1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // A simple interpreter for the Irregexp byte code.
6
7
8 #include "src/v8.h"
9
10 #include "src/ast.h"
11 #include "src/bytecodes-irregexp.h"
12 #include "src/interpreter-irregexp.h"
13 #include "src/jsregexp.h"
14 #include "src/regexp-macro-assembler.h"
15 #include "src/unicode.h"
16 #include "src/utils.h"
17
18 namespace v8 {
19 namespace internal {
20
21
22 typedef unibrow::Mapping<unibrow::Ecma262Canonicalize> Canonicalize;
23
BackRefMatchesNoCase(Canonicalize * interp_canonicalize,int from,int current,int len,Vector<const uc16> subject)24 static bool BackRefMatchesNoCase(Canonicalize* interp_canonicalize,
25 int from,
26 int current,
27 int len,
28 Vector<const uc16> subject) {
29 for (int i = 0; i < len; i++) {
30 unibrow::uchar old_char = subject[from++];
31 unibrow::uchar new_char = subject[current++];
32 if (old_char == new_char) continue;
33 unibrow::uchar old_string[1] = { old_char };
34 unibrow::uchar new_string[1] = { new_char };
35 interp_canonicalize->get(old_char, '\0', old_string);
36 interp_canonicalize->get(new_char, '\0', new_string);
37 if (old_string[0] != new_string[0]) {
38 return false;
39 }
40 }
41 return true;
42 }
43
44
BackRefMatchesNoCase(Canonicalize * interp_canonicalize,int from,int current,int len,Vector<const uint8_t> subject)45 static bool BackRefMatchesNoCase(Canonicalize* interp_canonicalize,
46 int from,
47 int current,
48 int len,
49 Vector<const uint8_t> subject) {
50 for (int i = 0; i < len; i++) {
51 unsigned int old_char = subject[from++];
52 unsigned int new_char = subject[current++];
53 if (old_char == new_char) continue;
54 // Convert both characters to lower case.
55 old_char |= 0x20;
56 new_char |= 0x20;
57 if (old_char != new_char) return false;
58 // Not letters in the ASCII range and Latin-1 range.
59 if (!(old_char - 'a' <= 'z' - 'a') &&
60 !(old_char - 224 <= 254 - 224 && old_char != 247)) {
61 return false;
62 }
63 }
64 return true;
65 }
66
67
68 #ifdef DEBUG
TraceInterpreter(const byte * code_base,const byte * pc,int stack_depth,int current_position,uint32_t current_char,int bytecode_length,const char * bytecode_name)69 static void TraceInterpreter(const byte* code_base,
70 const byte* pc,
71 int stack_depth,
72 int current_position,
73 uint32_t current_char,
74 int bytecode_length,
75 const char* bytecode_name) {
76 if (FLAG_trace_regexp_bytecodes) {
77 bool printable = (current_char < 127 && current_char >= 32);
78 const char* format =
79 printable ?
80 "pc = %02x, sp = %d, curpos = %d, curchar = %08x (%c), bc = %s" :
81 "pc = %02x, sp = %d, curpos = %d, curchar = %08x .%c., bc = %s";
82 PrintF(format,
83 pc - code_base,
84 stack_depth,
85 current_position,
86 current_char,
87 printable ? current_char : '.',
88 bytecode_name);
89 for (int i = 0; i < bytecode_length; i++) {
90 printf(", %02x", pc[i]);
91 }
92 printf(" ");
93 for (int i = 1; i < bytecode_length; i++) {
94 unsigned char b = pc[i];
95 if (b < 127 && b >= 32) {
96 printf("%c", b);
97 } else {
98 printf(".");
99 }
100 }
101 printf("\n");
102 }
103 }
104
105
106 #define BYTECODE(name) \
107 case BC_##name: \
108 TraceInterpreter(code_base, \
109 pc, \
110 static_cast<int>(backtrack_sp - backtrack_stack_base), \
111 current, \
112 current_char, \
113 BC_##name##_LENGTH, \
114 #name);
115 #else
116 #define BYTECODE(name) \
117 case BC_##name:
118 #endif
119
120
Load32Aligned(const byte * pc)121 static int32_t Load32Aligned(const byte* pc) {
122 DCHECK((reinterpret_cast<intptr_t>(pc) & 3) == 0);
123 return *reinterpret_cast<const int32_t *>(pc);
124 }
125
126
Load16Aligned(const byte * pc)127 static int32_t Load16Aligned(const byte* pc) {
128 DCHECK((reinterpret_cast<intptr_t>(pc) & 1) == 0);
129 return *reinterpret_cast<const uint16_t *>(pc);
130 }
131
132
133 // A simple abstraction over the backtracking stack used by the interpreter.
