1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #if V8_TARGET_ARCH_MIPS
8 
9 #include "src/base/bits.h"
10 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h"
12 #include "src/codegen.h"
13 #include "src/ic/handler-compiler.h"
14 #include "src/ic/ic.h"
15 #include "src/isolate.h"
16 #include "src/jsregexp.h"
17 #include "src/regexp-macro-assembler.h"
18 #include "src/runtime.h"
19 
20 namespace v8 {
21 namespace internal {
22 
23 
InitializeArrayConstructorDescriptor(Isolate * isolate,CodeStubDescriptor * descriptor,int constant_stack_parameter_count)24 static void InitializeArrayConstructorDescriptor(
25     Isolate* isolate, CodeStubDescriptor* descriptor,
26     int constant_stack_parameter_count) {
27   Address deopt_handler = Runtime::FunctionForId(
28       Runtime::kArrayConstructor)->entry;
29 
30   if (constant_stack_parameter_count == 0) {
31     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
32                            JS_FUNCTION_STUB_MODE);
33   } else {
34     descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
35                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
36   }
37 }
38 
39 
InitializeInternalArrayConstructorDescriptor(Isolate * isolate,CodeStubDescriptor * descriptor,int constant_stack_parameter_count)40 static void InitializeInternalArrayConstructorDescriptor(
41     Isolate* isolate, CodeStubDescriptor* descriptor,
42     int constant_stack_parameter_count) {
43   Address deopt_handler = Runtime::FunctionForId(
44       Runtime::kInternalArrayConstructor)->entry;
45 
46   if (constant_stack_parameter_count == 0) {
47     descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
48                            JS_FUNCTION_STUB_MODE);
49   } else {
50     descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
51                            JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
52   }
53 }
54 
55 
InitializeDescriptor(CodeStubDescriptor * descriptor)56 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
57     CodeStubDescriptor* descriptor) {
58   InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
59 }
60 
61 
InitializeDescriptor(CodeStubDescriptor * descriptor)62 void ArraySingleArgumentConstructorStub::InitializeDescriptor(
63     CodeStubDescriptor* descriptor) {
64   InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
65 }
66 
67 
InitializeDescriptor(CodeStubDescriptor * descriptor)68 void ArrayNArgumentsConstructorStub::InitializeDescriptor(
69     CodeStubDescriptor* descriptor) {
70   InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
71 }
72 
73 
InitializeDescriptor(CodeStubDescriptor * descriptor)74 void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
75     CodeStubDescriptor* descriptor) {
76   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
77 }
78 
79 
InitializeDescriptor(CodeStubDescriptor * descriptor)80 void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
81     CodeStubDescriptor* descriptor) {
82   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
83 }
84 
85 
InitializeDescriptor(CodeStubDescriptor * descriptor)86 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
87     CodeStubDescriptor* descriptor) {
88   InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
89 }
90 
91 
92 #define __ ACCESS_MASM(masm)
93 
94 
95 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
96                                           Label* slow,
97                                           Condition cc);
98 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
99                                     Register lhs,
100                                     Register rhs,
101                                     Label* rhs_not_nan,
102                                     Label* slow,
103                                     bool strict);
104 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
105                                            Register lhs,
106                                            Register rhs);
107 
108 
GenerateLightweightMiss(MacroAssembler * masm,ExternalReference miss)109 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
110                                                ExternalReference miss) {
111   // Update the static counter each time a new code stub is generated.
112   isolate()->counters()->code_stubs()->Increment();
113 
114   CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
115   int param_count = descriptor.GetEnvironmentParameterCount();
116   {
117     // Call the runtime system in a fresh internal frame.
118     FrameScope scope(masm, StackFrame::INTERNAL);
119     DCHECK(param_count == 0 ||
120            a0.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
121     // Push arguments, adjust sp.
122     __ Subu(sp, sp, Operand(param_count * kPointerSize));
123     for (int i = 0; i < param_count; ++i) {
124       // Store argument to stack.
125       __ sw(descriptor.GetEnvironmentParameterRegister(i),
126             MemOperand(sp, (param_count - 1 - i) * kPointerSize));
127     }
128     __ CallExternalReference(miss, param_count);
129   }
130 
131   __ Ret();
132 }
133 
134 
Generate(MacroAssembler * masm)135 void DoubleToIStub::Generate(MacroAssembler* masm) {
136   Label out_of_range, only_low, negate, done;
137   Register input_reg = source();
138   Register result_reg = destination();
139 
140   int double_offset = offset();
141   // Account for saved regs if input is sp.
142   if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
143 
144   Register scratch =
145       GetRegisterThatIsNotOneOf(input_reg, result_reg);
146   Register scratch2 =
147       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
148   Register scratch3 =
149       GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2);
150   DoubleRegister double_scratch = kLithiumScratchDouble;
151 
152   __ Push(scratch, scratch2, scratch3);
153 
154   if (!skip_fastpath()) {
155     // Load double input.
156     __ ldc1(double_scratch, MemOperand(input_reg, double_offset));
157 
158     // Clear cumulative exception flags and save the FCSR.
159     __ cfc1(scratch2, FCSR);
160     __ ctc1(zero_reg, FCSR);
161 
162     // Try a conversion to a signed integer.
163     __ Trunc_w_d(double_scratch, double_scratch);
164     // Move the converted value into the result register.
165     __ mfc1(scratch3, double_scratch);
166 
167     // Retrieve and restore the FCSR.
168     __ cfc1(scratch, FCSR);
169     __ ctc1(scratch2, FCSR);
170 
171     // Check for overflow and NaNs.
172     __ And(
173         scratch, scratch,
174         kFCSROverflowFlagMask | kFCSRUnderflowFlagMask
175            | kFCSRInvalidOpFlagMask);
176     // If we had no exceptions then set result_reg and we are done.
177     Label error;
178     __ Branch(&error, ne, scratch, Operand(zero_reg));
179     __ Move(result_reg, scratch3);
180     __ Branch(&done);
181     __ bind(&error);
182   }
183 
184   // Load the double value and perform a manual truncation.
185   Register input_high = scratch2;
186   Register input_low = scratch3;
187 
188   __ lw(input_low,
189       MemOperand(input_reg, double_offset + Register::kMantissaOffset));
190   __ lw(input_high,
191       MemOperand(input_reg, double_offset + Register::kExponentOffset));
192 
193   Label normal_exponent, restore_sign;
194   // Extract the biased exponent in result.
195   __ Ext(result_reg,
196          input_high,
197          HeapNumber::kExponentShift,
198          HeapNumber::kExponentBits);
199 
200   // Check for Infinity and NaNs, which should return 0.
201   __ Subu(scratch, result_reg, HeapNumber::kExponentMask);
202   __ Movz(result_reg, zero_reg, scratch);
203   __ Branch(&done, eq, scratch, Operand(zero_reg));
204 
205   // Express exponent as delta to (number of mantissa bits + 31).
206   __ Subu(result_reg,
207           result_reg,
208           Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
209 
210   // If the delta is strictly positive, all bits would be shifted away,
211   // which means that we can return 0.
212   __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
213   __ mov(result_reg, zero_reg);
214   __ Branch(&done);
215 
216   __ bind(&normal_exponent);
217   const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
218   // Calculate shift.
219   __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
220 
221   // Save the sign.
222   Register sign = result_reg;
223   result_reg = no_reg;
224   __ And(sign, input_high, Operand(HeapNumber::kSignMask));
225 
226   // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
227   // to check for this specific case.
228   Label high_shift_needed, high_shift_done;
229   __ Branch(&high_shift_needed, lt, scratch, Operand(32));
230   __ mov(input_high, zero_reg);
231   __ Branch(&high_shift_done);
232   __ bind(&high_shift_needed);
233 
234   // Set the implicit 1 before the mantissa part in input_high.
235   __ Or(input_high,
236         input_high,
237         Operand(1 << HeapNumber::kMantissaBitsInTopWord));
238   // Shift the mantissa bits to the correct position.
239   // We don't need to clear non-mantissa bits as they will be shifted away.
240   // If they weren't, it would mean that the answer is in the 32bit range.
241   __ sllv(input_high, input_high, scratch);
242 
243   __ bind(&high_shift_done);
244 
245   // Replace the shifted bits with bits from the lower mantissa word.
246   Label pos_shift, shift_done;
247   __ li(at, 32);
248   __ subu(scratch, at, scratch);
249   __ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
250 
251   // Negate scratch.
252   __ Subu(scratch, zero_reg, scratch);
253   __ sllv(input_low, input_low, scratch);
254   __ Branch(&shift_done);
255 
256   __ bind(&pos_shift);
257   __ srlv(input_low, input_low, scratch);
258 
259   __ bind(&shift_done);
260   __ Or(input_high, input_high, Operand(input_low));
261   // Restore sign if necessary.
262   __ mov(scratch, sign);
263   result_reg = sign;
264   sign = no_reg;
265   __ Subu(result_reg, zero_reg, input_high);
266   __ Movz(result_reg, input_high, scratch);
267 
268   __ bind(&done);
269 
270   __ Pop(scratch, scratch2, scratch3);
271   __ Ret();
272 }
273 
274 
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)275 void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(
276     Isolate* isolate) {
277   WriteInt32ToHeapNumberStub stub1(isolate, a1, v0, a2, a3);
278   WriteInt32ToHeapNumberStub stub2(isolate, a2, v0, a3, a0);
279   stub1.GetCode();
280   stub2.GetCode();
281 }
282 
283 
284 // See comment for class, this does NOT work for int32's that are in Smi range.
Generate(MacroAssembler * masm)285 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
286   Label max_negative_int;
287   // the_int_ has the answer which is a signed int32 but not a Smi.
288   // We test for the special value that has a different exponent.
289   STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
290   // Test sign, and save for later conditionals.
291   __ And(sign(), the_int(), Operand(0x80000000u));
292   __ Branch(&max_negative_int, eq, the_int(), Operand(0x80000000u));
293 
294   // Set up the correct exponent in scratch_.  All non-Smi int32s have the same.
295   // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
296   uint32_t non_smi_exponent =
297       (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
298   __ li(scratch(), Operand(non_smi_exponent));
299   // Set the sign bit in scratch_ if the value was negative.
300   __ or_(scratch(), scratch(), sign());
301   // Subtract from 0 if the value was negative.
302   __ subu(at, zero_reg, the_int());
303   __ Movn(the_int(), at, sign());
304   // We should be masking the implict first digit of the mantissa away here,
305   // but it just ends up combining harmlessly with the last digit of the
306   // exponent that happens to be 1.  The sign bit is 0 so we shift 10 to get
307   // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
308   DCHECK(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
309   const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
310   __ srl(at, the_int(), shift_distance);
311   __ or_(scratch(), scratch(), at);
312   __ sw(scratch(), FieldMemOperand(the_heap_number(),
313                                    HeapNumber::kExponentOffset));
314   __ sll(scratch(), the_int(), 32 - shift_distance);
315   __ Ret(USE_DELAY_SLOT);
316   __ sw(scratch(), FieldMemOperand(the_heap_number(),
317                                    HeapNumber::kMantissaOffset));
318 
319   __ bind(&max_negative_int);
320   // The max negative int32 is stored as a positive number in the mantissa of
321   // a double because it uses a sign bit instead of using two's complement.
322   // The actual mantissa bits stored are all 0 because the implicit most
323   // significant 1 bit is not stored.
324   non_smi_exponent += 1 << HeapNumber::kExponentShift;
325   __ li(scratch(), Operand(HeapNumber::kSignMask | non_smi_exponent));
326   __ sw(scratch(),
327         FieldMemOperand(the_heap_number(), HeapNumber::kExponentOffset));
328   __ mov(scratch(), zero_reg);
329   __ Ret(USE_DELAY_SLOT);
330   __ sw(scratch(),
331         FieldMemOperand(the_heap_number(), HeapNumber::kMantissaOffset));
332 }
333 
334 
335 // Handle the case where the lhs and rhs are the same object.
336 // Equality is almost reflexive (everything but NaN), so this is a test
337 // for "identity and not NaN".
EmitIdenticalObjectComparison(MacroAssembler * masm,Label * slow,Condition cc)338 static void EmitIdenticalObjectComparison(MacroAssembler* masm,
339                                           Label* slow,
340                                           Condition cc) {
341   Label not_identical;
342   Label heap_number, return_equal;
343   Register exp_mask_reg = t5;
344 
345   __ Branch(&not_identical, ne, a0, Operand(a1));
346 
347   __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
348 
349   // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
350   // so we do the second best thing - test it ourselves.
351   // They are both equal and they are not both Smis so both of them are not
352   // Smis. If it's not a heap number, then return equal.
353   if (cc == less || cc == greater) {
354     __ GetObjectType(a0, t4, t4);
355     __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE));
356   } else {
357     __ GetObjectType(a0, t4, t4);
358     __ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE));
359     // Comparing JS objects with <=, >= is complicated.
360     if (cc != eq) {
361     __ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE));
362       // Normally here we fall through to return_equal, but undefined is
363       // special: (undefined == undefined) == true, but
364       // (undefined <= undefined) == false!  See ECMAScript 11.8.5.
365       if (cc == less_equal || cc == greater_equal) {
366         __ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE));
367         __ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
368         __ Branch(&return_equal, ne, a0, Operand(t2));
369         DCHECK(is_int16(GREATER) && is_int16(LESS));
370         __ Ret(USE_DELAY_SLOT);
371         if (cc == le) {
372           // undefined <= undefined should fail.
373           __ li(v0, Operand(GREATER));
374         } else  {
375           // undefined >= undefined should fail.
376           __ li(v0, Operand(LESS));
377         }
378       }
379     }
380   }
381 
382   __ bind(&return_equal);
383   DCHECK(is_int16(GREATER) && is_int16(LESS));
384   __ Ret(USE_DELAY_SLOT);
385   if (cc == less) {
386     __ li(v0, Operand(GREATER));  // Things aren't less than themselves.
387   } else if (cc == greater) {
388     __ li(v0, Operand(LESS));     // Things aren't greater than themselves.
389   } else {
390     __ mov(v0, zero_reg);         // Things are <=, >=, ==, === themselves.
391   }
392 
393   // For less and greater we don't have to check for NaN since the result of
394   // x < x is false regardless.  For the others here is some code to check
395   // for NaN.
396   if (cc != lt && cc != gt) {
397     __ bind(&heap_number);
398     // It is a heap number, so return non-equal if it's NaN and equal if it's
399     // not NaN.
400 
401     // The representation of NaN values has all exponent bits (52..62) set,
402     // and not all mantissa bits (0..51) clear.
403     // Read top bits of double representation (second word of value).
404     __ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
405     // Test that exponent bits are all set.
406     __ And(t3, t2, Operand(exp_mask_reg));
407     // If all bits not set (ne cond), then not a NaN, objects are equal.
408     __ Branch(&return_equal, ne, t3, Operand(exp_mask_reg));
409 
410     // Shift out flag and all exponent bits, retaining only mantissa.
411     __ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord);
412     // Or with all low-bits of mantissa.
413     __ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
414     __ Or(v0, t3, Operand(t2));
415     // For equal we already have the right value in v0:  Return zero (equal)
416     // if all bits in mantissa are zero (it's an Infinity) and non-zero if
417     // not (it's a NaN).  For <= and >= we need to load v0 with the failing
418     // value if it's a NaN.
419     if (cc != eq) {
420       // All-zero means Infinity means equal.
421       __ Ret(eq, v0, Operand(zero_reg));
422       DCHECK(is_int16(GREATER) && is_int16(LESS));
423       __ Ret(USE_DELAY_SLOT);
424       if (cc == le) {
425         __ li(v0, Operand(GREATER));  // NaN <= NaN should fail.
426       } else {
427         __ li(v0, Operand(LESS));     // NaN >= NaN should fail.
428       }
429     }
430   }
431   // No fall through here.
432 
433   __ bind(&not_identical);
434 }
435 
436 
EmitSmiNonsmiComparison(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * slow,bool strict)437 static void EmitSmiNonsmiComparison(MacroAssembler* masm,
438                                     Register lhs,
439                                     Register rhs,
440                                     Label* both_loaded_as_doubles,
441                                     Label* slow,
442                                     bool strict) {
443   DCHECK((lhs.is(a0) && rhs.is(a1)) ||
444          (lhs.is(a1) && rhs.is(a0)));
445 
446   Label lhs_is_smi;
447   __ JumpIfSmi(lhs, &lhs_is_smi);
448   // Rhs is a Smi.
449   // Check whether the non-smi is a heap number.
450   __ GetObjectType(lhs, t4, t4);
451   if (strict) {
452     // If lhs was not a number and rhs was a Smi then strict equality cannot
453     // succeed. Return non-equal (lhs is already not zero).
454     __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE));
455     __ mov(v0, lhs);
456   } else {
457     // Smi compared non-strictly with a non-Smi non-heap-number. Call
458     // the runtime.
459     __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
460   }
461 
462   // Rhs is a smi, lhs is a number.
463   // Convert smi rhs to double.
464   __ sra(at, rhs, kSmiTagSize);
465   __ mtc1(at, f14);
466   __ cvt_d_w(f14, f14);
467   __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
468 
469   // We now have both loaded as doubles.
470   __ jmp(both_loaded_as_doubles);
471 
472   __ bind(&lhs_is_smi);
473   // Lhs is a Smi.  Check whether the non-smi is a heap number.
474   __ GetObjectType(rhs, t4, t4);
475   if (strict) {
476     // If lhs was not a number and rhs was a Smi then strict equality cannot
477     // succeed. Return non-equal.
478     __ Ret(USE_DELAY_SLOT, ne, t4, Operand(HEAP_NUMBER_TYPE));
479     __ li(v0, Operand(1));
480   } else {
481     // Smi compared non-strictly with a non-Smi non-heap-number. Call
482     // the runtime.
483     __ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
484   }
485 
486   // Lhs is a smi, rhs is a number.
487   // Convert smi lhs to double.
488   __ sra(at, lhs, kSmiTagSize);
489   __ mtc1(at, f12);
490   __ cvt_d_w(f12, f12);
491   __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
492   // Fall through to both_loaded_as_doubles.
493 }
494 
495 
EmitStrictTwoHeapObjectCompare(MacroAssembler * masm,Register lhs,Register rhs)496 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
497                                            Register lhs,
498                                            Register rhs) {
499     // If either operand is a JS object or an oddball value, then they are
500     // not equal since their pointers are different.
501     // There is no test for undetectability in strict equality.
502     STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
503     Label first_non_object;
504     // Get the type of the first operand into a2 and compare it with
505     // FIRST_SPEC_OBJECT_TYPE.
506     __ GetObjectType(lhs, a2, a2);
507     __ Branch(&first_non_object, less, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
508 
509     // Return non-zero.
