&need_incremental_pop_object);
4078 __ pop(regs_.object());
4079
4080 __ bind(&need_incremental);
4081
4082 // Fall through when we need to inform the incremental marker.
4083 }
4084
4085
Generate(MacroAssembler * masm)4086 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4087 // ----------- S t a t e -------------
4088 // -- eax : element value to store
4089 // -- ecx : element index as smi
4090 // -- esp[0] : return address
4091 // -- esp[4] : array literal index in function
4092 // -- esp[8] : array literal
4093 // clobbers ebx, edx, edi
4094 // -----------------------------------
4095
4096 Label element_done;
4097 Label double_elements;
4098 Label smi_element;
4099 Label slow_elements;
4100 Label slow_elements_from_double;
4101 Label fast_elements;
4102
4103 // Get array literal index, array literal and its map.
4104 __ mov(edx, Operand(esp, 1 * kPointerSize));
4105 __ mov(ebx, Operand(esp, 2 * kPointerSize));
4106 __ mov(edi, FieldOperand(ebx, JSObject::kMapOffset));
4107
4108 __ CheckFastElements(edi, &double_elements);
4109
4110 // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
4111 __ JumpIfSmi(eax, &smi_element);
4112 __ CheckFastSmiElements(edi, &fast_elements, Label::kNear);
4113
4114 // Store into the array literal requires a elements transition. Call into
4115 // the runtime.
4116
4117 __ bind(&slow_elements);
4118 __ pop(edi); // Pop return address and remember to put back later for tail
4119 // call.
4120 __ push(ebx);
4121 __ push(ecx);
4122 __ push(eax);
4123 __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
4124 __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
4125 __ push(edx);
4126 __ push(edi); // Return return address so that tail call returns to right
4127 // place.
4128 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4129
4130 __ bind(&slow_elements_from_double);
4131 __ pop(edx);
4132 __ jmp(&slow_elements);
4133
4134 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4135 __ bind(&fast_elements);
4136 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
4137 __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size,
4138 FixedArrayBase::kHeaderSize));
4139 __ mov(Operand(ecx, 0), eax);
4140 // Update the write barrier for the array store.
4141 __ RecordWrite(ebx, ecx, eax,
4142 kDontSaveFPRegs,
4143 EMIT_REMEMBERED_SET,
4144 OMIT_SMI_CHECK);
4145 __ ret(0);
4146
4147 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4148 // and value is Smi.
4149 __ bind(&smi_element);
4150 __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
4151 __ mov(FieldOperand(ebx, ecx, times_half_pointer_size,
4152 FixedArrayBase::kHeaderSize), eax);
4153 __ ret(0);
4154
4155 // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
4156 __ bind(&double_elements);
4157
4158 __ push(edx);
4159 __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset));
4160 __ StoreNumberToDoubleElements(eax,
4161 edx,
4162 ecx,
4163 edi,
4164 xmm0,
4165 &slow_elements_from_double);
4166 __ pop(edx);
4167 __ ret(0);
4168 }
4169
4170
Generate(MacroAssembler * masm)4171 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4172 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4173 __ call(ces.GetCode(), RelocInfo::CODE_TARGET);
4174 int parameter_count_offset =
4175 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4176 __ mov(ebx, MemOperand(ebp, parameter_count_offset));
4177 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4178 __ pop(ecx);
4179 int additional_offset =
4180 function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
4181 __ lea(esp, MemOperand(esp, ebx, times_pointer_size, additional_offset));
4182 __ jmp(ecx); // Return to IC Miss stub, continuation still on stack.
4183 }
4184
4185
Generate(MacroAssembler * masm)4186 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4187 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4188 VectorLoadStub stub(isolate(), state());
4189 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
4190 }
4191
4192
Generate(MacroAssembler * masm)4193 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4194 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4195 VectorKeyedLoadStub stub(isolate());
4196 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
4197 }
4198
4199
MaybeCallEntryHook(MacroAssembler * masm)4200 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4201 if (masm->isolate()->function_entry_hook() != NULL) {
4202 ProfileEntryHookStub stub(masm->isolate());
4203 masm->CallStub(&stub);
4204 }
4205 }
4206
4207
Generate(MacroAssembler * masm)4208 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4209 // Save volatile registers.
4210 const int kNumSavedRegisters = 3;
4211 __ push(eax);
4212 __ push(ecx);
4213 __ push(edx);
4214
4215 // Calculate and push the original stack pointer.