134 // This backtracking stack does not grow automatically, but it ensures that the
135 // the memory held by the stack is released or remembered in a cache if the
136 // matching terminates.
137 class BacktrackStack {
138 public:
BacktrackStack()139 BacktrackStack() { data_ = NewArray<int>(kBacktrackStackSize); }
140
~BacktrackStack()141 ~BacktrackStack() {
142 DeleteArray(data_);
143 }
144
data() const145 int* data() const { return data_; }
146
max_size() const147 int max_size() const { return kBacktrackStackSize; }
148
149 private:
150 static const int kBacktrackStackSize = 10000;
151
152 int* data_;
153
154 DISALLOW_COPY_AND_ASSIGN(BacktrackStack);
155 };
156
157
158 template <typename Char>
RawMatch(Isolate * isolate,const byte * code_base,Vector<const Char> subject,int * registers,int current,uint32_t current_char)159 static RegExpImpl::IrregexpResult RawMatch(Isolate* isolate,
160 const byte* code_base,
161 Vector<const Char> subject,
162 int* registers,
163 int current,
164 uint32_t current_char) {
165 const byte* pc = code_base;
166 // BacktrackStack ensures that the memory allocated for the backtracking stack
167 // is returned to the system or cached if there is no stack being cached at
168 // the moment.
169 BacktrackStack backtrack_stack;
170 int* backtrack_stack_base = backtrack_stack.data();
171 int* backtrack_sp = backtrack_stack_base;
172 int backtrack_stack_space = backtrack_stack.max_size();
173 #ifdef DEBUG
174 if (FLAG_trace_regexp_bytecodes) {
175 PrintF("\n\nStart bytecode interpreter\n\n");
176 }
177 #endif
178 while (true) {
179 int32_t insn = Load32Aligned(pc);
180 switch (insn & BYTECODE_MASK) {
181 BYTECODE(BREAK)
182 UNREACHABLE();
183 return RegExpImpl::RE_FAILURE;
184 BYTECODE(PUSH_CP)
185 if (--backtrack_stack_space < 0) {
186 return RegExpImpl::RE_EXCEPTION;
187 }
188 *backtrack_sp++ = current;
189 pc += BC_PUSH_CP_LENGTH;
190 break;
191 BYTECODE(PUSH_BT)
192 if (--backtrack_stack_space < 0) {
193 return RegExpImpl::RE_EXCEPTION;
194 }
195 *backtrack_sp++ = Load32Aligned(pc + 4);
196 pc += BC_PUSH_BT_LENGTH;
197 break;
198 BYTECODE(PUSH_REGISTER)
199 if (--backtrack_stack_space < 0) {
200 return RegExpImpl::RE_EXCEPTION;
201 }
202 *backtrack_sp++ = registers[insn >> BYTECODE_SHIFT];
203 pc += BC_PUSH_REGISTER_LENGTH;
204 break;
205 BYTECODE(SET_REGISTER)
206 registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4);
207 pc += BC_SET_REGISTER_LENGTH;
208 break;
209 BYTECODE(ADVANCE_REGISTER)
210 registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4);
211 pc += BC_ADVANCE_REGISTER_LENGTH;
212 break;
213 BYTECODE(SET_REGISTER_TO_CP)
214 registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4);
215 pc += BC_SET_REGISTER_TO_CP_LENGTH;
216 break;
217 BYTECODE(SET_CP_TO_REGISTER)
218 current = registers[insn >> BYTECODE_SHIFT];