510     Label return_not_equal;
511     __ bind(&return_not_equal);
512     __ Ret(USE_DELAY_SLOT);
513     __ li(v0, Operand(1));
514 
515     __ bind(&first_non_object);
516     // Check for oddballs: true, false, null, undefined.
517     __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
518 
519     __ GetObjectType(rhs, a3, a3);
520     __ Branch(&return_not_equal, greater, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
521 
522     // Check for oddballs: true, false, null, undefined.
523     __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
524 
525     // Now that we have the types we might as well check for
526     // internalized-internalized.
527     STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
528     __ Or(a2, a2, Operand(a3));
529     __ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
530     __ Branch(&return_not_equal, eq, at, Operand(zero_reg));
531 }
532 
533 
EmitCheckForTwoHeapNumbers(MacroAssembler * masm,Register lhs,Register rhs,Label * both_loaded_as_doubles,Label * not_heap_numbers,Label * slow)534 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
535                                        Register lhs,
536                                        Register rhs,
537                                        Label* both_loaded_as_doubles,
538                                        Label* not_heap_numbers,
539                                        Label* slow) {
540   __ GetObjectType(lhs, a3, a2);
541   __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
542   __ lw(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
543   // If first was a heap number & second wasn't, go to slow case.
544   __ Branch(slow, ne, a3, Operand(a2));
545 
546   // Both are heap numbers. Load them up then jump to the code we have
547   // for that.
548   __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
549   __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
550 
551   __ jmp(both_loaded_as_doubles);
552 }
553 
554 
555 // Fast negative check for internalized-to-internalized equality.
EmitCheckForInternalizedStringsOrObjects(MacroAssembler * masm,Register lhs,Register rhs,Label * possible_strings,Label * not_both_strings)556 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
557                                                      Register lhs,
558                                                      Register rhs,
559                                                      Label* possible_strings,
560                                                      Label* not_both_strings) {
561   DCHECK((lhs.is(a0) && rhs.is(a1)) ||
562          (lhs.is(a1) && rhs.is(a0)));
563 
564   // a2 is object type of rhs.
565   Label object_test;
566   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
567   __ And(at, a2, Operand(kIsNotStringMask));
568   __ Branch(&object_test, ne, at, Operand(zero_reg));
569   __ And(at, a2, Operand(kIsNotInternalizedMask));
570   __ Branch(possible_strings, ne, at, Operand(zero_reg));
571   __ GetObjectType(rhs, a3, a3);
572   __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE));
573   __ And(at, a3, Operand(kIsNotInternalizedMask));
574   __ Branch(possible_strings, ne, at, Operand(zero_reg));
575 
576   // Both are internalized strings. We already checked they weren't the same
577   // pointer so they are not equal.
578   __ Ret(USE_DELAY_SLOT);
579   __ li(v0, Operand(1));   // Non-zero indicates not equal.
580 
581   __ bind(&object_test);
582   __ Branch(not_both_strings, lt, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
583   __ GetObjectType(rhs, a2, a3);
584   __ Branch(not_both_strings, lt, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
585 
586   // If both objects are undetectable, they are equal.  Otherwise, they
587   // are not equal, since they are different objects and an object is not
588   // equal to undefined.
589   __ lw(a3, FieldMemOperand(lhs, HeapObject::kMapOffset));
590   __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset));
591   __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset));
592   __ and_(a0, a2, a3);
593   __ And(a0, a0, Operand(1 << Map::kIsUndetectable));
594   __ Ret(USE_DELAY_SLOT);
595   __ xori(v0, a0, 1 << Map::kIsUndetectable);
596 }
597 
598 
CompareICStub_CheckInputType(MacroAssembler * masm,Register input,Register scratch,CompareICState::State expected,Label * fail)599 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
600                                          Register scratch,
601                                          CompareICState::State expected,
602                                          Label* fail) {
603   Label ok;
604   if (expected == CompareICState::SMI) {
605     __ JumpIfNotSmi(input, fail);
606   } else if (expected == CompareICState::NUMBER) {
607     __ JumpIfSmi(input, &ok);
608     __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
609                 DONT_DO_SMI_CHECK);
610   }
611   // We could be strict about internalized/string here, but as long as
612   // hydrogen doesn't care, the stub doesn't have to care either.
613   __ bind(&ok);
614 }
615 
616 
617 // On entry a1 and a2 are the values to be compared.
618 // On exit a0 is 0, positive or negative to indicate the result of
619 // the comparison.
GenerateGeneric(MacroAssembler * masm)620 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
621   Register lhs = a1;
622   Register rhs = a0;
623   Condition cc = GetCondition();
624 
625   Label miss;
626   CompareICStub_CheckInputType(masm, lhs, a2, left(), &miss);
627   CompareICStub_CheckInputType(masm, rhs, a3, right(), &miss);
628 
629   Label slow;  // Call builtin.
630   Label not_smis, both_loaded_as_doubles;
631 
632   Label not_two_smis, smi_done;
633   __ Or(a2, a1, a0);
634   __ JumpIfNotSmi(a2, &not_two_smis);
635   __ sra(a1, a1, 1);
636   __ sra(a0, a0, 1);
637   __ Ret(USE_DELAY_SLOT);
638   __ subu(v0, a1, a0);
639   __ bind(&not_two_smis);
640 
641   // NOTICE! This code is only reached after a smi-fast-case check, so
642   // it is certain that at least one operand isn't a smi.
643 
644   // Handle the case where the objects are identical.  Either returns the answer
645   // or goes to slow.  Only falls through if the objects were not identical.
646   EmitIdenticalObjectComparison(masm, &slow, cc);
647 
648   // If either is a Smi (we know that not both are), then they can only
649   // be strictly equal if the other is a HeapNumber.
650   STATIC_ASSERT(kSmiTag == 0);
651   DCHECK_EQ(0, Smi::FromInt(0));
652   __ And(t2, lhs, Operand(rhs));
653   __ JumpIfNotSmi(t2, &not_smis, t0);
654   // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
655   // 1) Return the answer.
656   // 2) Go to slow.
657   // 3) Fall through to both_loaded_as_doubles.
658   // 4) Jump to rhs_not_nan.
659   // In cases 3 and 4 we have found out we were dealing with a number-number
660   // comparison and the numbers have been loaded into f12 and f14 as doubles,
661   // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
662   EmitSmiNonsmiComparison(masm, lhs, rhs,
663                           &both_loaded_as_doubles, &slow, strict());
664 
665   __ bind(&both_loaded_as_doubles);
666   // f12, f14 are the double representations of the left hand side
667   // and the right hand side if we have FPU. Otherwise a2, a3 represent
668   // left hand side and a0, a1 represent right hand side.
669   Label nan;
670   __ li(t0, Operand(LESS));
671   __ li(t1, Operand(GREATER));
672   __ li(t2, Operand(EQUAL));
673 
674   // Check if either rhs or lhs is NaN.
675   __ BranchF(NULL, &nan, eq, f12, f14);
676 
677   // Check if LESS condition is satisfied. If true, move conditionally
678   // result to v0.
679   if (!IsMipsArchVariant(kMips32r6)) {
680     __ c(OLT, D, f12, f14);
681     __ Movt(v0, t0);
682     // Use previous check to store conditionally to v0 oposite condition
683     // (GREATER). If rhs is equal to lhs, this will be corrected in next
684     // check.
685     __ Movf(v0, t1);
686     // Check if EQUAL condition is satisfied. If true, move conditionally
687     // result to v0.
688     __ c(EQ, D, f12, f14);
689     __ Movt(v0, t2);
690   } else {
691     Label skip;
692     __ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14);
693     __ mov(v0, t0);  // Return LESS as result.
694 
695     __ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14);
696     __ mov(v0, t2);  // Return EQUAL as result.
697 
698     __ mov(v0, t1);  // Return GREATER as result.
699     __ bind(&skip);
700   }
701 
702   __ Ret();
703 
704   __ bind(&nan);
705   // NaN comparisons always fail.
706   // Load whatever we need in v0 to make the comparison fail.
707   DCHECK(is_int16(GREATER) && is_int16(LESS));
708   __ Ret(USE_DELAY_SLOT);
709   if (cc == lt || cc == le) {
710     __ li(v0, Operand(GREATER));
711   } else {
712     __ li(v0, Operand(LESS));
713   }
714 
715 
716   __ bind(&not_smis);
717   // At this point we know we are dealing with two different objects,
718   // and neither of them is a Smi. The objects are in lhs_ and rhs_.
719   if (strict()) {
720     // This returns non-equal for some object types, or falls through if it
721     // was not lucky.
722     EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
723   }
724 
725   Label check_for_internalized_strings;
726   Label flat_string_check;
727   // Check for heap-number-heap-number comparison. Can jump to slow case,
728   // or load both doubles and jump to the code that handles
729   // that case. If the inputs are not doubles then jumps to
730   // check_for_internalized_strings.
731   // In this case a2 will contain the type of lhs_.
732   EmitCheckForTwoHeapNumbers(masm,
733                              lhs,
734                              rhs,
735                              &both_loaded_as_doubles,
736                              &check_for_internalized_strings,
737                              &flat_string_check);
738 
739   __ bind(&check_for_internalized_strings);
740   if (cc == eq && !strict()) {
741     // Returns an answer for two internalized strings or two
742     // detectable objects.
743     // Otherwise jumps to string case or not both strings case.
744     // Assumes that a2 is the type of lhs_ on entry.
745     EmitCheckForInternalizedStringsOrObjects(
746         masm, lhs, rhs, &flat_string_check, &slow);
747   }
748 
749   // Check for both being sequential one-byte strings,
750   // and inline if that is the case.
751   __ bind(&flat_string_check);
752 
753   __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, a2, a3, &slow);
754 
755   __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
756                       a3);
757   if (cc == eq) {
758     StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, a2, a3, t0);
759   } else {
760     StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, a2, a3, t0,
761                                                     t1);
762   }
763   // Never falls through to here.
764 
765   __ bind(&slow);
766   // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
767   // a1 (rhs) second.
768   __ Push(lhs, rhs);
769   // Figure out which native to call and setup the arguments.
770   Builtins::JavaScript native;
771   if (cc == eq) {
772     native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
773   } else {
774     native = Builtins::COMPARE;
775     int ncr;  // NaN compare result.
776     if (cc == lt || cc == le) {
777       ncr = GREATER;
778     } else {
779       DCHECK(cc == gt || cc == ge);  // Remaining cases.
780       ncr = LESS;
781     }
782     __ li(a0, Operand(Smi::FromInt(ncr)));
783     __ push(a0);
784   }
785 
786   // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
787   // tagged as a small integer.
788   __ InvokeBuiltin(native, JUMP_FUNCTION);
789 
790   __ bind(&miss);
791   GenerateMiss(masm);
792 }
793 
794 
Generate(MacroAssembler * masm)795 void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
796   __ mov(t9, ra);
797   __ pop(ra);
798   __ PushSafepointRegisters();
799   __ Jump(t9);
800 }
801 
802 
Generate(MacroAssembler * masm)803 void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
804   __ mov(t9, ra);
805   __ pop(ra);
806   __ PopSafepointRegisters();
807   __ Jump(t9);
808 }
809 
810 
Generate(MacroAssembler * masm)811 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
812   // We don't allow a GC during a store buffer overflow so there is no need to
813   // store the registers in any particular way, but we do have to store and
814   // restore them.
815   __ MultiPush(kJSCallerSaved | ra.bit());
816   if (save_doubles()) {
817     __ MultiPushFPU(kCallerSavedFPU);
818   }
819   const int argument_count = 1;
820   const int fp_argument_count = 0;
821   const Register scratch = a1;
822 
823   AllowExternalCallThatCantCauseGC scope(masm);
824   __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
825   __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
826   __ CallCFunction(
827       ExternalReference::store_buffer_overflow_function(isolate()),
828       argument_count);
829   if (save_doubles()) {
830     __ MultiPopFPU(kCallerSavedFPU);
831   }
832 
833   __ MultiPop(kJSCallerSaved | ra.bit());
834   __ Ret();
835 }
836 
837 
Generate(MacroAssembler * masm)838 void MathPowStub::Generate(MacroAssembler* masm) {
839   const Register base = a1;
840   const Register exponent = MathPowTaggedDescriptor::exponent();
841   DCHECK(exponent.is(a2));
842   const Register heapnumbermap = t1;
843   const Register heapnumber = v0;
844   const DoubleRegister double_base = f2;
845   const DoubleRegister double_exponent = f4;
846   const DoubleRegister double_result = f0;
847   const DoubleRegister double_scratch = f6;
848   const FPURegister single_scratch = f8;
849   const Register scratch = t5;
850   const Register scratch2 = t3;
851 
852   Label call_runtime, done, int_exponent;
853   if (exponent_type() == ON_STACK) {
854     Label base_is_smi, unpack_exponent;
855     // The exponent and base are supplied as arguments on the stack.
856     // This can only happen if the stub is called from non-optimized code.
857     // Load input parameters from stack to double registers.
858     __ lw(base, MemOperand(sp, 1 * kPointerSize));
859     __ lw(exponent, MemOperand(sp, 0 * kPointerSize));
860 
861     __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
862 
863     __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
864     __ lw(scratch, FieldMemOperand(base, JSObject::kMapOffset));
865     __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
866 
867     __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
868     __ jmp(&unpack_exponent);
869 
870     __ bind(&base_is_smi);
871     __ mtc1(scratch, single_scratch);
872     __ cvt_d_w(double_base, single_scratch);
873     __ bind(&unpack_exponent);
874 
875     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
876 
877     __ lw(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
878     __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
879     __ ldc1(double_exponent,
880             FieldMemOperand(exponent, HeapNumber::kValueOffset));
881   } else if (exponent_type() == TAGGED) {
882     // Base is already in double_base.
883     __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
884 
885     __ ldc1(double_exponent,
886             FieldMemOperand(exponent, HeapNumber::kValueOffset));
887   }
888 
889   if (exponent_type() != INTEGER) {
890     Label int_exponent_convert;
891     // Detect integer exponents stored as double.
892     __ EmitFPUTruncate(kRoundToMinusInf,
893                        scratch,
894                        double_exponent,
895                        at,
896                        double_scratch,
897                        scratch2,
898                        kCheckForInexactConversion);
899     // scratch2 == 0 means there was no conversion error.
900     __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
901 
902     if (exponent_type() == ON_STACK) {
903       // Detect square root case.  Crankshaft detects constant +/-0.5 at
904       // compile time and uses DoMathPowHalf instead.  We then skip this check
905       // for non-constant cases of +/-0.5 as these hardly occur.
906       Label not_plus_half;
907 
908       // Test for 0.5.
909       __ Move(double_scratch, 0.5);
910       __ BranchF(USE_DELAY_SLOT,
911                  &not_plus_half,
912                  NULL,
913                  ne,
914                  double_exponent,
915                  double_scratch);
916       // double_scratch can be overwritten in the delay slot.
917       // Calculates square root of base.  Check for the special case of
918       // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
919       __ Move(double_scratch, -V8_INFINITY);
920       __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
921       __ neg_d(double_result, double_scratch);
922 
923       // Add +0 to convert -0 to +0.
924       __ add_d(double_scratch, double_base, kDoubleRegZero);
925       __ sqrt_d(double_result, double_scratch);
926       __ jmp(&done);
927 
928       __ bind(&not_plus_half);
929       __ Move(double_scratch, -0.5);
930       __ BranchF(USE_DELAY_SLOT,
931                  &call_runtime,
932                  NULL,
933                  ne,
934                  double_exponent,
935                  double_scratch);
936       // double_scratch can be overwritten in the delay slot.
937       // Calculates square root of base.  Check for the special case of
938       // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
939       __ Move(double_scratch, -V8_INFINITY);
940       __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
941       __ Move(double_result, kDoubleRegZero);
942 
943       // Add +0 to convert -0 to +0.
944       __ add_d(double_scratch, double_base, kDoubleRegZero);
945       __ Move(double_result, 1);
946       __ sqrt_d(double_scratch, double_scratch);
947       __ div_d(double_result, double_result, double_scratch);
948       __ jmp(&done);
949     }
950 
951     __ push(ra);
952     {
953       AllowExternalCallThatCantCauseGC scope(masm);
954       __ PrepareCallCFunction(0, 2, scratch2);
955       __ MovToFloatParameters(double_base, double_exponent);
956       __ CallCFunction(
957           ExternalReference::power_double_double_function(isolate()),
958           0, 2);
959     }
960     __ pop(ra);
961     __ MovFromFloatResult(double_result);
962     __ jmp(&done);
963 
964     __ bind(&int_exponent_convert);
965   }
966 
967   // Calculate power with integer exponent.
968   __ bind(&int_exponent);
969 
970   // Get two copies of exponent in the registers scratch and exponent.
971   if (exponent_type() == INTEGER) {
972     __ mov(scratch, exponent);
973   } else {
974     // Exponent has previously been stored into scratch as untagged integer.
975     __ mov(exponent, scratch);
976   }
977 
978   __ mov_d(double_scratch, double_base);  // Back up base.
979   __ Move(double_result, 1.0);
980 
981   // Get absolute value of exponent.
982   Label positive_exponent;
983   __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
984   __ Subu(scratch, zero_reg, scratch);
985   __ bind(&positive_exponent);
986 
987   Label while_true, no_carry, loop_end;
988   __ bind(&while_true);
989 
990   __ And(scratch2, scratch, 1);
991 
992   __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
993   __ mul_d(double_result, double_result, double_scratch);
994   __ bind(&no_carry);
995 
996   __ sra(scratch, scratch, 1);
997 
998   __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
999   __ mul_d(double_scratch, double_scratch, double_scratch);
1000 
1001   __ Branch(&while_true);
1002 
1003   __ bind(&loop_end);
1004 
1005   __ Branch(&done, ge, exponent, Operand(zero_reg));
1006   __ Move(double_scratch, 1.0);
1007   __ div_d(double_result, double_scratch, double_result);
1008   // Test whether result is zero.  Bail out to check for subnormal result.
1009   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
1010   __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
1011 
1012   // double_exponent may not contain the exponent value if the input was a
1013   // smi.  We set it with exponent value before bailing out.
1014   __ mtc1(exponent, single_scratch);
1015   __ cvt_d_w(double_exponent, single_scratch);
1016 
1017   // Returning or bailing out.
1018   Counters* counters = isolate()->counters();
1019   if (exponent_type() == ON_STACK) {
1020     // The arguments are still on the stack.
1021     __ bind(&call_runtime);
1022     __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
1023 
1024     // The stub is called from non-optimized code, which expects the result
1025     // as heap number in exponent.