4216 __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4217 __ push(eax);
4218
4219 // Retrieve our return address and use it to calculate the calling
4220 // function's address.
4221 __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize));
4222 __ sub(eax, Immediate(Assembler::kCallInstructionLength));
4223 __ push(eax);
4224
4225 // Call the entry hook.
4226 DCHECK(isolate()->function_entry_hook() != NULL);
4227 __ call(FUNCTION_ADDR(isolate()->function_entry_hook()),
4228 RelocInfo::RUNTIME_ENTRY);
4229 __ add(esp, Immediate(2 * kPointerSize));
4230
4231 // Restore ecx.
4232 __ pop(edx);
4233 __ pop(ecx);
4234 __ pop(eax);
4235
4236 __ ret(0);
4237 }
4238
4239
4240 template<class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)4241 static void CreateArrayDispatch(MacroAssembler* masm,
4242 AllocationSiteOverrideMode mode) {
4243 if (mode == DISABLE_ALLOCATION_SITES) {
4244 T stub(masm->isolate(),
4245 GetInitialFastElementsKind(),
4246 mode);
4247 __ TailCallStub(&stub);
4248 } else if (mode == DONT_OVERRIDE) {
4249 int last_index = GetSequenceIndexFromFastElementsKind(
4250 TERMINAL_FAST_ELEMENTS_KIND);
4251 for (int i = 0; i <= last_index; ++i) {
4252 Label next;
4253 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4254 __ cmp(edx, kind);
4255 __ j(not_equal, &next);
4256 T stub(masm->isolate(), kind);
4257 __ TailCallStub(&stub);
4258 __ bind(&next);
4259 }
4260
4261 // If we reached this point there is a problem.
4262 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4263 } else {
4264 UNREACHABLE();
4265 }
4266 }
4267
4268
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)4269 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4270 AllocationSiteOverrideMode mode) {
4271 // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4272 // edx - kind (if mode != DISABLE_ALLOCATION_SITES)
4273 // eax - number of arguments
4274 // edi - constructor?
4275 // esp[0] - return address
4276 // esp[4] - last argument
4277 Label normal_sequence;
4278 if (mode == DONT_OVERRIDE) {
4279 DCHECK(FAST_SMI_ELEMENTS == 0);
4280 DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
4281 DCHECK(FAST_ELEMENTS == 2);
4282 DCHECK(FAST_HOLEY_ELEMENTS == 3);
4283 DCHECK(FAST_DOUBLE_ELEMENTS == 4);
4284 DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4285
4286 // is the low bit set? If so, we are holey and that is good.
4287 __ test_b(edx, 1);
4288 __ j(not_zero, &normal_sequence);
4289 }
4290
4291 // look at the first argument
4292 __ mov(ecx, Operand(esp, kPointerSize));
4293 __ test(ecx, ecx);
4294 __ j(zero, &normal_sequence);
4295
4296 if (mode == DISABLE_ALLOCATION_SITES) {
4297 ElementsKind initial = GetInitialFastElementsKind();
4298 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4299
4300 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4301 holey_initial,
4302 DISABLE_ALLOCATION_SITES);
4303 __ TailCallStub(&stub_holey);
4304
4305 __ bind(&normal_sequence);
4306 ArraySingleArgumentConstructorStub stub(masm->isolate(),
4307 initial,
4308 DISABLE_ALLOCATION_SITES);
4309 __ TailCallStub(&stub);
4310 } else if (mode == DONT_OVERRIDE) {
4311 // We are going to create a holey array, but our kind is non-holey.
4312 // Fix kind and retry.
4313 __ inc(edx);
4314
4315 if (FLAG_debug_code) {
4316 Handle<Map> allocation_site_map =
4317 masm->isolate()->factory()->allocation_site_map();
4318 __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map));
4319 __ Assert(equal, kExpectedAllocationSite);
4320 }
4321
4322 // Save the resulting elements kind in type info. We can't just store r3
4323 // in the AllocationSite::transition_info field because elements kind is
4324 // restricted to a portion of the field...upper bits need to be left alone.