219 pc += BC_SET_CP_TO_REGISTER_LENGTH;
220 break;
221 BYTECODE(SET_REGISTER_TO_SP)
222 registers[insn >> BYTECODE_SHIFT] =
223 static_cast<int>(backtrack_sp - backtrack_stack_base);
224 pc += BC_SET_REGISTER_TO_SP_LENGTH;
225 break;
226 BYTECODE(SET_SP_TO_REGISTER)
227 backtrack_sp = backtrack_stack_base + registers[insn >> BYTECODE_SHIFT];
228 backtrack_stack_space = backtrack_stack.max_size() -
229 static_cast<int>(backtrack_sp - backtrack_stack_base);
230 pc += BC_SET_SP_TO_REGISTER_LENGTH;
231 break;
232 BYTECODE(POP_CP)
233 backtrack_stack_space++;
234 --backtrack_sp;
235 current = *backtrack_sp;
236 pc += BC_POP_CP_LENGTH;
237 break;
238 BYTECODE(POP_BT)
239 backtrack_stack_space++;
240 --backtrack_sp;
241 pc = code_base + *backtrack_sp;
242 break;
243 BYTECODE(POP_REGISTER)
244 backtrack_stack_space++;
245 --backtrack_sp;
246 registers[insn >> BYTECODE_SHIFT] = *backtrack_sp;
247 pc += BC_POP_REGISTER_LENGTH;
248 break;
249 BYTECODE(FAIL)
250 return RegExpImpl::RE_FAILURE;
251 BYTECODE(SUCCEED)
252 return RegExpImpl::RE_SUCCESS;
253 BYTECODE(ADVANCE_CP)
254 current += insn >> BYTECODE_SHIFT;
255 pc += BC_ADVANCE_CP_LENGTH;
256 break;
257 BYTECODE(GOTO)
258 pc = code_base + Load32Aligned(pc + 4);
259 break;
260 BYTECODE(ADVANCE_CP_AND_GOTO)
261 current += insn >> BYTECODE_SHIFT;
262 pc = code_base + Load32Aligned(pc + 4);
263 break;
264 BYTECODE(CHECK_GREEDY)
265 if (current == backtrack_sp[-1]) {
266 backtrack_sp--;
267 backtrack_stack_space++;
268 pc = code_base + Load32Aligned(pc + 4);
269 } else {
270 pc += BC_CHECK_GREEDY_LENGTH;
271 }
272 break;
273 BYTECODE(LOAD_CURRENT_CHAR) {
274 int pos = current + (insn >> BYTECODE_SHIFT);
275 if (pos >= subject.length()) {
276 pc = code_base + Load32Aligned(pc + 4);
277 } else {
278 current_char = subject[pos];
279 pc += BC_LOAD_CURRENT_CHAR_LENGTH;
280 }
281 break;
282 }
283 BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) {
284 int pos = current + (insn >> BYTECODE_SHIFT);
285 current_char = subject[pos];
286 pc += BC_LOAD_CURRENT_CHAR_UNCHECKED_LENGTH;
287 break;
288 }
289 BYTECODE(LOAD_2_CURRENT_CHARS) {
290 int pos = current + (insn >> BYTECODE_SHIFT);
291 if (pos + 2 > subject.length()) {
292 pc = code_base + Load32Aligned(pc + 4);
293 } else {
294 Char next = subject[pos + 1];
295 current_char =
296 (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
297 pc += BC_LOAD_2_CURRENT_CHARS_LENGTH;
298 }
299 break;
300 }
301 BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) {
302 int pos = current + (insn >> BYTECODE_SHIFT);
303 Char next = subject[pos + 1];
304 current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char))));
305 pc += BC_LOAD_2_CURRENT_CHARS_UNCHECKED_LENGTH;
306 break;
307 }
308 BYTECODE(LOAD_4_CURRENT_CHARS) {
309 DCHECK(sizeof(Char) == 1);
310 int pos = current + (insn >> BYTECODE_SHIFT);