1026     __ bind(&done);
1027     __ AllocateHeapNumber(
1028         heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
1029     __ sdc1(double_result,
1030             FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
1031     DCHECK(heapnumber.is(v0));
1032     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
1033     __ DropAndRet(2);
1034   } else {
1035     __ push(ra);
1036     {
1037       AllowExternalCallThatCantCauseGC scope(masm);
1038       __ PrepareCallCFunction(0, 2, scratch);
1039       __ MovToFloatParameters(double_base, double_exponent);
1040       __ CallCFunction(
1041           ExternalReference::power_double_double_function(isolate()),
1042           0, 2);
1043     }
1044     __ pop(ra);
1045     __ MovFromFloatResult(double_result);
1046 
1047     __ bind(&done);
1048     __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
1049     __ Ret();
1050   }
1051 }
1052 
1053 
NeedsImmovableCode()1054 bool CEntryStub::NeedsImmovableCode() {
1055   return true;
1056 }
1057 
1058 
GenerateStubsAheadOfTime(Isolate * isolate)1059 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
1060   CEntryStub::GenerateAheadOfTime(isolate);
1061   WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
1062   StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
1063   StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
1064   ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
1065   CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
1066   BinaryOpICStub::GenerateAheadOfTime(isolate);
1067   StoreRegistersStateStub::GenerateAheadOfTime(isolate);
1068   RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
1069   BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
1070 }
1071 
1072 
GenerateAheadOfTime(Isolate * isolate)1073 void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1074   StoreRegistersStateStub stub(isolate);
1075   stub.GetCode();
1076 }
1077 
1078 
GenerateAheadOfTime(Isolate * isolate)1079 void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1080   RestoreRegistersStateStub stub(isolate);
1081   stub.GetCode();
1082 }
1083 
1084 
GenerateFPStubs(Isolate * isolate)1085 void CodeStub::GenerateFPStubs(Isolate* isolate) {
1086   // Generate if not already in cache.
1087   SaveFPRegsMode mode = kSaveFPRegs;
1088   CEntryStub(isolate, 1, mode).GetCode();
1089   StoreBufferOverflowStub(isolate, mode).GetCode();
1090   isolate->set_fp_stubs_generated(true);
1091 }
1092 
1093 
GenerateAheadOfTime(Isolate * isolate)1094 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1095   CEntryStub stub(isolate, 1, kDontSaveFPRegs);
1096   stub.GetCode();
1097 }
1098 
1099 
Generate(MacroAssembler * masm)1100 void CEntryStub::Generate(MacroAssembler* masm) {
1101   // Called from JavaScript; parameters are on stack as if calling JS function
1102   // s0: number of arguments including receiver
1103   // s1: size of arguments excluding receiver
1104   // s2: pointer to builtin function
1105   // fp: frame pointer    (restored after C call)
1106   // sp: stack pointer    (restored as callee's sp after C call)
1107   // cp: current context  (C callee-saved)
1108 
1109   ProfileEntryHookStub::MaybeCallEntryHook(masm);
1110 
1111   // NOTE: s0-s2 hold the arguments of this function instead of a0-a2.
1112   // The reason for this is that these arguments would need to be saved anyway
1113   // so it's faster to set them up directly.
1114   // See MacroAssembler::PrepareCEntryArgs and PrepareCEntryFunction.
1115 
1116   // Compute the argv pointer in a callee-saved register.
1117   __ Addu(s1, sp, s1);
1118 
1119   // Enter the exit frame that transitions from JavaScript to C++.
1120   FrameScope scope(masm, StackFrame::MANUAL);
1121   __ EnterExitFrame(save_doubles());
1122 
1123   // s0: number of arguments  including receiver (C callee-saved)
1124   // s1: pointer to first argument (C callee-saved)
1125   // s2: pointer to builtin function (C callee-saved)
1126 
1127   // Prepare arguments for C routine.
1128   // a0 = argc
1129   __ mov(a0, s0);
1130   // a1 = argv (set in the delay slot after find_ra below).
1131 
1132   // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
1133   // also need to reserve the 4 argument slots on the stack.
1134 
1135   __ AssertStackIsAligned();
1136 
1137   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
1138 
1139   // To let the GC traverse the return address of the exit frames, we need to
1140   // know where the return address is. The CEntryStub is unmovable, so
1141   // we can store the address on the stack to be able to find it again and
1142   // we never have to restore it, because it will not change.
1143   { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
1144     // This branch-and-link sequence is needed to find the current PC on mips,
1145     // saved to the ra register.
1146     // Use masm-> here instead of the double-underscore macro since extra
1147     // coverage code can interfere with the proper calculation of ra.
1148     Label find_ra;
1149     masm->bal(&find_ra);  // bal exposes branch delay slot.
1150     masm->mov(a1, s1);
1151     masm->bind(&find_ra);
1152 
1153     // Adjust the value in ra to point to the correct return location, 2nd
1154     // instruction past the real call into C code (the jalr(t9)), and push it.
1155     // This is the return address of the exit frame.
1156     const int kNumInstructionsToJump = 5;
1157     masm->Addu(ra, ra, kNumInstructionsToJump * kPointerSize);
1158     masm->sw(ra, MemOperand(sp));  // This spot was reserved in EnterExitFrame.
1159     // Stack space reservation moved to the branch delay slot below.
1160     // Stack is still aligned.
1161 
1162     // Call the C routine.
1163     masm->mov(t9, s2);  // Function pointer to t9 to conform to ABI for PIC.
1164     masm->jalr(t9);
1165     // Set up sp in the delay slot.
1166     masm->addiu(sp, sp, -kCArgsSlotsSize);
1167     // Make sure the stored 'ra' points to this position.
1168     DCHECK_EQ(kNumInstructionsToJump,
1169               masm->InstructionsGeneratedSince(&find_ra));
1170   }
1171 
1172 
1173   // Runtime functions should not return 'the hole'.  Allowing it to escape may
1174   // lead to crashes in the IC code later.
1175   if (FLAG_debug_code) {
1176     Label okay;
1177     __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
1178     __ Branch(&okay, ne, v0, Operand(t0));
1179     __ stop("The hole escaped");
1180     __ bind(&okay);
1181   }
1182 
1183   // Check result for exception sentinel.
1184   Label exception_returned;
1185   __ LoadRoot(t0, Heap::kExceptionRootIndex);
1186   __ Branch(&exception_returned, eq, t0, Operand(v0));
1187 
1188   ExternalReference pending_exception_address(
1189       Isolate::kPendingExceptionAddress, isolate());
1190 
1191   // Check that there is no pending exception, otherwise we
1192   // should have returned the exception sentinel.
1193   if (FLAG_debug_code) {
1194     Label okay;
1195     __ li(a2, Operand(pending_exception_address));
1196     __ lw(a2, MemOperand(a2));
1197     __ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
1198     // Cannot use check here as it attempts to generate call into runtime.
1199     __ Branch(&okay, eq, t0, Operand(a2));
1200     __ stop("Unexpected pending exception");
1201     __ bind(&okay);
1202   }
1203 
1204   // Exit C frame and return.
1205   // v0:v1: result
1206   // sp: stack pointer
1207   // fp: frame pointer
1208   // s0: still holds argc (callee-saved).
1209   __ LeaveExitFrame(save_doubles(), s0, true, EMIT_RETURN);
1210 
1211   // Handling of exception.
1212   __ bind(&exception_returned);
1213 
1214   // Retrieve the pending exception.
1215   __ li(a2, Operand(pending_exception_address));
1216   __ lw(v0, MemOperand(a2));
1217 
1218   // Clear the pending exception.
1219   __ li(a3, Operand(isolate()->factory()->the_hole_value()));
1220   __ sw(a3, MemOperand(a2));
1221 
1222   // Special handling of termination exceptions which are uncatchable
1223   // by javascript code.
1224   Label throw_termination_exception;
1225   __ LoadRoot(t0, Heap::kTerminationExceptionRootIndex);
1226   __ Branch(&throw_termination_exception, eq, v0, Operand(t0));
1227 
1228   // Handle normal exception.
1229   __ Throw(v0);
1230 
1231   __ bind(&throw_termination_exception);
1232   __ ThrowUncatchable(v0);
1233 }
1234 
1235 
Generate(MacroAssembler * masm)1236 void JSEntryStub::Generate(MacroAssembler* masm) {
1237   Label invoke, handler_entry, exit;
1238   Isolate* isolate = masm->isolate();
1239 
1240   // Registers:
1241   // a0: entry address
1242   // a1: function
1243   // a2: receiver
1244   // a3: argc
1245   //
1246   // Stack:
1247   // 4 args slots
1248   // args
1249 
1250   ProfileEntryHookStub::MaybeCallEntryHook(masm);
1251 
1252   // Save callee saved registers on the stack.
1253   __ MultiPush(kCalleeSaved | ra.bit());
1254 
1255   // Save callee-saved FPU registers.
1256   __ MultiPushFPU(kCalleeSavedFPU);
1257   // Set up the reserved register for 0.0.
1258   __ Move(kDoubleRegZero, 0.0);
1259 
1260 
1261   // Load argv in s0 register.
1262   int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
1263   offset_to_argv += kNumCalleeSavedFPU * kDoubleSize;
1264 
1265   __ InitializeRootRegister();
1266   __ lw(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize));
1267 
1268   // We build an EntryFrame.
1269   __ li(t3, Operand(-1));  // Push a bad frame pointer to fail if it is used.
1270   int marker = type();
1271   __ li(t2, Operand(Smi::FromInt(marker)));
1272   __ li(t1, Operand(Smi::FromInt(marker)));
1273   __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
1274                                       isolate)));
1275   __ lw(t0, MemOperand(t0));
1276   __ Push(t3, t2, t1, t0);
1277   // Set up frame pointer for the frame to be pushed.
1278   __ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
1279 
1280   // Registers:
1281   // a0: entry_address
1282   // a1: function
1283   // a2: receiver_pointer
1284   // a3: argc
1285   // s0: argv
1286   //
1287   // Stack:
1288   // caller fp          |
1289   // function slot      | entry frame
1290   // context slot       |
1291   // bad fp (0xff...f)  |
1292   // callee saved registers + ra
1293   // 4 args slots
1294   // args
1295 
1296   // If this is the outermost JS call, set js_entry_sp value.
1297   Label non_outermost_js;
1298   ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
1299   __ li(t1, Operand(ExternalReference(js_entry_sp)));
1300   __ lw(t2, MemOperand(t1));
1301   __ Branch(&non_outermost_js, ne, t2, Operand(zero_reg));
1302   __ sw(fp, MemOperand(t1));
1303   __ li(t0, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1304   Label cont;
1305   __ b(&cont);
1306   __ nop();   // Branch delay slot nop.
1307   __ bind(&non_outermost_js);
1308   __ li(t0, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
1309   __ bind(&cont);
1310   __ push(t0);
1311 
1312   // Jump to a faked try block that does the invoke, with a faked catch
1313   // block that sets the pending exception.
1314   __ jmp(&invoke);
1315   __ bind(&handler_entry);
1316   handler_offset_ = handler_entry.pos();
1317   // Caught exception: Store result (exception) in the pending exception
1318   // field in the JSEnv and return a failure sentinel.  Coming in here the
1319   // fp will be invalid because the PushTryHandler below sets it to 0 to
1320   // signal the existence of the JSEntry frame.
1321   __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1322                                       isolate)));
1323   __ sw(v0, MemOperand(t0));  // We come back from 'invoke'. result is in v0.
1324   __ LoadRoot(v0, Heap::kExceptionRootIndex);
1325   __ b(&exit);  // b exposes branch delay slot.
1326   __ nop();   // Branch delay slot nop.
1327 
1328   // Invoke: Link this frame into the handler chain.  There's only one
1329   // handler block in this code object, so its index is 0.
1330   __ bind(&invoke);
1331   __ PushTryHandler(StackHandler::JS_ENTRY, 0);
1332   // If an exception not caught by another handler occurs, this handler
1333   // returns control to the code after the bal(&invoke) above, which
1334   // restores all kCalleeSaved registers (including cp and fp) to their
1335   // saved values before returning a failure to C.
1336 
1337   // Clear any pending exceptions.
1338   __ LoadRoot(t1, Heap::kTheHoleValueRootIndex);
1339   __ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1340                                       isolate)));
1341   __ sw(t1, MemOperand(t0));
1342 
1343   // Invoke the function by calling through JS entry trampoline builtin.
1344   // Notice that we cannot store a reference to the trampoline code directly in
1345   // this stub, because runtime stubs are not traversed when doing GC.
1346 
1347   // Registers:
1348   // a0: entry_address
1349   // a1: function
1350   // a2: receiver_pointer
1351   // a3: argc
1352   // s0: argv
1353   //
1354   // Stack:
1355   // handler frame
1356   // entry frame
1357   // callee saved registers + ra
1358   // 4 args slots
1359   // args
1360 
1361   if (type() == StackFrame::ENTRY_CONSTRUCT) {
1362     ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1363                                       isolate);
1364     __ li(t0, Operand(construct_entry));
1365   } else {
1366     ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
1367     __ li(t0, Operand(entry));
1368   }
1369   __ lw(t9, MemOperand(t0));  // Deref address.
1370 
1371   // Call JSEntryTrampoline.
1372   __ addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
1373   __ Call(t9);
1374 
1375   // Unlink this frame from the handler chain.
1376   __ PopTryHandler();
1377 
1378   __ bind(&exit);  // v0 holds result
1379   // Check if the current stack frame is marked as the outermost JS frame.
1380   Label non_outermost_js_2;
1381   __ pop(t1);
1382   __ Branch(&non_outermost_js_2,
1383             ne,
1384             t1,
1385             Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1386   __ li(t1, Operand(ExternalReference(js_entry_sp)));
1387   __ sw(zero_reg, MemOperand(t1));
1388   __ bind(&non_outermost_js_2);
1389 
1390   // Restore the top frame descriptors from the stack.
1391   __ pop(t1);
1392   __ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
1393                                       isolate)));
1394   __ sw(t1, MemOperand(t0));
1395 
1396   // Reset the stack to the callee saved registers.
1397   __ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
1398 
1399   // Restore callee-saved fpu registers.
1400   __ MultiPopFPU(kCalleeSavedFPU);
1401 
1402   // Restore callee saved registers from the stack.
1403   __ MultiPop(kCalleeSaved | ra.bit());
1404   // Return.
1405   __ Jump(ra);
1406 }
1407 
1408 
1409 // Uses registers a0 to t0.
1410 // Expected input (depending on whether args are in registers or on the stack):
1411 // * object: a0 or at sp + 1 * kPointerSize.
1412 // * function: a1 or at sp.
1413 //
1414 // An inlined call site may have been generated before calling this stub.
1415 // In this case the offset to the inline site to patch is passed on the stack,
1416 // in the safepoint slot for register t0.
Generate(MacroAssembler * masm)1417 void InstanceofStub::Generate(MacroAssembler* masm) {
1418   // Call site inlining and patching implies arguments in registers.
1419   DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
1420   // ReturnTrueFalse is only implemented for inlined call sites.
1421   DCHECK(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
1422 
1423   // Fixed register usage throughout the stub:
1424   const Register object = a0;  // Object (lhs).
1425   Register map = a3;  // Map of the object.
1426   const Register function = a1;  // Function (rhs).
1427   const Register prototype = t0;  // Prototype of the function.
1428   const Register inline_site = t5;
1429   const Register scratch = a2;
1430 
1431   const int32_t kDeltaToLoadBoolResult = 5 * kPointerSize;
1432 
1433   Label slow, loop, is_instance, is_not_instance, not_js_object;
1434 
1435   if (!HasArgsInRegisters()) {
1436     __ lw(object, MemOperand(sp, 1 * kPointerSize));
1437     __ lw(function, MemOperand(sp, 0));
1438   }
1439 
1440   // Check that the left hand is a JS object and load map.
1441   __ JumpIfSmi(object, &not_js_object);
1442   __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
1443 
1444   // If there is a call site cache don't look in the global cache, but do the
1445   // real lookup and update the call site cache.
1446   if (!HasCallSiteInlineCheck()) {
1447     Label miss;
1448     __ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex);
1449     __ Branch(&miss, ne, function, Operand(at));
1450     __ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex);
1451     __ Branch(&miss, ne, map, Operand(at));
1452     __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
1453     __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1454 
1455     __ bind(&miss);
1456   }
1457 
1458   // Get the prototype of the function.
1459   __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
1460 
1461   // Check that the function prototype is a JS object.
1462   __ JumpIfSmi(prototype, &slow);
1463   __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
1464 
1465   // Update the global instanceof or call site inlined cache with the current
1466   // map and function. The cached answer will be set when it is known below.
1467   if (!HasCallSiteInlineCheck()) {
1468     __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1469     __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
1470   } else {
1471     DCHECK(HasArgsInRegisters());
1472     // Patch the (relocated) inlined map check.
1473 
1474     // The offset was stored in t0 safepoint slot.
1475     // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
1476     __ LoadFromSafepointRegisterSlot(scratch, t0);
1477     __ Subu(inline_site, ra, scratch);
1478     // Get the map location in scratch and patch it.
1479     __ GetRelocatedValue(inline_site, scratch, v1);  // v1 used as scratch.
1480     __ sw(map, FieldMemOperand(scratch, Cell::kValueOffset));
1481   }
1482 
1483   // Register mapping: a3 is object map and t0 is function prototype.
1484   // Get prototype of object into a2.
1485   __ lw(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
1486 
1487   // We don't need map any more. Use it as a scratch register.
1488   Register scratch2 = map;
1489   map = no_reg;
1490 
1491   // Loop through the prototype chain looking for the function prototype.
1492   __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
1493   __ bind(&loop);
1494   __ Branch(&is_instance, eq, scratch, Operand(prototype));
1495   __ Branch(&is_not_instance, eq, scratch, Operand(scratch2));
1496   __ lw(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
1497   __ lw(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
1498   __ Branch(&loop);
1499 
1500   __ bind(&is_instance);
1501   DCHECK(Smi::FromInt(0) == 0);
1502   if (!HasCallSiteInlineCheck()) {
1503     __ mov(v0, zero_reg);
1504     __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
1505   } else {
1506     // Patch the call site to return true.
1507     __ LoadRoot(v0, Heap::kTrueValueRootIndex);
1508     __ Addu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
1509     // Get the boolean result location in scratch and patch it.
1510     __ PatchRelocatedValue(inline_site, scratch, v0);
1511 
1512     if (!ReturnTrueFalseObject()) {
1513       DCHECK_EQ(Smi::FromInt(0), 0);
1514       __ mov(v0, zero_reg);
1515     }
1516   }
1517   __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1518 
1519   __ bind(&is_not_instance);
1520   if (!HasCallSiteInlineCheck()) {
1521     __ li(v0, Operand(Smi::FromInt(1)));
1522     __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
1523   } else {
1524     // Patch the call site to return false.