4325 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4326 __ add(FieldOperand(ebx, AllocationSite::kTransitionInfoOffset),
4327 Immediate(Smi::FromInt(kFastElementsKindPackedToHoley)));
4328
4329 __ bind(&normal_sequence);
4330 int last_index = GetSequenceIndexFromFastElementsKind(
4331 TERMINAL_FAST_ELEMENTS_KIND);
4332 for (int i = 0; i <= last_index; ++i) {
4333 Label next;
4334 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4335 __ cmp(edx, kind);
4336 __ j(not_equal, &next);
4337 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4338 __ TailCallStub(&stub);
4339 __ bind(&next);
4340 }
4341
4342 // If we reached this point there is a problem.
4343 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4344 } else {
4345 UNREACHABLE();
4346 }
4347 }
4348
4349
4350 template<class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)4351 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4352 int to_index = GetSequenceIndexFromFastElementsKind(
4353 TERMINAL_FAST_ELEMENTS_KIND);
4354 for (int i = 0; i <= to_index; ++i) {
4355 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4356 T stub(isolate, kind);
4357 stub.GetCode();
4358 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4359 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4360 stub1.GetCode();
4361 }
4362 }
4363 }
4364
4365
GenerateStubsAheadOfTime(Isolate * isolate)4366 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4367 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4368 isolate);
4369 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4370 isolate);
4371 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4372 isolate);
4373 }
4374
4375
GenerateStubsAheadOfTime(Isolate * isolate)4376 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4377 Isolate* isolate) {
4378 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4379 for (int i = 0; i < 2; i++) {
4380 // For internal arrays we only need a few things
4381 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4382 stubh1.GetCode();
4383 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4384 stubh2.GetCode();
4385 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4386 stubh3.GetCode();
4387 }
4388 }
4389
4390
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)4391 void ArrayConstructorStub::GenerateDispatchToArrayStub(
4392 MacroAssembler* masm,
4393 AllocationSiteOverrideMode mode) {
4394 if (argument_count() == ANY) {
4395 Label not_zero_case, not_one_case;
4396 __ test(eax, eax);
4397 __ j(not_zero, ¬_zero_case);
4398 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4399
4400 __ bind(¬_zero_case);
4401 __ cmp(eax, 1);
4402 __ j(greater, ¬_one_case);
4403 CreateArrayDispatchOneArgument(masm, mode);
4404
4405 __ bind(¬_one_case);
4406 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4407 } else if (argument_count() == NONE) {
4408 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4409 } else if (argument_count() == ONE) {
4410 CreateArrayDispatchOneArgument(masm, mode);
4411 } else if (argument_count() == MORE_THAN_ONE) {
4412 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4413 } else {
4414 UNREACHABLE();
4415 }
4416 }
4417
4418
Generate(MacroAssembler * masm)4419 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4420 // ----------- S t a t e -------------
4421 // -- eax : argc (only if argument_count() == ANY)
4422 // -- ebx : AllocationSite or undefined
4423 // -- edi : constructor
4424 // -- esp[0] : return address
4425 // -- esp[4] : last argument
4426 // -----------------------------------
4427 if (FLAG_debug_code) {
4428 // The array construct code is only set for the global and natives
4429 // builtin Array functions which always have maps.
4430
4431 // Initial map for the builtin Array function should be a map.
4432 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4433 // Will both indicate a NULL and a Smi.
4434 __ test(ecx, Immediate(kSmiTagMask));
4435 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
4436 __ CmpObjectType(ecx, MAP_TYPE, ecx);
4437 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
4438
4439 // We should either have undefined in ebx or a valid AllocationSite
4440 __ AssertUndefinedOrAllocationSite(ebx);
4441 }
4442
4443 Label no_info;
4444 // If the feedback vector is the undefined value call an array constructor
4445 // that doesn't use AllocationSites.
4446 __ cmp(ebx, isolate()->factory()->undefined_value());
4447 __ j(equal, &no_info);
4448
4449 // Only look at the lower 16 bits of the transition info.