311 if (pos + 4 > subject.length()) {
312 pc = code_base + Load32Aligned(pc + 4);
313 } else {
314 Char next1 = subject[pos + 1];
315 Char next2 = subject[pos + 2];
316 Char next3 = subject[pos + 3];
317 current_char = (subject[pos] |
318 (next1 << 8) |
319 (next2 << 16) |
320 (next3 << 24));
321 pc += BC_LOAD_4_CURRENT_CHARS_LENGTH;
322 }
323 break;
324 }
325 BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) {
326 DCHECK(sizeof(Char) == 1);
327 int pos = current + (insn >> BYTECODE_SHIFT);
328 Char next1 = subject[pos + 1];
329 Char next2 = subject[pos + 2];
330 Char next3 = subject[pos + 3];
331 current_char = (subject[pos] |
332 (next1 << 8) |
333 (next2 << 16) |
334 (next3 << 24));
335 pc += BC_LOAD_4_CURRENT_CHARS_UNCHECKED_LENGTH;
336 break;
337 }
338 BYTECODE(CHECK_4_CHARS) {
339 uint32_t c = Load32Aligned(pc + 4);
340 if (c == current_char) {
341 pc = code_base + Load32Aligned(pc + 8);
342 } else {
343 pc += BC_CHECK_4_CHARS_LENGTH;
344 }
345 break;
346 }
347 BYTECODE(CHECK_CHAR) {
348 uint32_t c = (insn >> BYTECODE_SHIFT);
349 if (c == current_char) {
350 pc = code_base + Load32Aligned(pc + 4);
351 } else {
352 pc += BC_CHECK_CHAR_LENGTH;
353 }
354 break;
355 }
356 BYTECODE(CHECK_NOT_4_CHARS) {
357 uint32_t c = Load32Aligned(pc + 4);
358 if (c != current_char) {
359 pc = code_base + Load32Aligned(pc + 8);
360 } else {
361 pc += BC_CHECK_NOT_4_CHARS_LENGTH;
362 }
363 break;
364 }
365 BYTECODE(CHECK_NOT_CHAR) {
366 uint32_t c = (insn >> BYTECODE_SHIFT);
367 if (c != current_char) {
368 pc = code_base + Load32Aligned(pc + 4);
369 } else {
370 pc += BC_CHECK_NOT_CHAR_LENGTH;
371 }
372 break;
373 }
374 BYTECODE(AND_CHECK_4_CHARS) {
375 uint32_t c = Load32Aligned(pc + 4);
376 if (c == (current_char & Load32Aligned(pc + 8))) {
377 pc = code_base + Load32Aligned(pc + 12);
378 } else {
379 pc += BC_AND_CHECK_4_CHARS_LENGTH;
380 }
381 break;
382 }
383 BYTECODE(AND_CHECK_CHAR) {
384 uint32_t c = (insn >> BYTECODE_SHIFT);
385 if (c == (current_char & Load32Aligned(pc + 4))) {
386 pc = code_base + Load32Aligned(pc + 8);
387 } else {
388 pc += BC_AND_CHECK_CHAR_LENGTH;
389 }
390 break;
391 }
392 BYTECODE(AND_CHECK_NOT_4_CHARS) {
393 uint32_t c = Load32Aligned(pc + 4);
394 if (c != (current_char & Load32Aligned(pc + 8))) {
395 pc = code_base + Load32Aligned(pc + 12);
396 } else {
397 pc += BC_AND_CHECK_NOT_4_CHARS_LENGTH;
398 }
399 break;
400 }
401 BYTECODE(AND_CHECK_NOT_CHAR) {
402 uint32_t c = (insn >> BYTECODE_SHIFT);
403 if (c != (current_char & Load32Aligned(pc + 4))) {
404 pc = code_base + Load32Aligned(pc + 8);
405 } else {
406 pc += BC_AND_CHECK_NOT_CHAR_LENGTH;
407 }
408 break;
409 }
410 BYTECODE(MINUS_AND_CHECK_NOT_CHAR) {
411 uint32_t c = (insn >> BYTECODE_SHIFT);
412 uint32_t minus = Load16Aligned(pc + 4);
413 uint32_t mask = Load16Aligned(pc + 6);