1525     __ LoadRoot(v0, Heap::kFalseValueRootIndex);
1526     __ Addu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
1527     // Get the boolean result location in scratch and patch it.
1528     __ PatchRelocatedValue(inline_site, scratch, v0);
1529 
1530     if (!ReturnTrueFalseObject()) {
1531       __ li(v0, Operand(Smi::FromInt(1)));
1532     }
1533   }
1534 
1535   __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1536 
1537   Label object_not_null, object_not_null_or_smi;
1538   __ bind(&not_js_object);
1539   // Before null, smi and string value checks, check that the rhs is a function
1540   // as for a non-function rhs an exception needs to be thrown.
1541   __ JumpIfSmi(function, &slow);
1542   __ GetObjectType(function, scratch2, scratch);
1543   __ Branch(&slow, ne, scratch, Operand(JS_FUNCTION_TYPE));
1544 
1545   // Null is not instance of anything.
1546   __ Branch(&object_not_null,
1547             ne,
1548             scratch,
1549             Operand(isolate()->factory()->null_value()));
1550   __ li(v0, Operand(Smi::FromInt(1)));
1551   __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1552 
1553   __ bind(&object_not_null);
1554   // Smi values are not instances of anything.
1555   __ JumpIfNotSmi(object, &object_not_null_or_smi);
1556   __ li(v0, Operand(Smi::FromInt(1)));
1557   __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1558 
1559   __ bind(&object_not_null_or_smi);
1560   // String values are not instances of anything.
1561   __ IsObjectJSStringType(object, scratch, &slow);
1562   __ li(v0, Operand(Smi::FromInt(1)));
1563   __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1564 
1565   // Slow-case.  Tail call builtin.
1566   __ bind(&slow);
1567   if (!ReturnTrueFalseObject()) {
1568     if (HasArgsInRegisters()) {
1569       __ Push(a0, a1);
1570     }
1571   __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
1572   } else {
1573     {
1574       FrameScope scope(masm, StackFrame::INTERNAL);
1575       __ Push(a0, a1);
1576       __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
1577     }
1578     __ mov(a0, v0);
1579     __ LoadRoot(v0, Heap::kTrueValueRootIndex);
1580     __ DropAndRet(HasArgsInRegisters() ? 0 : 2, eq, a0, Operand(zero_reg));
1581     __ LoadRoot(v0, Heap::kFalseValueRootIndex);
1582     __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1583   }
1584 }
1585 
1586 
Generate(MacroAssembler * masm)1587 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1588   Label miss;
1589   Register receiver = LoadDescriptor::ReceiverRegister();
1590   NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, a3,
1591                                                           t0, &miss);
1592   __ bind(&miss);
1593   PropertyAccessCompiler::TailCallBuiltin(
1594       masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1595 }
1596 
1597 
GenerateReadElement(MacroAssembler * masm)1598 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
1599   // The displacement is the offset of the last parameter (if any)
1600   // relative to the frame pointer.
1601   const int kDisplacement =
1602       StandardFrameConstants::kCallerSPOffset - kPointerSize;
1603   DCHECK(a1.is(ArgumentsAccessReadDescriptor::index()));
1604   DCHECK(a0.is(ArgumentsAccessReadDescriptor::parameter_count()));
1605 
1606   // Check that the key is a smiGenerateReadElement.
1607   Label slow;
1608   __ JumpIfNotSmi(a1, &slow);
1609 
1610   // Check if the calling frame is an arguments adaptor frame.
1611   Label adaptor;
1612   __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1613   __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
1614   __ Branch(&adaptor,
1615             eq,
1616             a3,
1617             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1618 
1619   // Check index (a1) against formal parameters count limit passed in
1620   // through register a0. Use unsigned comparison to get negative
1621   // check for free.
1622   __ Branch(&slow, hs, a1, Operand(a0));
1623 
1624   // Read the argument from the stack and return it.
1625   __ subu(a3, a0, a1);
1626   __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
1627   __ Addu(a3, fp, Operand(t3));
1628   __ Ret(USE_DELAY_SLOT);
1629   __ lw(v0, MemOperand(a3, kDisplacement));
1630 
1631   // Arguments adaptor case: Check index (a1) against actual arguments
1632   // limit found in the arguments adaptor frame. Use unsigned
1633   // comparison to get negative check for free.
1634   __ bind(&adaptor);
1635   __ lw(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
1636   __ Branch(&slow, Ugreater_equal, a1, Operand(a0));
1637 
1638   // Read the argument from the adaptor frame and return it.
1639   __ subu(a3, a0, a1);
1640   __ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
1641   __ Addu(a3, a2, Operand(t3));
1642   __ Ret(USE_DELAY_SLOT);
1643   __ lw(v0, MemOperand(a3, kDisplacement));
1644 
1645   // Slow-case: Handle non-smi or out-of-bounds access to arguments
1646   // by calling the runtime system.
1647   __ bind(&slow);
1648   __ push(a1);
1649   __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
1650 }
1651 
1652 
GenerateNewSloppySlow(MacroAssembler * masm)1653 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
1654   // sp[0] : number of parameters
1655   // sp[4] : receiver displacement
1656   // sp[8] : function
1657   // Check if the calling frame is an arguments adaptor frame.
1658   Label runtime;
1659   __ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1660   __ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
1661   __ Branch(&runtime,
1662             ne,
1663             a2,
1664             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1665 
1666   // Patch the arguments.length and the parameters pointer in the current frame.
1667   __ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
1668   __ sw(a2, MemOperand(sp, 0 * kPointerSize));
1669   __ sll(t3, a2, 1);
1670   __ Addu(a3, a3, Operand(t3));
1671   __ addiu(a3, a3, StandardFrameConstants::kCallerSPOffset);
1672   __ sw(a3, MemOperand(sp, 1 * kPointerSize));
1673 
1674   __ bind(&runtime);
1675   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1676 }
1677 
1678 
GenerateNewSloppyFast(MacroAssembler * masm)1679 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
1680   // Stack layout:
1681   //  sp[0] : number of parameters (tagged)
1682   //  sp[4] : address of receiver argument
1683   //  sp[8] : function
1684   // Registers used over whole function:
1685   //  t2 : allocated object (tagged)
1686   //  t5 : mapped parameter count (tagged)
1687 
1688   __ lw(a1, MemOperand(sp, 0 * kPointerSize));
1689   // a1 = parameter count (tagged)
1690 
1691   // Check if the calling frame is an arguments adaptor frame.
1692   Label runtime;
1693   Label adaptor_frame, try_allocate;
1694   __ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1695   __ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
1696   __ Branch(&adaptor_frame,
1697             eq,
1698             a2,
1699             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1700 
1701   // No adaptor, parameter count = argument count.
1702   __ mov(a2, a1);
1703   __ b(&try_allocate);
1704   __ nop();   // Branch delay slot nop.
1705 
1706   // We have an adaptor frame. Patch the parameters pointer.
1707   __ bind(&adaptor_frame);
1708   __ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
1709   __ sll(t6, a2, 1);
1710   __ Addu(a3, a3, Operand(t6));
1711   __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
1712   __ sw(a3, MemOperand(sp, 1 * kPointerSize));
1713 
1714   // a1 = parameter count (tagged)
1715   // a2 = argument count (tagged)
1716   // Compute the mapped parameter count = min(a1, a2) in a1.
1717   Label skip_min;
1718   __ Branch(&skip_min, lt, a1, Operand(a2));
1719   __ mov(a1, a2);
1720   __ bind(&skip_min);
1721 
1722   __ bind(&try_allocate);
1723 
1724   // Compute the sizes of backing store, parameter map, and arguments object.
1725   // 1. Parameter map, has 2 extra words containing context and backing store.
1726   const int kParameterMapHeaderSize =
1727       FixedArray::kHeaderSize + 2 * kPointerSize;
1728   // If there are no mapped parameters, we do not need the parameter_map.
1729   Label param_map_size;
1730   DCHECK_EQ(0, Smi::FromInt(0));
1731   __ Branch(USE_DELAY_SLOT, &param_map_size, eq, a1, Operand(zero_reg));
1732   __ mov(t5, zero_reg);  // In delay slot: param map size = 0 when a1 == 0.
1733   __ sll(t5, a1, 1);
1734   __ addiu(t5, t5, kParameterMapHeaderSize);
1735   __ bind(&param_map_size);
1736 
1737   // 2. Backing store.
1738   __ sll(t6, a2, 1);
1739   __ Addu(t5, t5, Operand(t6));
1740   __ Addu(t5, t5, Operand(FixedArray::kHeaderSize));
1741 
1742   // 3. Arguments object.
1743   __ Addu(t5, t5, Operand(Heap::kSloppyArgumentsObjectSize));
1744 
1745   // Do the allocation of all three objects in one go.
1746   __ Allocate(t5, v0, a3, t0, &runtime, TAG_OBJECT);
1747 
1748   // v0 = address of new object(s) (tagged)
1749   // a2 = argument count (smi-tagged)
1750   // Get the arguments boilerplate from the current native context into t0.
1751   const int kNormalOffset =
1752       Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
1753   const int kAliasedOffset =
1754       Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX);
1755 
1756   __ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1757   __ lw(t0, FieldMemOperand(t0, GlobalObject::kNativeContextOffset));
1758   Label skip2_ne, skip2_eq;
1759   __ Branch(&skip2_ne, ne, a1, Operand(zero_reg));
1760   __ lw(t0, MemOperand(t0, kNormalOffset));
1761   __ bind(&skip2_ne);
1762 
1763   __ Branch(&skip2_eq, eq, a1, Operand(zero_reg));
1764   __ lw(t0, MemOperand(t0, kAliasedOffset));
1765   __ bind(&skip2_eq);
1766 
1767   // v0 = address of new object (tagged)
1768   // a1 = mapped parameter count (tagged)
1769   // a2 = argument count (smi-tagged)
1770   // t0 = address of arguments map (tagged)
1771   __ sw(t0, FieldMemOperand(v0, JSObject::kMapOffset));
1772   __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
1773   __ sw(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
1774   __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
1775 
1776   // Set up the callee in-object property.
1777   STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
1778   __ lw(a3, MemOperand(sp, 2 * kPointerSize));
1779   __ AssertNotSmi(a3);
1780   const int kCalleeOffset = JSObject::kHeaderSize +
1781       Heap::kArgumentsCalleeIndex * kPointerSize;
1782   __ sw(a3, FieldMemOperand(v0, kCalleeOffset));
1783 
1784   // Use the length (smi tagged) and set that as an in-object property too.
1785   __ AssertSmi(a2);
1786   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1787   const int kLengthOffset = JSObject::kHeaderSize +
1788       Heap::kArgumentsLengthIndex * kPointerSize;
1789   __ sw(a2, FieldMemOperand(v0, kLengthOffset));
1790 
1791   // Set up the elements pointer in the allocated arguments object.
1792   // If we allocated a parameter map, t0 will point there, otherwise
1793   // it will point to the backing store.
1794   __ Addu(t0, v0, Operand(Heap::kSloppyArgumentsObjectSize));
1795   __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));
1796 
1797   // v0 = address of new object (tagged)
1798   // a1 = mapped parameter count (tagged)
1799   // a2 = argument count (tagged)
1800   // t0 = address of parameter map or backing store (tagged)
1801   // Initialize parameter map. If there are no mapped arguments, we're done.
1802   Label skip_parameter_map;
1803   Label skip3;
1804   __ Branch(&skip3, ne, a1, Operand(Smi::FromInt(0)));
1805   // Move backing store address to a3, because it is
1806   // expected there when filling in the unmapped arguments.
1807   __ mov(a3, t0);
1808   __ bind(&skip3);
1809 
1810   __ Branch(&skip_parameter_map, eq, a1, Operand(Smi::FromInt(0)));
1811 
1812   __ LoadRoot(t2, Heap::kSloppyArgumentsElementsMapRootIndex);
1813   __ sw(t2, FieldMemOperand(t0, FixedArray::kMapOffset));
1814   __ Addu(t2, a1, Operand(Smi::FromInt(2)));
1815   __ sw(t2, FieldMemOperand(t0, FixedArray::kLengthOffset));
1816   __ sw(cp, FieldMemOperand(t0, FixedArray::kHeaderSize + 0 * kPointerSize));
1817   __ sll(t6, a1, 1);
1818   __ Addu(t2, t0, Operand(t6));
1819   __ Addu(t2, t2, Operand(kParameterMapHeaderSize));
1820   __ sw(t2, FieldMemOperand(t0, FixedArray::kHeaderSize + 1 * kPointerSize));
1821 
1822   // Copy the parameter slots and the holes in the arguments.
1823   // We need to fill in mapped_parameter_count slots. They index the context,
1824   // where parameters are stored in reverse order, at
1825   //   MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
1826   // The mapped parameter thus need to get indices
1827   //   MIN_CONTEXT_SLOTS+parameter_count-1 ..
1828   //       MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
1829   // We loop from right to left.
1830   Label parameters_loop, parameters_test;
1831   __ mov(t2, a1);
1832   __ lw(t5, MemOperand(sp, 0 * kPointerSize));
1833   __ Addu(t5, t5, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
1834   __ Subu(t5, t5, Operand(a1));
1835   __ LoadRoot(t3, Heap::kTheHoleValueRootIndex);
1836   __ sll(t6, t2, 1);
1837   __ Addu(a3, t0, Operand(t6));
1838   __ Addu(a3, a3, Operand(kParameterMapHeaderSize));
1839 
1840   // t2 = loop variable (tagged)
1841   // a1 = mapping index (tagged)
1842   // a3 = address of backing store (tagged)
1843   // t0 = address of parameter map (tagged)
1844   // t1 = temporary scratch (a.o., for address calculation)
1845   // t3 = the hole value
1846   __ jmp(&parameters_test);
1847 
1848   __ bind(&parameters_loop);
1849   __ Subu(t2, t2, Operand(Smi::FromInt(1)));
1850   __ sll(t1, t2, 1);
1851   __ Addu(t1, t1, Operand(kParameterMapHeaderSize - kHeapObjectTag));
1852   __ Addu(t6, t0, t1);
1853   __ sw(t5, MemOperand(t6));
1854   __ Subu(t1, t1, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
1855   __ Addu(t6, a3, t1);
1856   __ sw(t3, MemOperand(t6));
1857   __ Addu(t5, t5, Operand(Smi::FromInt(1)));
1858   __ bind(&parameters_test);
1859   __ Branch(&parameters_loop, ne, t2, Operand(Smi::FromInt(0)));
1860 
1861   __ bind(&skip_parameter_map);
1862   // a2 = argument count (tagged)
1863   // a3 = address of backing store (tagged)
1864   // t1 = scratch
1865   // Copy arguments header and remaining slots (if there are any).
1866   __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
1867   __ sw(t1, FieldMemOperand(a3, FixedArray::kMapOffset));
1868   __ sw(a2, FieldMemOperand(a3, FixedArray::kLengthOffset));
1869 
1870   Label arguments_loop, arguments_test;
1871   __ mov(t5, a1);
1872   __ lw(t0, MemOperand(sp, 1 * kPointerSize));
1873   __ sll(t6, t5, 1);
1874   __ Subu(t0, t0, Operand(t6));
1875   __ jmp(&arguments_test);
1876 
1877   __ bind(&arguments_loop);
1878   __ Subu(t0, t0, Operand(kPointerSize));
1879   __ lw(t2, MemOperand(t0, 0));
1880   __ sll(t6, t5, 1);
1881   __ Addu(t1, a3, Operand(t6));
1882   __ sw(t2, FieldMemOperand(t1, FixedArray::kHeaderSize));
1883   __ Addu(t5, t5, Operand(Smi::FromInt(1)));
1884 
1885   __ bind(&arguments_test);
1886   __ Branch(&arguments_loop, lt, t5, Operand(a2));
1887 
1888   // Return and remove the on-stack parameters.
1889   __ DropAndRet(3);
1890 
1891   // Do the runtime call to allocate the arguments object.
1892   // a2 = argument count (tagged)
1893   __ bind(&runtime);
1894   __ sw(a2, MemOperand(sp, 0 * kPointerSize));  // Patch argument count.
1895   __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1896 }
1897 
1898 
Generate(MacroAssembler * masm)1899 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
1900   // Return address is in ra.
1901   Label slow;
1902 
1903   Register receiver = LoadDescriptor::ReceiverRegister();
1904   Register key = LoadDescriptor::NameRegister();
1905 
1906   // Check that the key is an array index, that is Uint32.
1907   __ And(t0, key, Operand(kSmiTagMask | kSmiSignMask));
1908   __ Branch(&slow, ne, t0, Operand(zero_reg));
1909 
1910   // Everything is fine, call runtime.
1911   __ Push(receiver, key);  // Receiver, key.
1912 
1913   // Perform tail call to the entry.
1914   __ TailCallExternalReference(
1915       ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
1916                         masm->isolate()),
1917       2, 1);
1918 
1919   __ bind(&slow);
1920   PropertyAccessCompiler::TailCallBuiltin(
1921       masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1922 }
1923 
1924 
GenerateNewStrict(MacroAssembler * masm)1925 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1926   // sp[0] : number of parameters
1927   // sp[4] : receiver displacement
1928   // sp[8] : function
1929   // Check if the calling frame is an arguments adaptor frame.
1930   Label adaptor_frame, try_allocate, runtime;
1931   __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1932   __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
1933   __ Branch(&adaptor_frame,
1934             eq,
1935             a3,
1936             Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1937 
1938   // Get the length from the frame.
1939   __ lw(a1, MemOperand(sp, 0));
1940   __ Branch(&try_allocate);
1941 
1942   // Patch the arguments.length and the parameters pointer.
1943   __ bind(&adaptor_frame);
1944   __ lw(a1, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
1945   __ sw(a1, MemOperand(sp, 0));
1946   __ sll(at, a1, kPointerSizeLog2 - kSmiTagSize);
1947   __ Addu(a3, a2, Operand(at));
1948 
1949   __ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
1950   __ sw(a3, MemOperand(sp, 1 * kPointerSize));
1951 
1952   // Try the new space allocation. Start out with computing the size
1953   // of the arguments object and the elements array in words.
1954   Label add_arguments_object;
1955   __ bind(&try_allocate);
1956   __ Branch(&add_arguments_object, eq, a1, Operand(zero_reg));
1957   __ srl(a1, a1, kSmiTagSize);
1958 
1959   __ Addu(a1, a1, Operand(FixedArray::kHeaderSize / kPointerSize));
1960   __ bind(&add_arguments_object);
1961   __ Addu(a1, a1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
1962 
1963   // Do the allocation of both objects in one go.
1964   __ Allocate(a1, v0, a2, a3, &runtime,
1965               static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
1966 
1967   // Get the arguments boilerplate from the current native context.