4450 __ mov(edx, FieldOperand(ebx, AllocationSite::kTransitionInfoOffset));
4451 __ SmiUntag(edx);
4452 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4453 __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask));
4454 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4455
4456 __ bind(&no_info);
4457 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4458 }
4459
4460
GenerateCase(MacroAssembler * masm,ElementsKind kind)4461 void InternalArrayConstructorStub::GenerateCase(
4462 MacroAssembler* masm, ElementsKind kind) {
4463 Label not_zero_case, not_one_case;
4464 Label normal_sequence;
4465
4466 __ test(eax, eax);
4467 __ j(not_zero, ¬_zero_case);
4468 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4469 __ TailCallStub(&stub0);
4470
4471 __ bind(¬_zero_case);
4472 __ cmp(eax, 1);
4473 __ j(greater, ¬_one_case);
4474
4475 if (IsFastPackedElementsKind(kind)) {
4476 // We might need to create a holey array
4477 // look at the first argument
4478 __ mov(ecx, Operand(esp, kPointerSize));
4479 __ test(ecx, ecx);
4480 __ j(zero, &normal_sequence);
4481
4482 InternalArraySingleArgumentConstructorStub
4483 stub1_holey(isolate(), GetHoleyElementsKind(kind));
4484 __ TailCallStub(&stub1_holey);
4485 }
4486
4487 __ bind(&normal_sequence);
4488 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4489 __ TailCallStub(&stub1);
4490
4491 __ bind(¬_one_case);
4492 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4493 __ TailCallStub(&stubN);
4494 }
4495
4496
Generate(MacroAssembler * masm)4497 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4498 // ----------- S t a t e -------------
4499 // -- eax : argc
4500 // -- edi : constructor
4501 // -- esp[0] : return address
4502 // -- esp[4] : last argument
4503 // -----------------------------------
4504
4505 if (FLAG_debug_code) {
4506 // The array construct code is only set for the global and natives
4507 // builtin Array functions which always have maps.
4508
4509 // Initial map for the builtin Array function should be a map.
4510 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4511 // Will both indicate a NULL and a Smi.
4512 __ test(ecx, Immediate(kSmiTagMask));
4513 __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
4514 __ CmpObjectType(ecx, MAP_TYPE, ecx);
4515 __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
4516 }
4517
4518 // Figure out the right elements kind
4519 __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
4520
4521 // Load the map's "bit field 2" into |result|. We only need the first byte,
4522 // but the following masking takes care of that anyway.
4523 __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
4524 // Retrieve elements_kind from bit field 2.
4525 __ DecodeField<Map::ElementsKindBits>(ecx);
4526
4527 if (FLAG_debug_code) {
4528 Label done;
4529 __ cmp(ecx, Immediate(FAST_ELEMENTS));
4530 __ j(equal, &done);
4531 __ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
4532 __ Assert(equal,
4533 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4534 __ bind(&done);
4535 }
4536
4537 Label fast_elements_case;
4538 __ cmp(ecx, Immediate(FAST_ELEMENTS));
4539 __ j(equal, &fast_elements_case);
4540 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4541
4542 __ bind(&fast_elements_case);
4543 GenerateCase(masm, FAST_ELEMENTS);
4544 }
4545
4546
Generate(MacroAssembler * masm)4547 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
4548 // ----------- S t a t e -------------
4549 // -- eax : callee
4550 // -- ebx : call_data
4551 // -- ecx : holder
4552 // -- edx : api_function_address
4553 // -- esi : context
4554 // --
4555 // -- esp[0] : return address
4556 // -- esp[4] : last argument
4557 // -- ...
4558 // -- esp[argc * 4] : first argument
4559 // -- esp[(argc + 1) * 4] : receiver
4560 // -----------------------------------
4561
4562 Register callee = eax;
4563 Register call_data = ebx;
4564 Register holder = ecx;
4565 Register api_function_address = edx;
4566 Register return_address = edi;
4567 Register context = esi;
4568
4569 int argc = this->argc();
4570 bool is_store = this->is_store();
4571 bool call_data_undefined = this->call_data_undefined();
4572
4573 typedef FunctionCallbackArguments FCA;
4574
4575 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4576 STATIC_ASSERT(FCA::kCalleeIndex == 5);
4577 STATIC_ASSERT(FCA::kDataIndex == 4);
4578 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4579 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4580 STATIC_ASSERT(FCA::kIsolateIndex == 1);
4581 STATIC_ASSERT(FCA::kHolderIndex == 0);
4582 STATIC_ASSERT(FCA::kArgsLength == 7);
4583
4584 __ pop(return_address);
4585
4586 // context save
4587 __ push(context);
4588 // load context from callee
4589 __ mov(context, FieldOperand(callee, JSFunction::kContextOffset));
4590
4591 // callee
4592 __ push(callee);
4593
4594 // call data
4595 __ push(call_data);
4596
4597 Register scratch = call_data;
4598 if (!call_data_undefined) {
4599 // return value
4600 __ push(Immediate(isolate()->factory()->undefined_value()));
4601 // return value default
4602 __ push(Immediate(isolate()->factory()->undefined_value()));
4603 } else {
4604 // return value
4605 __ push(scratch);
4606 // return value default
4607 __ push(scratch);
4608 }
4609 // isolate
4610 __ push(Immediate(reinterpret_cast<int>(isolate())));
4611 // holder
4612 __ push(holder);
4613
4614 __ mov(scratch, esp);
4615
4616 // return address
4617 __ push(return_address);
4618
4619 // API function gets reference to the v8::Arguments. If CPU profiler
4620 // is enabled wrapper function will be called and we need to pass
4621 // address of the callback as additional parameter, always allocate
4622 // space for it.