414 if (c != ((current_char - minus) & mask)) {
415 pc = code_base + Load32Aligned(pc + 8);
416 } else {
417 pc += BC_MINUS_AND_CHECK_NOT_CHAR_LENGTH;
418 }
419 break;
420 }
421 BYTECODE(CHECK_CHAR_IN_RANGE) {
422 uint32_t from = Load16Aligned(pc + 4);
423 uint32_t to = Load16Aligned(pc + 6);
424 if (from <= current_char && current_char <= to) {
425 pc = code_base + Load32Aligned(pc + 8);
426 } else {
427 pc += BC_CHECK_CHAR_IN_RANGE_LENGTH;
428 }
429 break;
430 }
431 BYTECODE(CHECK_CHAR_NOT_IN_RANGE) {
432 uint32_t from = Load16Aligned(pc + 4);
433 uint32_t to = Load16Aligned(pc + 6);
434 if (from > current_char || current_char > to) {
435 pc = code_base + Load32Aligned(pc + 8);
436 } else {
437 pc += BC_CHECK_CHAR_NOT_IN_RANGE_LENGTH;
438 }
439 break;
440 }
441 BYTECODE(CHECK_BIT_IN_TABLE) {
442 int mask = RegExpMacroAssembler::kTableMask;
443 byte b = pc[8 + ((current_char & mask) >> kBitsPerByteLog2)];
444 int bit = (current_char & (kBitsPerByte - 1));
445 if ((b & (1 << bit)) != 0) {
446 pc = code_base + Load32Aligned(pc + 4);
447 } else {
448 pc += BC_CHECK_BIT_IN_TABLE_LENGTH;
449 }
450 break;
451 }
452 BYTECODE(CHECK_LT) {
453 uint32_t limit = (insn >> BYTECODE_SHIFT);
454 if (current_char < limit) {
455 pc = code_base + Load32Aligned(pc + 4);
456 } else {
457 pc += BC_CHECK_LT_LENGTH;
458 }
459 break;
460 }
461 BYTECODE(CHECK_GT) {
462 uint32_t limit = (insn >> BYTECODE_SHIFT);
463 if (current_char > limit) {
464 pc = code_base + Load32Aligned(pc + 4);
465 } else {
466 pc += BC_CHECK_GT_LENGTH;
467 }
468 break;
469 }
470 BYTECODE(CHECK_REGISTER_LT)
471 if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) {
472 pc = code_base + Load32Aligned(pc + 8);
473 } else {
474 pc += BC_CHECK_REGISTER_LT_LENGTH;
475 }
476 break;
477 BYTECODE(CHECK_REGISTER_GE)
478 if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) {
479 pc = code_base + Load32Aligned(pc + 8);
480 } else {
481 pc += BC_CHECK_REGISTER_GE_LENGTH;
482 }
483 break;
484 BYTECODE(CHECK_REGISTER_EQ_POS)
485 if (registers[insn >> BYTECODE_SHIFT] == current) {
486 pc = code_base + Load32Aligned(pc + 4);
487 } else {
488 pc += BC_CHECK_REGISTER_EQ_POS_LENGTH;
489 }
490 break;
491 BYTECODE(CHECK_NOT_REGS_EQUAL)
492 if (registers[insn >> BYTECODE_SHIFT] ==
493 registers[Load32Aligned(pc + 4)]) {
494 pc += BC_CHECK_NOT_REGS_EQUAL_LENGTH;
495 } else {
496 pc = code_base + Load32Aligned(pc + 8);
497 }
498 break;
499 BYTECODE(CHECK_NOT_BACK_REF) {
500 int from = registers[insn >> BYTECODE_SHIFT];
501 int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
502 if (from < 0 || len <= 0) {
503 pc += BC_CHECK_NOT_BACK_REF_LENGTH;
504 break;
505 }
506 if (current + len > subject.length()) {
507 pc = code_base + Load32Aligned(pc + 4);
508 break;
509 } else {
510 int i;
511 for (i = 0; i < len; i++) {