1968   __ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1969   __ lw(t0, FieldMemOperand(t0, GlobalObject::kNativeContextOffset));
1970   __ lw(t0, MemOperand(
1971                 t0, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX)));
1972 
1973   __ sw(t0, FieldMemOperand(v0, JSObject::kMapOffset));
1974   __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
1975   __ sw(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
1976   __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
1977 
1978   // Get the length (smi tagged) and set that as an in-object property too.
1979   STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1980   __ lw(a1, MemOperand(sp, 0 * kPointerSize));
1981   __ AssertSmi(a1);
1982   __ sw(a1, FieldMemOperand(v0, JSObject::kHeaderSize +
1983       Heap::kArgumentsLengthIndex * kPointerSize));
1984 
1985   Label done;
1986   __ Branch(&done, eq, a1, Operand(zero_reg));
1987 
1988   // Get the parameters pointer from the stack.
1989   __ lw(a2, MemOperand(sp, 1 * kPointerSize));
1990 
1991   // Set up the elements pointer in the allocated arguments object and
1992   // initialize the header in the elements fixed array.
1993   __ Addu(t0, v0, Operand(Heap::kStrictArgumentsObjectSize));
1994   __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));
1995   __ LoadRoot(a3, Heap::kFixedArrayMapRootIndex);
1996   __ sw(a3, FieldMemOperand(t0, FixedArray::kMapOffset));
1997   __ sw(a1, FieldMemOperand(t0, FixedArray::kLengthOffset));
1998   // Untag the length for the loop.
1999   __ srl(a1, a1, kSmiTagSize);
2000 
2001   // Copy the fixed array slots.
2002   Label loop;
2003   // Set up t0 to point to the first array slot.
2004   __ Addu(t0, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2005   __ bind(&loop);
2006   // Pre-decrement a2 with kPointerSize on each iteration.
2007   // Pre-decrement in order to skip receiver.
2008   __ Addu(a2, a2, Operand(-kPointerSize));
2009   __ lw(a3, MemOperand(a2));
2010   // Post-increment t0 with kPointerSize on each iteration.
2011   __ sw(a3, MemOperand(t0));
2012   __ Addu(t0, t0, Operand(kPointerSize));
2013   __ Subu(a1, a1, Operand(1));
2014   __ Branch(&loop, ne, a1, Operand(zero_reg));
2015 
2016   // Return and remove the on-stack parameters.
2017   __ bind(&done);
2018   __ DropAndRet(3);
2019 
2020   // Do the runtime call to allocate the arguments object.
2021   __ bind(&runtime);
2022   __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
2023 }
2024 
2025 
Generate(MacroAssembler * masm)2026 void RegExpExecStub::Generate(MacroAssembler* masm) {
2027   // Just jump directly to runtime if native RegExp is not selected at compile
2028   // time or if regexp entry in generated code is turned off runtime switch or
2029   // at compilation.
2030 #ifdef V8_INTERPRETED_REGEXP
2031   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
2032 #else  // V8_INTERPRETED_REGEXP
2033 
2034   // Stack frame on entry.
2035   //  sp[0]: last_match_info (expected JSArray)
2036   //  sp[4]: previous index
2037   //  sp[8]: subject string
2038   //  sp[12]: JSRegExp object
2039 
2040   const int kLastMatchInfoOffset = 0 * kPointerSize;
2041   const int kPreviousIndexOffset = 1 * kPointerSize;
2042   const int kSubjectOffset = 2 * kPointerSize;
2043   const int kJSRegExpOffset = 3 * kPointerSize;
2044 
2045   Label runtime;
2046   // Allocation of registers for this function. These are in callee save
2047   // registers and will be preserved by the call to the native RegExp code, as
2048   // this code is called using the normal C calling convention. When calling
2049   // directly from generated code the native RegExp code will not do a GC and
2050   // therefore the content of these registers are safe to use after the call.
2051   // MIPS - using s0..s2, since we are not using CEntry Stub.
2052   Register subject = s0;
2053   Register regexp_data = s1;
2054   Register last_match_info_elements = s2;
2055 
2056   // Ensure that a RegExp stack is allocated.
2057   ExternalReference address_of_regexp_stack_memory_address =
2058       ExternalReference::address_of_regexp_stack_memory_address(
2059           isolate());
2060   ExternalReference address_of_regexp_stack_memory_size =
2061       ExternalReference::address_of_regexp_stack_memory_size(isolate());
2062   __ li(a0, Operand(address_of_regexp_stack_memory_size));
2063   __ lw(a0, MemOperand(a0, 0));
2064   __ Branch(&runtime, eq, a0, Operand(zero_reg));
2065 
2066   // Check that the first argument is a JSRegExp object.
2067   __ lw(a0, MemOperand(sp, kJSRegExpOffset));
2068   STATIC_ASSERT(kSmiTag == 0);
2069   __ JumpIfSmi(a0, &runtime);
2070   __ GetObjectType(a0, a1, a1);
2071   __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
2072 
2073   // Check that the RegExp has been compiled (data contains a fixed array).
2074   __ lw(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
2075   if (FLAG_debug_code) {
2076     __ SmiTst(regexp_data, t0);
2077     __ Check(nz,
2078              kUnexpectedTypeForRegExpDataFixedArrayExpected,
2079              t0,
2080              Operand(zero_reg));
2081     __ GetObjectType(regexp_data, a0, a0);
2082     __ Check(eq,
2083              kUnexpectedTypeForRegExpDataFixedArrayExpected,
2084              a0,
2085              Operand(FIXED_ARRAY_TYPE));
2086   }
2087 
2088   // regexp_data: RegExp data (FixedArray)
2089   // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
2090   __ lw(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
2091   __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
2092 
2093   // regexp_data: RegExp data (FixedArray)
2094   // Check that the number of captures fit in the static offsets vector buffer.
2095   __ lw(a2,
2096          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2097   // Check (number_of_captures + 1) * 2 <= offsets vector size
2098   // Or          number_of_captures * 2 <= offsets vector size - 2
2099   // Multiplying by 2 comes for free since a2 is smi-tagged.
2100   STATIC_ASSERT(kSmiTag == 0);
2101   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
2102   STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
2103   __ Branch(
2104       &runtime, hi, a2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
2105 
2106   // Reset offset for possibly sliced string.
2107   __ mov(t0, zero_reg);
2108   __ lw(subject, MemOperand(sp, kSubjectOffset));
2109   __ JumpIfSmi(subject, &runtime);
2110   __ mov(a3, subject);  // Make a copy of the original subject string.
2111   __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
2112   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
2113   // subject: subject string
2114   // a3: subject string
2115   // a0: subject string instance type
2116   // regexp_data: RegExp data (FixedArray)
2117   // Handle subject string according to its encoding and representation:
2118   // (1) Sequential string?  If yes, go to (5).
2119   // (2) Anything but sequential or cons?  If yes, go to (6).
2120   // (3) Cons string.  If the string is flat, replace subject with first string.
2121   //     Otherwise bailout.
2122   // (4) Is subject external?  If yes, go to (7).
2123   // (5) Sequential string.  Load regexp code according to encoding.
2124   // (E) Carry on.
2125   /// [...]
2126 
2127   // Deferred code at the end of the stub:
2128   // (6) Not a long external string?  If yes, go to (8).
2129   // (7) External string.  Make it, offset-wise, look like a sequential string.
2130   //     Go to (5).
2131   // (8) Short external string or not a string?  If yes, bail out to runtime.
2132   // (9) Sliced string.  Replace subject with parent.  Go to (4).
2133 
2134   Label seq_string /* 5 */, external_string /* 7 */,
2135         check_underlying /* 4 */, not_seq_nor_cons /* 6 */,
2136         not_long_external /* 8 */;
2137 
2138   // (1) Sequential string?  If yes, go to (5).
2139   __ And(a1,
2140          a0,
2141          Operand(kIsNotStringMask |
2142                  kStringRepresentationMask |
2143                  kShortExternalStringMask));
2144   STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
2145   __ Branch(&seq_string, eq, a1, Operand(zero_reg));  // Go to (5).
2146 
2147   // (2) Anything but sequential or cons?  If yes, go to (6).
2148   STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2149   STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
2150   STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2151   STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
2152   // Go to (6).
2153   __ Branch(&not_seq_nor_cons, ge, a1, Operand(kExternalStringTag));
2154 
2155   // (3) Cons string.  Check that it's flat.
2156   // Replace subject with first string and reload instance type.
2157   __ lw(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
2158   __ LoadRoot(a1, Heap::kempty_stringRootIndex);
2159   __ Branch(&runtime, ne, a0, Operand(a1));
2160   __ lw(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
2161 
2162   // (4) Is subject external?  If yes, go to (7).
2163   __ bind(&check_underlying);
2164   __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
2165   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
2166   STATIC_ASSERT(kSeqStringTag == 0);
2167   __ And(at, a0, Operand(kStringRepresentationMask));
2168   // The underlying external string is never a short external string.
2169   STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
2170   STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
2171   __ Branch(&external_string, ne, at, Operand(zero_reg));  // Go to (7).
2172 
2173   // (5) Sequential string.  Load regexp code according to encoding.
2174   __ bind(&seq_string);
2175   // subject: sequential subject string (or look-alike, external string)
2176   // a3: original subject string
2177   // Load previous index and check range before a3 is overwritten.  We have to
2178   // use a3 instead of subject here because subject might have been only made
2179   // to look like a sequential string when it actually is an external string.
2180   __ lw(a1, MemOperand(sp, kPreviousIndexOffset));
2181   __ JumpIfNotSmi(a1, &runtime);
2182   __ lw(a3, FieldMemOperand(a3, String::kLengthOffset));
2183   __ Branch(&runtime, ls, a3, Operand(a1));
2184   __ sra(a1, a1, kSmiTagSize);  // Untag the Smi.
2185 
2186   STATIC_ASSERT(kStringEncodingMask == 4);
2187   STATIC_ASSERT(kOneByteStringTag == 4);
2188   STATIC_ASSERT(kTwoByteStringTag == 0);
2189   __ And(a0, a0, Operand(kStringEncodingMask));  // Non-zero for one-byte.
2190   __ lw(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
2191   __ sra(a3, a0, 2);  // a3 is 1 for ASCII, 0 for UC16 (used below).
2192   __ lw(t1, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
2193   __ Movz(t9, t1, a0);  // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
2194 
2195   // (E) Carry on.  String handling is done.
2196   // t9: irregexp code
2197   // Check that the irregexp code has been generated for the actual string
2198   // encoding. If it has, the field contains a code object otherwise it contains
2199   // a smi (code flushing support).
2200   __ JumpIfSmi(t9, &runtime);
2201 
2202   // a1: previous index
2203   // a3: encoding of subject string (1 if one_byte, 0 if two_byte);
2204   // t9: code
2205   // subject: Subject string
2206   // regexp_data: RegExp data (FixedArray)
2207   // All checks done. Now push arguments for native regexp code.
2208   __ IncrementCounter(isolate()->counters()->regexp_entry_native(),
2209                       1, a0, a2);
2210 
2211   // Isolates: note we add an additional parameter here (isolate pointer).
2212   const int kRegExpExecuteArguments = 9;
2213   const int kParameterRegisters = 4;
2214   __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
2215 
2216   // Stack pointer now points to cell where return address is to be written.
2217   // Arguments are before that on the stack or in registers, meaning we
2218   // treat the return address as argument 5. Thus every argument after that
2219   // needs to be shifted back by 1. Since DirectCEntryStub will handle
2220   // allocating space for the c argument slots, we don't need to calculate
2221   // that into the argument positions on the stack. This is how the stack will
2222   // look (sp meaning the value of sp at this moment):
2223   // [sp + 5] - Argument 9
2224   // [sp + 4] - Argument 8
2225   // [sp + 3] - Argument 7
2226   // [sp + 2] - Argument 6
2227   // [sp + 1] - Argument 5
2228   // [sp + 0] - saved ra
2229 
2230   // Argument 9: Pass current isolate address.
2231   // CFunctionArgumentOperand handles MIPS stack argument slots.
2232   __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
2233   __ sw(a0, MemOperand(sp, 5 * kPointerSize));
2234 
2235   // Argument 8: Indicate that this is a direct call from JavaScript.
2236   __ li(a0, Operand(1));
2237   __ sw(a0, MemOperand(sp, 4 * kPointerSize));
2238 
2239   // Argument 7: Start (high end) of backtracking stack memory area.
2240   __ li(a0, Operand(address_of_regexp_stack_memory_address));
2241   __ lw(a0, MemOperand(a0, 0));
2242   __ li(a2, Operand(address_of_regexp_stack_memory_size));
2243   __ lw(a2, MemOperand(a2, 0));
2244   __ addu(a0, a0, a2);
2245   __ sw(a0, MemOperand(sp, 3 * kPointerSize));
2246 
2247   // Argument 6: Set the number of capture registers to zero to force global
2248   // regexps to behave as non-global.  This does not affect non-global regexps.
2249   __ mov(a0, zero_reg);
2250   __ sw(a0, MemOperand(sp, 2 * kPointerSize));
2251 
2252   // Argument 5: static offsets vector buffer.
2253   __ li(a0, Operand(
2254         ExternalReference::address_of_static_offsets_vector(isolate())));
2255   __ sw(a0, MemOperand(sp, 1 * kPointerSize));
2256 
2257   // For arguments 4 and 3 get string length, calculate start of string data
2258   // calculate the shift of the index (0 for one-byte and 1 for two-byte).
2259   __ Addu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
2260   __ Xor(a3, a3, Operand(1));  // 1 for 2-byte str, 0 for 1-byte.
2261   // Load the length from the original subject string from the previous stack
2262   // frame. Therefore we have to use fp, which points exactly to two pointer
2263   // sizes below the previous sp. (Because creating a new stack frame pushes
2264   // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
2265   __ lw(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
2266   // If slice offset is not 0, load the length from the original sliced string.
2267   // Argument 4, a3: End of string data
2268   // Argument 3, a2: Start of string data
2269   // Prepare start and end index of the input.
2270   __ sllv(t1, t0, a3);
2271   __ addu(t0, t2, t1);
2272   __ sllv(t1, a1, a3);
2273   __ addu(a2, t0, t1);
2274 
2275   __ lw(t2, FieldMemOperand(subject, String::kLengthOffset));
2276   __ sra(t2, t2, kSmiTagSize);
2277   __ sllv(t1, t2, a3);
2278   __ addu(a3, t0, t1);
2279   // Argument 2 (a1): Previous index.
2280   // Already there
2281 
2282   // Argument 1 (a0): Subject string.
2283   __ mov(a0, subject);
2284 
2285   // Locate the code entry and call it.
2286   __ Addu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
2287   DirectCEntryStub stub(isolate());
2288   stub.GenerateCall(masm, t9);
2289 
2290   __ LeaveExitFrame(false, no_reg, true);
2291 
2292   // v0: result
2293   // subject: subject string (callee saved)
2294   // regexp_data: RegExp data (callee saved)
2295   // last_match_info_elements: Last match info elements (callee saved)
2296   // Check the result.
2297   Label success;
2298   __ Branch(&success, eq, v0, Operand(1));
2299   // We expect exactly one result since we force the called regexp to behave
2300   // as non-global.
2301   Label failure;
2302   __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
2303   // If not exception it can only be retry. Handle that in the runtime system.
2304   __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
2305   // Result must now be exception. If there is no pending exception already a
2306   // stack overflow (on the backtrack stack) was detected in RegExp code but
2307   // haven't created the exception yet. Handle that in the runtime system.
2308   // TODO(592): Rerunning the RegExp to get the stack overflow exception.
2309   __ li(a1, Operand(isolate()->factory()->the_hole_value()));
2310   __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2311                                       isolate())));
2312   __ lw(v0, MemOperand(a2, 0));
2313   __ Branch(&runtime, eq, v0, Operand(a1));
2314 
2315   __ sw(a1, MemOperand(a2, 0));  // Clear pending exception.
2316 
2317   // Check if the exception is a termination. If so, throw as uncatchable.
2318   __ LoadRoot(a0, Heap::kTerminationExceptionRootIndex);
2319   Label termination_exception;
2320   __ Branch(&termination_exception, eq, v0, Operand(a0));
2321 
2322   __ Throw(v0);
2323 
2324   __ bind(&termination_exception);
2325   __ ThrowUncatchable(v0);
2326 
2327   __ bind(&failure);
2328   // For failure and exception return null.
2329   __ li(v0, Operand(isolate()->factory()->null_value()));
2330   __ DropAndRet(4);
2331 
2332   // Process the result from the native regexp code.
2333   __ bind(&success);
2334   __ lw(a1,
2335          FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2336   // Calculate number of capture registers (number_of_captures + 1) * 2.
2337   // Multiplying by 2 comes for free since r1 is smi-tagged.
2338   STATIC_ASSERT(kSmiTag == 0);
2339   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
2340   __ Addu(a1, a1, Operand(2));  // a1 was a smi.
2341 
2342   __ lw(a0, MemOperand(sp, kLastMatchInfoOffset));
2343   __ JumpIfSmi(a0, &runtime);
2344   __ GetObjectType(a0, a2, a2);
2345   __ Branch(&runtime, ne, a2, Operand(JS_ARRAY_TYPE));
2346   // Check that the JSArray is in fast case.
2347   __ lw(last_match_info_elements,
2348         FieldMemOperand(a0, JSArray::kElementsOffset));
2349   __ lw(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
2350   __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
2351   __ Branch(&runtime, ne, a0, Operand(at));
2352   // Check that the last match info has space for the capture registers and the
2353   // additional information.
2354   __ lw(a0,
2355         FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
2356   __ Addu(a2, a1, Operand(RegExpImpl::kLastMatchOverhead));
2357   __ sra(at, a0, kSmiTagSize);
2358   __ Branch(&runtime, gt, a2, Operand(at));
2359 
2360   // a1: number of capture registers
2361   // subject: subject string
2362   // Store the capture count.
2363   __ sll(a2, a1, kSmiTagSize + kSmiShiftSize);  // To smi.
2364   __ sw(a2, FieldMemOperand(last_match_info_elements,
2365                              RegExpImpl::kLastCaptureCountOffset));
2366   // Store last subject and last input.
2367   __ sw(subject,
2368          FieldMemOperand(last_match_info_elements,
2369                          RegExpImpl::kLastSubjectOffset));
2370   __ mov(a2, subject);
2371   __ RecordWriteField(last_match_info_elements,
2372                       RegExpImpl::kLastSubjectOffset,
2373                       subject,
2374                       t3,
2375                       kRAHasNotBeenSaved,
2376                       kDontSaveFPRegs);
2377   __ mov(subject, a2);
2378   __ sw(subject,
2379          FieldMemOperand(last_match_info_elements,
2380                          RegExpImpl::kLastInputOffset));
2381   __ RecordWriteField(last_match_info_elements,
2382                       RegExpImpl::kLastInputOffset,
2383                       subject,
2384                       t3,
2385                       kRAHasNotBeenSaved,
2386                       kDontSaveFPRegs);
2387 
2388   // Get the static offsets vector filled by the native regexp code.