4623 const int kApiArgc = 1 + 1;
4624
4625 // Allocate the v8::Arguments structure in the arguments' space since
4626 // it's not controlled by GC.
4627 const int kApiStackSpace = 4;
4628
4629 __ PrepareCallApiFunction(kApiArgc + kApiStackSpace);
4630
4631 // FunctionCallbackInfo::implicit_args_.
4632 __ mov(ApiParameterOperand(2), scratch);
4633 __ add(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize));
4634 // FunctionCallbackInfo::values_.
4635 __ mov(ApiParameterOperand(3), scratch);
4636 // FunctionCallbackInfo::length_.
4637 __ Move(ApiParameterOperand(4), Immediate(argc));
4638 // FunctionCallbackInfo::is_construct_call_.
4639 __ Move(ApiParameterOperand(5), Immediate(0));
4640
4641 // v8::InvocationCallback's argument.
4642 __ lea(scratch, ApiParameterOperand(2));
4643 __ mov(ApiParameterOperand(0), scratch);
4644
4645 ExternalReference thunk_ref =
4646 ExternalReference::invoke_function_callback(isolate());
4647
4648 Operand context_restore_operand(ebp,
4649 (2 + FCA::kContextSaveIndex) * kPointerSize);
4650 // Stores return the first js argument
4651 int return_value_offset = 0;
4652 if (is_store) {
4653 return_value_offset = 2 + FCA::kArgsLength;
4654 } else {
4655 return_value_offset = 2 + FCA::kReturnValueOffset;
4656 }
4657 Operand return_value_operand(ebp, return_value_offset * kPointerSize);
4658 __ CallApiFunctionAndReturn(api_function_address,
4659 thunk_ref,
4660 ApiParameterOperand(1),
4661 argc + FCA::kArgsLength + 1,
4662 return_value_operand,
4663 &context_restore_operand);
4664 }
4665
4666
Generate(MacroAssembler * masm)4667 void CallApiGetterStub::Generate(MacroAssembler* masm) {
4668 // ----------- S t a t e -------------
4669 // -- esp[0] : return address
4670 // -- esp[4] : name
4671 // -- esp[8 - kArgsLength*4] : PropertyCallbackArguments object
4672 // -- ...
4673 // -- edx : api_function_address
4674 // -----------------------------------
4675 DCHECK(edx.is(ApiGetterDescriptor::function_address()));
4676
4677 // array for v8::Arguments::values_, handler for name and pointer
4678 // to the values (it considered as smi in GC).
4679 const int kStackSpace = PropertyCallbackArguments::kArgsLength + 2;
4680 // Allocate space for opional callback address parameter in case
4681 // CPU profiler is active.
4682 const int kApiArgc = 2 + 1;
4683
4684 Register api_function_address = edx;
4685 Register scratch = ebx;
4686
4687 // load address of name
4688 __ lea(scratch, Operand(esp, 1 * kPointerSize));
4689
4690 __ PrepareCallApiFunction(kApiArgc);
4691 __ mov(ApiParameterOperand(0), scratch); // name.
4692 __ add(scratch, Immediate(kPointerSize));
4693 __ mov(ApiParameterOperand(1), scratch); // arguments pointer.
4694
4695 ExternalReference thunk_ref =
4696 ExternalReference::invoke_accessor_getter_callback(isolate());
4697
4698 __ CallApiFunctionAndReturn(api_function_address,
4699 thunk_ref,
4700 ApiParameterOperand(2),
4701 kStackSpace,
4702 Operand(ebp, 7 * kPointerSize),
4703 NULL);
4704 }
4705
4706
4707 #undef __
4708
4709 } } // namespace v8::internal
4710
4711 #endif // V8_TARGET_ARCH_IA32
4712