512 if (subject[from + i] != subject[current + i]) {
513 pc = code_base + Load32Aligned(pc + 4);
514 break;
515 }
516 }
517 if (i < len) break;
518 current += len;
519 }
520 pc += BC_CHECK_NOT_BACK_REF_LENGTH;
521 break;
522 }
523 BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) {
524 int from = registers[insn >> BYTECODE_SHIFT];
525 int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from;
526 if (from < 0 || len <= 0) {
527 pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH;
528 break;
529 }
530 if (current + len > subject.length()) {
531 pc = code_base + Load32Aligned(pc + 4);
532 break;
533 } else {
534 if (BackRefMatchesNoCase(isolate->interp_canonicalize_mapping(),
535 from, current, len, subject)) {
536 current += len;
537 pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH;
538 } else {
539 pc = code_base + Load32Aligned(pc + 4);
540 }
541 }
542 break;
543 }
544 BYTECODE(CHECK_AT_START)
545 if (current == 0) {
546 pc = code_base + Load32Aligned(pc + 4);
547 } else {
548 pc += BC_CHECK_AT_START_LENGTH;
549 }
550 break;
551 BYTECODE(CHECK_NOT_AT_START)
552 if (current == 0) {
553 pc += BC_CHECK_NOT_AT_START_LENGTH;
554 } else {
555 pc = code_base + Load32Aligned(pc + 4);
556 }
557 break;
558 BYTECODE(SET_CURRENT_POSITION_FROM_END) {
559 int by = static_cast<uint32_t>(insn) >> BYTECODE_SHIFT;
560 if (subject.length() - current > by) {
561 current = subject.length() - by;
562 current_char = subject[current - 1];
563 }
564 pc += BC_SET_CURRENT_POSITION_FROM_END_LENGTH;
565 break;
566 }
567 default:
568 UNREACHABLE();
569 break;
570 }
571 }
572 }
573
574
Match(Isolate * isolate,Handle<ByteArray> code_array,Handle<String> subject,int * registers,int start_position)575 RegExpImpl::IrregexpResult IrregexpInterpreter::Match(
576 Isolate* isolate,
577 Handle<ByteArray> code_array,
578 Handle<String> subject,
579 int* registers,
580 int start_position) {
581 DCHECK(subject->IsFlat());
582
583 DisallowHeapAllocation no_gc;
584 const byte* code_base = code_array->GetDataStartAddress();
585 uc16 previous_char = '\n';
586 String::FlatContent subject_content = subject->GetFlatContent();
587 if (subject_content.IsOneByte()) {
588 Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector();
589 if (start_position != 0) previous_char = subject_vector[start_position - 1];
590 return RawMatch(isolate,
591 code_base,
592 subject_vector,
593 registers,
594 start_position,
595 previous_char);
596 } else {
597 DCHECK(subject_content.IsTwoByte());
598 Vector<const uc16> subject_vector = subject_content.ToUC16Vector();
599 if (start_position != 0) previous_char = subject_vector[start_position - 1];
600 return RawMatch(isolate,
601 code_base,
602 subject_vector,
603 registers,
604 start_position,
605 previous_char);
606 }
607 }
608
609 } } // namespace v8::internal
610