2389   ExternalReference address_of_static_offsets_vector =
2390       ExternalReference::address_of_static_offsets_vector(isolate());
2391   __ li(a2, Operand(address_of_static_offsets_vector));
2392 
2393   // a1: number of capture registers
2394   // a2: offsets vector
2395   Label next_capture, done;
2396   // Capture register counter starts from number of capture registers and
2397   // counts down until wrapping after zero.
2398   __ Addu(a0,
2399          last_match_info_elements,
2400          Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
2401   __ bind(&next_capture);
2402   __ Subu(a1, a1, Operand(1));
2403   __ Branch(&done, lt, a1, Operand(zero_reg));
2404   // Read the value from the static offsets vector buffer.
2405   __ lw(a3, MemOperand(a2, 0));
2406   __ addiu(a2, a2, kPointerSize);
2407   // Store the smi value in the last match info.
2408   __ sll(a3, a3, kSmiTagSize);  // Convert to Smi.
2409   __ sw(a3, MemOperand(a0, 0));
2410   __ Branch(&next_capture, USE_DELAY_SLOT);
2411   __ addiu(a0, a0, kPointerSize);  // In branch delay slot.
2412 
2413   __ bind(&done);
2414 
2415   // Return last match info.
2416   __ lw(v0, MemOperand(sp, kLastMatchInfoOffset));
2417   __ DropAndRet(4);
2418 
2419   // Do the runtime call to execute the regexp.
2420   __ bind(&runtime);
2421   __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
2422 
2423   // Deferred code for string handling.
2424   // (6) Not a long external string?  If yes, go to (8).
2425   __ bind(&not_seq_nor_cons);
2426   // Go to (8).
2427   __ Branch(&not_long_external, gt, a1, Operand(kExternalStringTag));
2428 
2429   // (7) External string.  Make it, offset-wise, look like a sequential string.
2430   __ bind(&external_string);
2431   __ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
2432   __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
2433   if (FLAG_debug_code) {
2434     // Assert that we do not have a cons or slice (indirect strings) here.
2435     // Sequential strings have already been ruled out.
2436     __ And(at, a0, Operand(kIsIndirectStringMask));
2437     __ Assert(eq,
2438               kExternalStringExpectedButNotFound,
2439               at,
2440               Operand(zero_reg));
2441   }
2442   __ lw(subject,
2443         FieldMemOperand(subject, ExternalString::kResourceDataOffset));
2444   // Move the pointer so that offset-wise, it looks like a sequential string.
2445   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2446   __ Subu(subject,
2447           subject,
2448           SeqTwoByteString::kHeaderSize - kHeapObjectTag);
2449   __ jmp(&seq_string);    // Go to (5).
2450 
2451   // (8) Short external string or not a string?  If yes, bail out to runtime.
2452   __ bind(&not_long_external);
2453   STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
2454   __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
2455   __ Branch(&runtime, ne, at, Operand(zero_reg));
2456 
2457   // (9) Sliced string.  Replace subject with parent.  Go to (4).
2458   // Load offset into t0 and replace subject string with parent.
2459   __ lw(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
2460   __ sra(t0, t0, kSmiTagSize);
2461   __ lw(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
2462   __ jmp(&check_underlying);  // Go to (4).
2463 #endif  // V8_INTERPRETED_REGEXP
2464 }
2465 
2466 
GenerateRecordCallTarget(MacroAssembler * masm)2467 static void GenerateRecordCallTarget(MacroAssembler* masm) {
2468   // Cache the called function in a feedback vector slot.  Cache states
2469   // are uninitialized, monomorphic (indicated by a JSFunction), and
2470   // megamorphic.
2471   // a0 : number of arguments to the construct function
2472   // a1 : the function to call
2473   // a2 : Feedback vector
2474   // a3 : slot in feedback vector (Smi)
2475   Label initialize, done, miss, megamorphic, not_array_function;
2476 
2477   DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
2478             masm->isolate()->heap()->megamorphic_symbol());
2479   DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2480             masm->isolate()->heap()->uninitialized_symbol());
2481 
2482   // Load the cache state into t0.
2483   __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize);
2484   __ Addu(t0, a2, Operand(t0));
2485   __ lw(t0, FieldMemOperand(t0, FixedArray::kHeaderSize));
2486 
2487   // A monomorphic cache hit or an already megamorphic state: invoke the
2488   // function without changing the state.
2489   __ Branch(&done, eq, t0, Operand(a1));
2490 
2491   if (!FLAG_pretenuring_call_new) {
2492     // If we came here, we need to see if we are the array function.
2493     // If we didn't have a matching function, and we didn't find the megamorph
2494     // sentinel, then we have in the slot either some other function or an
2495     // AllocationSite. Do a map check on the object in a3.
2496     __ lw(t1, FieldMemOperand(t0, 0));
2497     __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2498     __ Branch(&miss, ne, t1, Operand(at));
2499 
2500     // Make sure the function is the Array() function
2501     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, t0);
2502     __ Branch(&megamorphic, ne, a1, Operand(t0));
2503     __ jmp(&done);
2504   }
2505 
2506   __ bind(&miss);
2507 
2508   // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2509   // megamorphic.
2510   __ LoadRoot(at, Heap::kUninitializedSymbolRootIndex);
2511   __ Branch(&initialize, eq, t0, Operand(at));
2512   // MegamorphicSentinel is an immortal immovable object (undefined) so no
2513   // write-barrier is needed.
2514   __ bind(&megamorphic);
2515   __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize);
2516   __ Addu(t0, a2, Operand(t0));
2517   __ LoadRoot(at, Heap::kMegamorphicSymbolRootIndex);
2518   __ sw(at, FieldMemOperand(t0, FixedArray::kHeaderSize));
2519   __ jmp(&done);
2520 
2521   // An uninitialized cache is patched with the function.
2522   __ bind(&initialize);
2523   if (!FLAG_pretenuring_call_new) {
2524     // Make sure the function is the Array() function.
2525     __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, t0);
2526     __ Branch(&not_array_function, ne, a1, Operand(t0));
2527 
2528     // The target function is the Array constructor,
2529     // Create an AllocationSite if we don't already have it, store it in the
2530     // slot.
2531     {
2532       FrameScope scope(masm, StackFrame::INTERNAL);
2533       const RegList kSavedRegs =
2534           1 << 4  |  // a0
2535           1 << 5  |  // a1
2536           1 << 6  |  // a2
2537           1 << 7;    // a3
2538 
2539       // Arguments register must be smi-tagged to call out.
2540       __ SmiTag(a0);
2541       __ MultiPush(kSavedRegs);
2542 
2543       CreateAllocationSiteStub create_stub(masm->isolate());
2544       __ CallStub(&create_stub);
2545 
2546       __ MultiPop(kSavedRegs);
2547       __ SmiUntag(a0);
2548     }
2549     __ Branch(&done);
2550 
2551     __ bind(&not_array_function);
2552   }
2553 
2554   __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize);
2555   __ Addu(t0, a2, Operand(t0));
2556   __ Addu(t0, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2557   __ sw(a1, MemOperand(t0, 0));
2558 
2559   __ Push(t0, a2, a1);
2560   __ RecordWrite(a2, t0, a1, kRAHasNotBeenSaved, kDontSaveFPRegs,
2561                  EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
2562   __ Pop(t0, a2, a1);
2563 
2564   __ bind(&done);
2565 }
2566 
2567 
EmitContinueIfStrictOrNative(MacroAssembler * masm,Label * cont)2568 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2569   __ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2570   __ lw(t0, FieldMemOperand(a3, SharedFunctionInfo::kCompilerHintsOffset));
2571 
2572   // Do not transform the receiver for strict mode functions.
2573   int32_t strict_mode_function_mask =
2574       1 <<  (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize);
2575   // Do not transform the receiver for native (Compilerhints already in a3).
2576   int32_t native_mask = 1 << (SharedFunctionInfo::kNative + kSmiTagSize);
2577   __ And(at, t0, Operand(strict_mode_function_mask | native_mask));
2578   __ Branch(cont, ne, at, Operand(zero_reg));
2579 }
2580 
2581 
EmitSlowCase(MacroAssembler * masm,int argc,Label * non_function)2582 static void EmitSlowCase(MacroAssembler* masm,
2583                          int argc,
2584                          Label* non_function) {
2585   // Check for function proxy.
2586   __ Branch(non_function, ne, t0, Operand(JS_FUNCTION_PROXY_TYPE));
2587   __ push(a1);  // put proxy as additional argument
2588   __ li(a0, Operand(argc + 1, RelocInfo::NONE32));
2589   __ mov(a2, zero_reg);
2590   __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
2591   {
2592     Handle<Code> adaptor =
2593         masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
2594     __ Jump(adaptor, RelocInfo::CODE_TARGET);
2595   }
2596 
2597   // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
2598   // of the original receiver from the call site).
2599   __ bind(non_function);
2600   __ sw(a1, MemOperand(sp, argc * kPointerSize));
2601   __ li(a0, Operand(argc));  // Set up the number of arguments.
2602   __ mov(a2, zero_reg);
2603   __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION);
2604   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2605           RelocInfo::CODE_TARGET);
2606 }
2607 
2608 
EmitWrapCase(MacroAssembler * masm,int argc,Label * cont)2609 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
2610   // Wrap the receiver and patch it back onto the stack.
2611   { FrameScope frame_scope(masm, StackFrame::INTERNAL);
2612     __ Push(a1, a3);
2613     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2614     __ pop(a1);
2615   }
2616   __ Branch(USE_DELAY_SLOT, cont);
2617   __ sw(v0, MemOperand(sp, argc * kPointerSize));
2618 }
2619 
2620 
CallFunctionNoFeedback(MacroAssembler * masm,int argc,bool needs_checks,bool call_as_method)2621 static void CallFunctionNoFeedback(MacroAssembler* masm,
2622                                    int argc, bool needs_checks,
2623                                    bool call_as_method) {
2624   // a1 : the function to call
2625   Label slow, non_function, wrap, cont;
2626 
2627   if (needs_checks) {
2628     // Check that the function is really a JavaScript function.
2629     // a1: pushed function (to be verified)
2630     __ JumpIfSmi(a1, &non_function);
2631 
2632     // Goto slow case if we do not have a function.
2633     __ GetObjectType(a1, t0, t0);
2634     __ Branch(&slow, ne, t0, Operand(JS_FUNCTION_TYPE));
2635   }
2636 
2637   // Fast-case: Invoke the function now.
2638   // a1: pushed function
2639   ParameterCount actual(argc);
2640 
2641   if (call_as_method) {
2642     if (needs_checks) {
2643       EmitContinueIfStrictOrNative(masm, &cont);
2644     }
2645 
2646     // Compute the receiver in sloppy mode.
2647     __ lw(a3, MemOperand(sp, argc * kPointerSize));
2648 
2649     if (needs_checks) {
2650       __ JumpIfSmi(a3, &wrap);
2651       __ GetObjectType(a3, t0, t0);
2652       __ Branch(&wrap, lt, t0, Operand(FIRST_SPEC_OBJECT_TYPE));
2653     } else {
2654       __ jmp(&wrap);
2655     }
2656 
2657     __ bind(&cont);
2658   }
2659 
2660   __ InvokeFunction(a1, actual, JUMP_FUNCTION, NullCallWrapper());
2661 
2662   if (needs_checks) {
2663     // Slow-case: Non-function called.
2664     __ bind(&slow);
2665     EmitSlowCase(masm, argc, &non_function);
2666   }
2667 
2668   if (call_as_method) {
2669     __ bind(&wrap);
2670     // Wrap the receiver and patch it back onto the stack.
2671     EmitWrapCase(masm, argc, &cont);
2672   }
2673 }
2674 
2675 
Generate(MacroAssembler * masm)2676 void CallFunctionStub::Generate(MacroAssembler* masm) {
2677   CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
2678 }
2679 
2680 
Generate(MacroAssembler * masm)2681 void CallConstructStub::Generate(MacroAssembler* masm) {
2682   // a0 : number of arguments
2683   // a1 : the function to call
2684   // a2 : feedback vector
2685   // a3 : (only if a2 is not undefined) slot in feedback vector (Smi)
2686   Label slow, non_function_call;
2687 
2688   // Check that the function is not a smi.
2689   __ JumpIfSmi(a1, &non_function_call);
2690   // Check that the function is a JSFunction.
2691   __ GetObjectType(a1, t0, t0);
2692   __ Branch(&slow, ne, t0, Operand(JS_FUNCTION_TYPE));
2693 
2694   if (RecordCallTarget()) {
2695     GenerateRecordCallTarget(masm);
2696 
2697     __ sll(at, a3, kPointerSizeLog2 - kSmiTagSize);
2698     __ Addu(t1, a2, at);
2699     if (FLAG_pretenuring_call_new) {
2700       // Put the AllocationSite from the feedback vector into a2.
2701       // By adding kPointerSize we encode that we know the AllocationSite
2702       // entry is at the feedback vector slot given by a3 + 1.
2703       __ lw(a2, FieldMemOperand(t1, FixedArray::kHeaderSize + kPointerSize));
2704     } else {
2705       Label feedback_register_initialized;
2706       // Put the AllocationSite from the feedback vector into a2, or undefined.
2707       __ lw(a2, FieldMemOperand(t1, FixedArray::kHeaderSize));
2708       __ lw(t1, FieldMemOperand(a2, AllocationSite::kMapOffset));
2709       __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2710       __ Branch(&feedback_register_initialized, eq, t1, Operand(at));
2711       __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
2712       __ bind(&feedback_register_initialized);
2713     }
2714 
2715     __ AssertUndefinedOrAllocationSite(a2, t1);
2716   }
2717 
2718   // Jump to the function-specific construct stub.
2719   Register jmp_reg = t0;
2720   __ lw(jmp_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2721   __ lw(jmp_reg, FieldMemOperand(jmp_reg,
2722                                  SharedFunctionInfo::kConstructStubOffset));
2723   __ Addu(at, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
2724   __ Jump(at);
2725 
2726   // a0: number of arguments
2727   // a1: called object
2728   // t0: object type
2729   Label do_call;
2730   __ bind(&slow);
2731   __ Branch(&non_function_call, ne, t0, Operand(JS_FUNCTION_PROXY_TYPE));
2732   __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
2733   __ jmp(&do_call);
2734 
2735   __ bind(&non_function_call);
2736   __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
2737   __ bind(&do_call);
2738   // Set expected number of arguments to zero (not changing r0).
2739   __ li(a2, Operand(0, RelocInfo::NONE32));
2740   __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2741            RelocInfo::CODE_TARGET);
2742 }
2743 
2744 
EmitLoadTypeFeedbackVector(MacroAssembler * masm,Register vector)2745 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2746   __ lw(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2747   __ lw(vector, FieldMemOperand(vector,
2748                                 JSFunction::kSharedFunctionInfoOffset));
2749   __ lw(vector, FieldMemOperand(vector,
2750                                 SharedFunctionInfo::kFeedbackVectorOffset));
2751 }
2752 
2753 
Generate(MacroAssembler * masm)2754 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
2755   // a1 - function
2756   // a3 - slot id
2757   Label miss;
2758 
2759   EmitLoadTypeFeedbackVector(masm, a2);
2760 
2761   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, at);
2762   __ Branch(&miss, ne, a1, Operand(at));
2763 
2764   __ li(a0, Operand(arg_count()));
2765   __ sll(at, a3, kPointerSizeLog2 - kSmiTagSize);
2766   __ Addu(at, a2, Operand(at));
2767   __ lw(t0, FieldMemOperand(at, FixedArray::kHeaderSize));
2768 
2769   // Verify that t0 contains an AllocationSite
2770   __ lw(t1, FieldMemOperand(t0, HeapObject::kMapOffset));
2771   __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2772   __ Branch(&miss, ne, t1, Operand(at));
2773 
2774   __ mov(a2, t0);
2775   ArrayConstructorStub stub(masm->isolate(), arg_count());
2776   __ TailCallStub(&stub);
2777 
2778   __ bind(&miss);
2779   GenerateMiss(masm);
2780 
2781   // The slow case, we need this no matter what to complete a call after a miss.
2782   CallFunctionNoFeedback(masm,
2783                          arg_count(),
2784                          true,
2785                          CallAsMethod());
2786 
2787   // Unreachable.
2788   __ stop("Unexpected code address");
2789 }
2790 
2791 
Generate(MacroAssembler * masm)2792 void CallICStub::Generate(MacroAssembler* masm) {
2793   // r1 - function
2794   // r3 - slot id (Smi)
2795   Label extra_checks_or_miss, slow_start;
2796   Label slow, non_function, wrap, cont;
2797   Label have_js_function;
2798   int argc = arg_count();
2799   ParameterCount actual(argc);
2800 
2801   EmitLoadTypeFeedbackVector(masm, a2);
2802 
2803   // The checks. First, does r1 match the recorded monomorphic target?
2804   __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize);
2805   __ Addu(t0, a2, Operand(t0));
2806   __ lw(t0, FieldMemOperand(t0, FixedArray::kHeaderSize));
2807   __ Branch(&extra_checks_or_miss, ne, a1, Operand(t0));
2808 
2809   __ bind(&have_js_function);
2810   if (CallAsMethod()) {
2811     EmitContinueIfStrictOrNative(masm, &cont);
2812     // Compute the receiver in sloppy mode.
2813     __ lw(a3, MemOperand(sp, argc * kPointerSize));
2814 
2815     __ JumpIfSmi(a3, &wrap);
2816     __ GetObjectType(a3, t0, t0);
2817     __ Branch(&wrap, lt, t0, Operand(FIRST_SPEC_OBJECT_TYPE));
2818 
2819     __ bind(&cont);
2820   }
2821 
2822   __ InvokeFunction(a1, actual, JUMP_FUNCTION, NullCallWrapper());
2823 
2824   __ bind(&slow);
2825   EmitSlowCase(masm, argc, &non_function);
2826 
2827   if (CallAsMethod()) {
2828     __ bind(&wrap);
2829     EmitWrapCase(masm, argc, &cont);
2830   }
2831 
2832   __ bind(&extra_checks_or_miss);
2833   Label miss;
2834 
2835   __ LoadRoot(at, Heap::kMegamorphicSymbolRootIndex);
2836   __ Branch(&slow_start, eq, t0, Operand(at));
2837   __ LoadRoot(at, Heap::kUninitializedSymbolRootIndex);
2838   __ Branch(&miss, eq, t0, Operand(at));
2839 
2840   if (!FLAG_trace_ic) {
2841     // We are going megamorphic. If the feedback is a JSFunction, it is fine
2842     // to handle it here. More complex cases are dealt with in the runtime.
2843     __ AssertNotSmi(t0);
2844     __ GetObjectType(t0, t1, t1);
2845     __ Branch(&miss, ne, t1, Operand(JS_FUNCTION_TYPE));
2846     __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize);
2847     __ Addu(t0, a2, Operand(t0));
2848     __ LoadRoot(at, Heap::kMegamorphicSymbolRootIndex);
2849     __ sw(at, FieldMemOperand(t0, FixedArray::kHeaderSize));
2850     __ Branch(&slow_start);
2851   }
2852 
2853   // We are here because tracing is on or we are going monomorphic.
2854   __ bind(&miss);
2855   GenerateMiss(masm);
2856 
2857   // the slow case
2858   __ bind(&slow_start);
2859   // Check that the function is really a JavaScript function.
2860   // r1: pushed function (to be verified)
2861   __ JumpIfSmi(a1, &non_function);
2862 
2863   // Goto slow case if we do not have a function.
2864   __ GetObjectType(a1, t0, t0);
2865   __ Branch(&slow, ne, t0, Operand(JS_FUNCTION_TYPE));
2866   __ Branch(&have_js_function);
2867 }
2868 
2869 
GenerateMiss(MacroAssembler * masm)2870 void CallICStub::GenerateMiss(MacroAssembler* masm) {
2871   // Get the receiver of the function from the stack; 1 ~ return address.
2872   __ lw(t0, MemOperand(sp, (arg_count() + 1) * kPointerSize));
2873 
2874   {
2875     FrameScope scope(masm, StackFrame::INTERNAL);
2876 
2877     // Push the receiver and the function and feedback info.
2878     __ Push(t0, a1, a2, a3);
2879 
2880     // Call the entry.
2881     IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
2882                                                : IC::kCallIC_Customization_Miss;
2883 
2884     ExternalReference miss = ExternalReference(IC_Utility(id),
2885                                                masm->isolate());
2886     __ CallExternalReference(miss, 4);
2887 
2888     // Move result to a1 and exit the internal frame.
2889     __ mov(a1, v0);
2890   }
2891 }
2892 
2893 
2894 // StringCharCodeAtGenerator.
GenerateFast(MacroAssembler * masm)2895 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2896   DCHECK(!t0.is(index_));
2897   DCHECK(!t0.is(result_));
2898   DCHECK(!t0.is(object_));
2899 
2900   // If the receiver is a smi trigger the non-string case.
2901   __ JumpIfSmi(object_, receiver_not_string_);
2902 
2903   // Fetch the instance type of the receiver into result register.
2904   __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2905   __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2906   // If the receiver is not a string trigger the non-string case.
2907   __ And(t0, result_, Operand(kIsNotStringMask));
2908   __ Branch(receiver_not_string_, ne, t0, Operand(zero_reg));
2909 
2910   // If the index is non-smi trigger the non-smi case.
2911   __ JumpIfNotSmi(index_, &index_not_smi_);
2912 
2913   __ bind(&got_smi_index_);
2914 
2915   // Check for index out of range.
2916   __ lw(t0, FieldMemOperand(object_, String::kLengthOffset));
2917   __ Branch(index_out_of_range_, ls, t0, Operand(index_));
2918 
2919   __ sra(index_, index_, kSmiTagSize);
2920 
2921   StringCharLoadGenerator::Generate(masm,
2922                                     object_,
2923                                     index_,
2924                                     result_,
2925                                     &call_runtime_);
2926 
2927   __ sll(result_, result_, kSmiTagSize);
2928   __ bind(&exit_);
2929 }
2930 
2931 
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)2932 void StringCharCodeAtGenerator::GenerateSlow(
2933     MacroAssembler* masm,
2934     const RuntimeCallHelper& call_helper) {
2935   __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2936 
2937   // Index is not a smi.
2938   __ bind(&index_not_smi_);
2939   // If index is a heap number, try converting it to an integer.
2940   __ CheckMap(index_,
2941               result_,
2942               Heap::kHeapNumberMapRootIndex,
2943               index_not_number_,
2944               DONT_DO_SMI_CHECK);
2945   call_helper.BeforeCall(masm);
2946   // Consumed by runtime conversion function:
2947   __ Push(object_, index_);
2948   if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2949     __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2950   } else {
2951     DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2952     // NumberToSmi discards numbers that are not exact integers.
2953     __ CallRuntime(Runtime::kNumberToSmi, 1);
2954   }
2955 
2956   // Save the conversion result before the pop instructions below
2957   // have a chance to overwrite it.
2958 
2959   __ Move(index_, v0);
2960   __ pop(object_);
2961   // Reload the instance type.
2962   __ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2963   __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2964   call_helper.AfterCall(masm);
2965   // If index is still not a smi, it must be out of range.
2966   __ JumpIfNotSmi(index_, index_out_of_range_);
2967   // Otherwise, return to the fast path.
2968   __ Branch(&got_smi_index_);
2969 
2970   // Call runtime. We get here when the receiver is a string and the
2971   // index is a number, but the code of getting the actual character
2972   // is too complex (e.g., when the string needs to be flattened).
2973   __ bind(&call_runtime_);
2974   call_helper.BeforeCall(masm);
2975   __ sll(index_, index_, kSmiTagSize);
2976   __ Push(object_, index_);
2977   __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
2978 
2979   __ Move(result_, v0);
2980 
2981   call_helper.AfterCall(masm);
2982   __ jmp(&exit_);
2983 
2984   __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2985 }
2986 
2987 
2988 // -------------------------------------------------------------------------
2989 // StringCharFromCodeGenerator
2990 
GenerateFast(MacroAssembler * masm)2991 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2992   // Fast case of Heap::LookupSingleCharacterStringFromCode.
2993 
2994   DCHECK(!t0.is(result_));
2995   DCHECK(!t0.is(code_));
2996 
2997   STATIC_ASSERT(kSmiTag == 0);
2998   STATIC_ASSERT(kSmiShiftSize == 0);
2999   DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
3000   __ And(t0,
3001          code_,
3002          Operand(kSmiTagMask |
3003                  ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
3004   __ Branch(&slow_case_, ne, t0, Operand(zero_reg));
3005 
3006   __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
3007   // At this point code register contains smi tagged one-byte char code.
3008   STATIC_ASSERT(kSmiTag == 0);
3009   __ sll(t0, code_, kPointerSizeLog2 - kSmiTagSize);
3010   __ Addu(result_, result_, t0);
3011   __ lw(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
3012   __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
3013   __ Branch(&slow_case_, eq, result_, Operand(t0));
3014   __ bind(&exit_);
3015 }
3016 
3017 
GenerateSlow(MacroAssembler * masm,const RuntimeCallHelper & call_helper)3018 void StringCharFromCodeGenerator::GenerateSlow(
3019     MacroAssembler* masm,
3020     const RuntimeCallHelper& call_helper) {
3021   __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
3022 
3023   __ bind(&slow_case_);
3024   call_helper.BeforeCall(masm);
3025   __ push(code_);
3026   __ CallRuntime(Runtime::kCharFromCode, 1);
3027   __ Move(result_, v0);
3028 
3029   call_helper.AfterCall(masm);
3030   __ Branch(&exit_);
3031 
3032   __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3033 }
3034 
3035 
3036 enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
3037 
3038 
GenerateCopyCharacters(MacroAssembler * masm,Register dest,Register src,Register count,Register scratch,String::Encoding encoding)3039 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
3040                                           Register dest,
3041                                           Register src,
3042                                           Register count,
3043                                           Register scratch,
3044                                           String::Encoding encoding) {
3045   if (FLAG_debug_code) {
3046     // Check that destination is word aligned.
3047     __ And(scratch, dest, Operand(kPointerAlignmentMask));
3048     __ Check(eq,
3049              kDestinationOfCopyNotAligned,
3050              scratch,
3051              Operand(zero_reg));
3052   }
3053 
3054   // Assumes word reads and writes are little endian.
3055   // Nothing to do for zero characters.
3056   Label done;
3057 
3058   if (encoding == String::TWO_BYTE_ENCODING) {
3059     __ Addu(count, count, count);
3060   }
3061 
3062   Register limit = count;  // Read until dest equals this.
3063   __ Addu(limit, dest, Operand(count));
3064 
3065   Label loop_entry, loop;
3066   // Copy bytes from src to dest until dest hits limit.
3067   __ Branch(&loop_entry);
3068   __ bind(&loop);
3069   __ lbu(scratch, MemOperand(src));
3070   __ Addu(src, src, Operand(1));
3071   __ sb(scratch, MemOperand(dest));
3072   __ Addu(dest, dest, Operand(1));
3073   __ bind(&loop_entry);
3074   __ Branch(&loop, lt, dest, Operand(limit));
3075 
3076   __ bind(&done);
3077 }
3078 
3079 
Generate(MacroAssembler * masm)3080 void SubStringStub::Generate(MacroAssembler* masm) {
3081   Label runtime;
3082   // Stack frame on entry.
3083   //  ra: return address
3084   //  sp[0]: to
3085   //  sp[4]: from
3086   //  sp[8]: string
3087 
3088   // This stub is called from the native-call %_SubString(...), so
3089   // nothing can be assumed about the arguments. It is tested that:
3090   //  "string" is a sequential string,
3091   //  both "from" and "to" are smis, and
3092   //  0 <= from <= to <= string.length.
3093   // If any of these assumptions fail, we call the runtime system.
3094 
3095   const int kToOffset = 0 * kPointerSize;
3096   const int kFromOffset = 1 * kPointerSize;
3097   const int kStringOffset = 2 * kPointerSize;
3098 
3099   __ lw(a2, MemOperand(sp, kToOffset));
3100   __ lw(a3, MemOperand(sp, kFromOffset));
3101   STATIC_ASSERT(kFromOffset == kToOffset + 4);
3102   STATIC_ASSERT(kSmiTag == 0);
3103   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
3104 
3105   // Utilize delay slots. SmiUntag doesn't emit a jump, everything else is
3106   // safe in this case.
3107   __ UntagAndJumpIfNotSmi(a2, a2, &runtime);
3108   __ UntagAndJumpIfNotSmi(a3, a3, &runtime);
3109   // Both a2 and a3 are untagged integers.
3110 
3111   __ Branch(&runtime, lt, a3, Operand(zero_reg));  // From < 0.
3112 
3113   __ Branch(&runtime, gt, a3, Operand(a2));  // Fail if from > to.
3114   __ Subu(a2, a2, a3);
3115 
3116   // Make sure first argument is a string.
3117   __ lw(v0, MemOperand(sp, kStringOffset));
3118   __ JumpIfSmi(v0, &runtime);
3119   __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
3120   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3121   __ And(t0, a1, Operand(kIsNotStringMask));
3122 
3123   __ Branch(&runtime, ne, t0, Operand(zero_reg));
3124 
3125   Label single_char;
3126   __ Branch(&single_char, eq, a2, Operand(1));
3127 
3128   // Short-cut for the case of trivial substring.
3129   Label return_v0;
3130   // v0: original string
3131   // a2: result string length
3132   __ lw(t0, FieldMemOperand(v0, String::kLengthOffset));
3133   __ sra(t0, t0, 1);
3134   // Return original string.
3135   __ Branch(&return_v0, eq, a2, Operand(t0));
3136   // Longer than original string's length or negative: unsafe arguments.
3137   __ Branch(&runtime, hi, a2, Operand(t0));
3138   // Shorter than original string's length: an actual substring.
3139 
3140   // Deal with different string types: update the index if necessary
3141   // and put the underlying string into t1.
3142   // v0: original string
3143   // a1: instance type
3144   // a2: length
3145   // a3: from index (untagged)
3146   Label underlying_unpacked, sliced_string, seq_or_external_string;
3147   // If the string is not indirect, it can only be sequential or external.
3148   STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3149   STATIC_ASSERT(kIsIndirectStringMask != 0);
3150   __ And(t0, a1, Operand(kIsIndirectStringMask));
3151   __ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, t0, Operand(zero_reg));
3152   // t0 is used as a scratch register and can be overwritten in either case.
3153   __ And(t0, a1, Operand(kSlicedNotConsMask));
3154   __ Branch(&sliced_string, ne, t0, Operand(zero_reg));
3155   // Cons string.  Check whether it is flat, then fetch first part.
3156   __ lw(t1, FieldMemOperand(v0, ConsString::kSecondOffset));
3157   __ LoadRoot(t0, Heap::kempty_stringRootIndex);
3158   __ Branch(&runtime, ne, t1, Operand(t0));
3159   __ lw(t1, FieldMemOperand(v0, ConsString::kFirstOffset));
3160   // Update instance type.
3161   __ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
3162   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3163   __ jmp(&underlying_unpacked);
3164 
3165   __ bind(&sliced_string);
3166   // Sliced string.  Fetch parent and correct start index by offset.
3167   __ lw(t1, FieldMemOperand(v0, SlicedString::kParentOffset));
3168   __ lw(t0, FieldMemOperand(v0, SlicedString::kOffsetOffset));
3169   __ sra(t0, t0, 1);  // Add offset to index.
3170   __ Addu(a3, a3, t0);
3171   // Update instance type.
3172   __ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
3173   __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3174   __ jmp(&underlying_unpacked);
3175 
3176   __ bind(&seq_or_external_string);
3177   // Sequential or external string.  Just move string to the expected register.
3178   __ mov(t1, v0);
3179 
3180   __ bind(&underlying_unpacked);
3181 
3182   if (FLAG_string_slices) {
3183     Label copy_routine;
3184     // t1: underlying subject string
3185     // a1: instance type of underlying subject string
3186     // a2: length
3187     // a3: adjusted start index (untagged)
3188     // Short slice.  Copy instead of slicing.
3189     __ Branch(&copy_routine, lt, a2, Operand(SlicedString::kMinLength));
3190     // Allocate new sliced string.  At this point we do not reload the instance
3191     // type including the string encoding because we simply rely on the info
3192     // provided by the original string.  It does not matter if the original
3193     // string's encoding is wrong because we always have to recheck encoding of
3194     // the newly created string's parent anyways due to externalized strings.
3195     Label two_byte_slice, set_slice_header;
3196     STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3197     STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3198     __ And(t0, a1, Operand(kStringEncodingMask));
3199     __ Branch(&two_byte_slice, eq, t0, Operand(zero_reg));
3200     __ AllocateOneByteSlicedString(v0, a2, t2, t3, &runtime);
3201     __ jmp(&set_slice_header);
3202     __ bind(&two_byte_slice);
3203     __ AllocateTwoByteSlicedString(v0, a2, t2, t3, &runtime);
3204     __ bind(&set_slice_header);
3205     __ sll(a3, a3, 1);
3206     __ sw(t1, FieldMemOperand(v0, SlicedString::kParentOffset));
3207     __ sw(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset));
3208     __ jmp(&return_v0);
3209 
3210     __ bind(&copy_routine);
3211   }
3212 
3213   // t1: underlying subject string
3214   // a1: instance type of underlying subject string
3215   // a2: length
3216   // a3: adjusted start index (untagged)
3217   Label two_byte_sequential, sequential_string, allocate_result;
3218   STATIC_ASSERT(kExternalStringTag != 0);
3219   STATIC_ASSERT(kSeqStringTag == 0);
3220   __ And(t0, a1, Operand(kExternalStringTag));
3221   __ Branch(&sequential_string, eq, t0, Operand(zero_reg));
3222 
3223   // Handle external string.
3224   // Rule out short external strings.
3225   STATIC_ASSERT(kShortExternalStringTag != 0);
3226   __ And(t0, a1, Operand(kShortExternalStringTag));
3227   __ Branch(&runtime, ne, t0, Operand(zero_reg));
3228   __ lw(t1, FieldMemOperand(t1, ExternalString::kResourceDataOffset));
3229   // t1 already points to the first character of underlying string.
3230   __ jmp(&allocate_result);
3231 
3232   __ bind(&sequential_string);
3233   // Locate first character of underlying subject string.
3234   STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3235   __ Addu(t1, t1, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3236 
3237   __ bind(&allocate_result);
3238   // Sequential acii string.  Allocate the result.
3239   STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3240   __ And(t0, a1, Operand(kStringEncodingMask));
3241   __ Branch(&two_byte_sequential, eq, t0, Operand(zero_reg));
3242 
3243   // Allocate and copy the resulting ASCII string.
3244   __ AllocateOneByteString(v0, a2, t0, t2, t3, &runtime);
3245 
3246   // Locate first character of substring to copy.
3247   __ Addu(t1, t1, a3);
3248 
3249   // Locate first character of result.
3250   __ Addu(a1, v0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3251 
3252   // v0: result string
3253   // a1: first character of result string
3254   // a2: result string length
3255   // t1: first character of substring to copy
3256   STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3257   StringHelper::GenerateCopyCharacters(
3258       masm, a1, t1, a2, a3, String::ONE_BYTE_ENCODING);
3259   __ jmp(&return_v0);
3260 
3261   // Allocate and copy the resulting two-byte string.
3262   __ bind(&two_byte_sequential);
3263   __ AllocateTwoByteString(v0, a2, t0, t2, t3, &runtime);
3264 
3265   // Locate first character of substring to copy.
3266   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
3267   __ sll(t0, a3, 1);
3268   __ Addu(t1, t1, t0);
3269   // Locate first character of result.
3270   __ Addu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3271 
3272   // v0: result string.
3273   // a1: first character of result.
3274   // a2: result length.
3275   // t1: first character of substring to copy.
3276   STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3277   StringHelper::GenerateCopyCharacters(
3278       masm, a1, t1, a2, a3, String::TWO_BYTE_ENCODING);
3279 
3280   __ bind(&return_v0);
3281   Counters* counters = isolate()->counters();
3282   __ IncrementCounter(counters->sub_string_native(), 1, a3, t0);
3283   __ DropAndRet(3);
3284 
3285   // Just jump to runtime to create the sub string.
3286   __ bind(&runtime);
3287   __ TailCallRuntime(Runtime::kSubString, 3, 1);
3288 
3289   __ bind(&single_char);
3290   // v0: original string
3291   // a1: instance type
3292   // a2: length
3293   // a3: from index (untagged)
3294   __ SmiTag(a3, a3);
3295   StringCharAtGenerator generator(
3296       v0, a3, a2, v0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
3297   generator.GenerateFast(masm);
3298   __ DropAndRet(3);
3299   generator.SkipSlow(masm, &runtime);
3300 }
3301 
3302 
GenerateFlatOneByteStringEquals(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3)3303 void StringHelper::GenerateFlatOneByteStringEquals(
3304     MacroAssembler* masm, Register left, Register right, Register scratch1,
3305     Register scratch2, Register scratch3) {
3306   Register length = scratch1;
3307 
3308   // Compare lengths.
3309   Label strings_not_equal, check_zero_length;
3310   __ lw(length, FieldMemOperand(left, String::kLengthOffset));
3311   __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
3312   __ Branch(&check_zero_length, eq, length, Operand(scratch2));
3313   __ bind(&strings_not_equal);
3314   DCHECK(is_int16(NOT_EQUAL));
3315   __ Ret(USE_DELAY_SLOT);
3316   __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
3317 
3318   // Check if the length is zero.
3319   Label compare_chars;
3320   __ bind(&check_zero_length);
3321   STATIC_ASSERT(kSmiTag == 0);
3322   __ Branch(&compare_chars, ne, length, Operand(zero_reg));
3323   DCHECK(is_int16(EQUAL));
3324   __ Ret(USE_DELAY_SLOT);
3325   __ li(v0, Operand(Smi::FromInt(EQUAL)));
3326 
3327   // Compare characters.
3328   __ bind(&compare_chars);
3329 
3330   GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
3331                                   v0, &strings_not_equal);
3332 
3333   // Characters are equal.
3334   __ Ret(USE_DELAY_SLOT);
3335   __ li(v0, Operand(Smi::FromInt(EQUAL)));
3336 }
3337 
3338 
GenerateCompareFlatOneByteStrings(MacroAssembler * masm,Register left,Register right,Register scratch1,Register scratch2,Register scratch3,Register scratch4)3339 void StringHelper::GenerateCompareFlatOneByteStrings(
3340     MacroAssembler* masm, Register left, Register right, Register scratch1,
3341     Register scratch2, Register scratch3, Register scratch4) {
3342   Label result_not_equal, compare_lengths;
3343   // Find minimum length and length difference.
3344   __ lw(scratch1, FieldMemOperand(left, String::kLengthOffset));
3345   __ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
3346   __ Subu(scratch3, scratch1, Operand(scratch2));
3347   Register length_delta = scratch3;
3348   __ slt(scratch4, scratch2, scratch1);
3349   __ Movn(scratch1, scratch2, scratch4);
3350   Register min_length = scratch1;
3351   STATIC_ASSERT(kSmiTag == 0);
3352   __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
3353 
3354   // Compare loop.
3355   GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3356                                   scratch4, v0, &result_not_equal);
3357 
3358   // Compare lengths - strings up to min-length are equal.
3359   __ bind(&compare_lengths);
3360   DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
3361   // Use length_delta as result if it's zero.
3362   __ mov(scratch2, length_delta);
3363   __ mov(scratch4, zero_reg);
3364   __ mov(v0, zero_reg);
3365 
3366   __ bind(&result_not_equal);
3367   // Conditionally update the result based either on length_delta or
3368   // the last comparion performed in the loop above.
3369   Label ret;
3370   __ Branch(&ret, eq, scratch2, Operand(scratch4));
3371   __ li(v0, Operand(Smi::FromInt(GREATER)));
3372   __ Branch(&ret, gt, scratch2, Operand(scratch4));
3373   __ li(v0, Operand(Smi::FromInt(LESS)));
3374   __ bind(&ret);
3375   __ Ret();
3376 }
3377 
3378 
GenerateOneByteCharsCompareLoop(MacroAssembler * masm,Register left,Register right,Register length,Register scratch1,Register scratch2,Register scratch3,Label * chars_not_equal)3379 void StringHelper::GenerateOneByteCharsCompareLoop(
3380     MacroAssembler* masm, Register left, Register right, Register length,
3381     Register scratch1, Register scratch2, Register scratch3,
3382     Label* chars_not_equal) {
3383   // Change index to run from -length to -1 by adding length to string
3384   // start. This means that loop ends when index reaches zero, which
3385   // doesn't need an additional compare.
3386   __ SmiUntag(length);
3387   __ Addu(scratch1, length,
3388           Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3389   __ Addu(left, left, Operand(scratch1));
3390   __ Addu(right, right, Operand(scratch1));
3391   __ Subu(length, zero_reg, length);
3392   Register index = length;  // index = -length;
3393 
3394 
3395   // Compare loop.
3396   Label loop;
3397   __ bind(&loop);
3398   __ Addu(scratch3, left, index);
3399   __ lbu(scratch1, MemOperand(scratch3));
3400   __ Addu(scratch3, right, index);
3401   __ lbu(scratch2, MemOperand(scratch3));
3402   __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
3403   __ Addu(index, index, 1);
3404   __ Branch(&loop, ne, index, Operand(zero_reg));
3405 }
3406 
3407 
Generate(MacroAssembler * masm)3408 void StringCompareStub::Generate(MacroAssembler* masm) {
3409   Label runtime;
3410 
3411   Counters* counters = isolate()->counters();
3412 
3413   // Stack frame on entry.
3414   //  sp[0]: right string
3415   //  sp[4]: left string
3416   __ lw(a1, MemOperand(sp, 1 * kPointerSize));  // Left.
3417   __ lw(a0, MemOperand(sp, 0 * kPointerSize));  // Right.
3418 
3419   Label not_same;
3420   __ Branch(&not_same, ne, a0, Operand(a1));
3421   STATIC_ASSERT(EQUAL == 0);
3422   STATIC_ASSERT(kSmiTag == 0);
3423   __ li(v0, Operand(Smi::FromInt(EQUAL)));
3424   __ IncrementCounter(counters->string_compare_native(), 1, a1, a2);
3425   __ DropAndRet(2);
3426 
3427   __ bind(&not_same);
3428 
3429   // Check that both objects are sequential one-byte strings.
3430   __ JumpIfNotBothSequentialOneByteStrings(a1, a0, a2, a3, &runtime);
3431 
3432   // Compare flat ASCII strings natively. Remove arguments from stack first.
3433   __ IncrementCounter(counters->string_compare_native(), 1, a2, a3);
3434   __ Addu(sp, sp, Operand(2 * kPointerSize));
3435   StringHelper::GenerateCompareFlatOneByteStrings(masm, a1, a0, a2, a3, t0, t1);
3436 
3437   __ bind(&runtime);
3438   __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3439 }
3440 
3441 
Generate(MacroAssembler * masm)3442 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3443   // ----------- S t a t e -------------
3444   //  -- a1    : left
3445   //  -- a0    : right
3446   //  -- ra    : return address
3447   // -----------------------------------
3448 
3449   // Load a2 with the allocation site. We stick an undefined dummy value here
3450   // and replace it with the real allocation site later when we instantiate this
3451   // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3452   __ li(a2, handle(isolate()->heap()->undefined_value()));
3453 
3454   // Make sure that we actually patched the allocation site.
3455   if (FLAG_debug_code) {
3456     __ And(at, a2, Operand(kSmiTagMask));
3457     __ Assert(ne, kExpectedAllocationSite, at, Operand(zero_reg));
3458     __ lw(t0, FieldMemOperand(a2, HeapObject::kMapOffset));
3459     __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
3460     __ Assert(eq, kExpectedAllocationSite, t0, Operand(at));
3461   }
3462 
3463   // Tail call into the stub that handles binary operations with allocation
3464   // sites.
3465   BinaryOpWithAllocationSiteStub stub(isolate(), state());
3466   __ TailCallStub(&stub);
3467 }
3468 
3469 
GenerateSmis(MacroAssembler * masm)3470 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3471   DCHECK(state() == CompareICState::SMI);
3472   Label miss;
3473   __ Or(a2, a1, a0);
3474   __ JumpIfNotSmi(a2, &miss);
3475 
3476   if (GetCondition() == eq) {
3477     // For equality we do not care about the sign of the result.
3478     __ Ret(USE_DELAY_SLOT);
3479     __ Subu(v0, a0, a1);
3480   } else {
3481     // Untag before subtracting to avoid handling overflow.
3482     __ SmiUntag(a1);
3483     __ SmiUntag(a0);
3484     __ Ret(USE_DELAY_SLOT);
3485     __ Subu(v0, a1, a0);
3486   }
3487 
3488   __ bind(&miss);
3489   GenerateMiss(masm);
3490 }
3491 
3492 
GenerateNumbers(MacroAssembler * masm)3493 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3494   DCHECK(state() == CompareICState::NUMBER);
3495 
3496   Label generic_stub;
3497   Label unordered, maybe_undefined1, maybe_undefined2;
3498   Label miss;
3499 
3500   if (left() == CompareICState::SMI) {
3501     __ JumpIfNotSmi(a1, &miss);
3502   }
3503   if (right() == CompareICState::SMI) {
3504     __ JumpIfNotSmi(a0, &miss);
3505   }
3506 
3507   // Inlining the double comparison and falling back to the general compare
3508   // stub if NaN is involved.
3509   // Load left and right operand.
3510   Label done, left, left_smi, right_smi;
3511   __ JumpIfSmi(a0, &right_smi);
3512   __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
3513               DONT_DO_SMI_CHECK);
3514   __ Subu(a2, a0, Operand(kHeapObjectTag));
3515   __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
3516   __ Branch(&left);
3517   __ bind(&right_smi);
3518   __ SmiUntag(a2, a0);  // Can't clobber a0 yet.
3519   FPURegister single_scratch = f6;
3520   __ mtc1(a2, single_scratch);
3521   __ cvt_d_w(f2, single_scratch);
3522 
3523   __ bind(&left);
3524   __ JumpIfSmi(a1, &left_smi);
3525   __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
3526               DONT_DO_SMI_CHECK);
3527   __ Subu(a2, a1, Operand(kHeapObjectTag));
3528   __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
3529   __ Branch(&done);
3530   __ bind(&left_smi);
3531   __ SmiUntag(a2, a1);  // Can't clobber a1 yet.
3532   single_scratch = f8;
3533   __ mtc1(a2, single_scratch);
3534   __ cvt_d_w(f0, single_scratch);
3535 
3536   __ bind(&done);
3537 
3538   // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
3539   Label fpu_eq, fpu_lt;
3540   // Test if equal, and also handle the unordered/NaN case.
3541   __ BranchF(&fpu_eq, &unordered, eq, f0, f2);
3542 
3543   // Test if less (unordered case is already handled).
3544   __ BranchF(&fpu_lt, NULL, lt, f0, f2);
3545 
3546   // Otherwise it's greater, so just fall thru, and return.
3547   DCHECK(is_int16(GREATER) && is_int16(EQUAL) && is_int16(LESS));
3548   __ Ret(USE_DELAY_SLOT);
3549   __ li(v0, Operand(GREATER));
3550 
3551   __ bind(&fpu_eq);
3552   __ Ret(USE_DELAY_SLOT);
3553   __ li(v0, Operand(EQUAL));
3554 
3555   __ bind(&fpu_lt);
3556   __ Ret(USE_DELAY_SLOT);
3557   __ li(v0, Operand(LESS));
3558 
3559   __ bind(&unordered);
3560   __ bind(&generic_stub);
3561   CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
3562                      CompareICState::GENERIC, CompareICState::GENERIC);
3563   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3564 
3565   __ bind(&maybe_undefined1);
3566   if (Token::IsOrderedRelationalCompareOp(op())) {
3567     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3568     __ Branch(&miss, ne, a0, Operand(at));
3569     __ JumpIfSmi(a1, &unordered);
3570     __ GetObjectType(a1, a2, a2);
3571     __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
3572     __ jmp(&unordered);
3573   }
3574 
3575   __ bind(&maybe_undefined2);
3576   if (Token::IsOrderedRelationalCompareOp(op())) {
3577     __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3578     __ Branch(&unordered, eq, a1, Operand(at));
3579   }
3580 
3581   __ bind(&miss);
3582   GenerateMiss(masm);
3583 }
3584 
3585 
GenerateInternalizedStrings(MacroAssembler * masm)3586 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3587   DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3588   Label miss;
3589 
3590   // Registers containing left and right operands respectively.
3591   Register left = a1;
3592   Register right = a0;
3593   Register tmp1 = a2;
3594   Register tmp2 = a3;
3595 
3596   // Check that both operands are heap objects.
3597   __ JumpIfEitherSmi(left, right, &miss);
3598 
3599   // Check that both operands are internalized strings.
3600   __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3601   __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3602   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3603   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3604   STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3605   __ Or(tmp1, tmp1, Operand(tmp2));
3606   __ And(at, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
3607   __ Branch(&miss, ne, at, Operand(zero_reg));
3608 
3609   // Make sure a0 is non-zero. At this point input operands are
3610   // guaranteed to be non-zero.
3611   DCHECK(right.is(a0));
3612   STATIC_ASSERT(EQUAL == 0);
3613   STATIC_ASSERT(kSmiTag == 0);
3614   __ mov(v0, right);
3615   // Internalized strings are compared by identity.
3616   __ Ret(ne, left, Operand(right));
3617   DCHECK(is_int16(EQUAL));
3618   __ Ret(USE_DELAY_SLOT);
3619   __ li(v0, Operand(Smi::FromInt(EQUAL)));
3620 
3621   __ bind(&miss);
3622   GenerateMiss(masm);
3623 }
3624 
3625 
GenerateUniqueNames(MacroAssembler * masm)3626 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3627   DCHECK(state() == CompareICState::UNIQUE_NAME);
3628   DCHECK(GetCondition() == eq);
3629   Label miss;
3630 
3631   // Registers containing left and right operands respectively.
3632   Register left = a1;
3633   Register right = a0;
3634   Register tmp1 = a2;
3635   Register tmp2 = a3;
3636 
3637   // Check that both operands are heap objects.
3638   __ JumpIfEitherSmi(left, right, &miss);
3639 
3640   // Check that both operands are unique names. This leaves the instance
3641   // types loaded in tmp1 and tmp2.
3642   __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3643   __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3644   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3645   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3646 
3647   __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
3648   __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
3649 
3650   // Use a0 as result
3651   __ mov(v0, a0);
3652 
3653   // Unique names are compared by identity.
3654   Label done;
3655   __ Branch(&done, ne, left, Operand(right));
3656   // Make sure a0 is non-zero. At this point input operands are
3657   // guaranteed to be non-zero.
3658   DCHECK(right.is(a0));
3659   STATIC_ASSERT(EQUAL == 0);
3660   STATIC_ASSERT(kSmiTag == 0);
3661   __ li(v0, Operand(Smi::FromInt(EQUAL)));
3662   __ bind(&done);
3663   __ Ret();
3664 
3665   __ bind(&miss);
3666   GenerateMiss(masm);
3667 }
3668 
3669 
GenerateStrings(MacroAssembler * masm)3670 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3671   DCHECK(state() == CompareICState::STRING);
3672   Label miss;
3673 
3674   bool equality = Token::IsEqualityOp(op());
3675 
3676   // Registers containing left and right operands respectively.
3677   Register left = a1;
3678   Register right = a0;
3679   Register tmp1 = a2;
3680   Register tmp2 = a3;
3681   Register tmp3 = t0;
3682   Register tmp4 = t1;
3683   Register tmp5 = t2;
3684 
3685   // Check that both operands are heap objects.
3686   __ JumpIfEitherSmi(left, right, &miss);
3687 
3688   // Check that both operands are strings. This leaves the instance
3689   // types loaded in tmp1 and tmp2.
3690   __ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3691   __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3692   __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3693   __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3694   STATIC_ASSERT(kNotStringTag != 0);
3695   __ Or(tmp3, tmp1, tmp2);
3696   __ And(tmp5, tmp3, Operand(kIsNotStringMask));
3697   __ Branch(&miss, ne, tmp5, Operand(zero_reg));
3698 
3699   // Fast check for identical strings.
3700   Label left_ne_right;
3701   STATIC_ASSERT(EQUAL == 0);
3702   STATIC_ASSERT(kSmiTag == 0);
3703   __ Branch(&left_ne_right, ne, left, Operand(right));
3704   __ Ret(USE_DELAY_SLOT);
3705   __ mov(v0, zero_reg);  // In the delay slot.
3706   __ bind(&left_ne_right);
3707 
3708   // Handle not identical strings.
3709 
3710   // Check that both strings are internalized strings. If they are, we're done
3711   // because we already know they are not identical. We know they are both
3712   // strings.
3713   if (equality) {
3714     DCHECK(GetCondition() == eq);
3715     STATIC_ASSERT(kInternalizedTag == 0);
3716     __ Or(tmp3, tmp1, Operand(tmp2));
3717     __ And(tmp5, tmp3, Operand(kIsNotInternalizedMask));
3718     Label is_symbol;
3719     __ Branch(&is_symbol, ne, tmp5, Operand(zero_reg));
3720     // Make sure a0 is non-zero. At this point input operands are
3721     // guaranteed to be non-zero.
3722     DCHECK(right.is(a0));
3723     __ Ret(USE_DELAY_SLOT);
3724     __ mov(v0, a0);  // In the delay slot.
3725     __ bind(&is_symbol);
3726   }
3727 
3728   // Check that both strings are sequential one-byte.
3729   Label runtime;
3730   __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
3731                                                     &runtime);
3732 
3733   // Compare flat one-byte strings. Returns when done.
3734   if (equality) {
3735     StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
3736                                                   tmp3);
3737   } else {
3738     StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3739                                                     tmp2, tmp3, tmp4);
3740   }
3741 
3742   // Handle more complex cases in runtime.
3743   __ bind(&runtime);
3744   __ Push(left, right);
3745   if (equality) {
3746     __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3747   } else {
3748     __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3749   }
3750 
3751   __ bind(&miss);
3752   GenerateMiss(masm);
3753 }
3754 
3755 
GenerateObjects(MacroAssembler * masm)3756 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3757   DCHECK(state() == CompareICState::OBJECT);
3758   Label miss;
3759   __ And(a2, a1, Operand(a0));
3760   __ JumpIfSmi(a2, &miss);
3761 
3762   __ GetObjectType(a0, a2, a2);
3763   __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
3764   __ GetObjectType(a1, a2, a2);
3765   __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
3766 
3767   DCHECK(GetCondition() == eq);
3768   __ Ret(USE_DELAY_SLOT);
3769   __ subu(v0, a0, a1);
3770 
3771   __ bind(&miss);
3772   GenerateMiss(masm);
3773 }
3774 
3775 
GenerateKnownObjects(MacroAssembler * masm)3776 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3777   Label miss;
3778   __ And(a2, a1, a0);
3779   __ JumpIfSmi(a2, &miss);
3780   __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
3781   __ lw(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
3782   __ Branch(&miss, ne, a2, Operand(known_map_));
3783   __ Branch(&miss, ne, a3, Operand(known_map_));
3784 
3785   __ Ret(USE_DELAY_SLOT);
3786   __ subu(v0, a0, a1);
3787 
3788   __ bind(&miss);
3789   GenerateMiss(masm);
3790 }
3791 
3792 
GenerateMiss(MacroAssembler * masm)3793 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3794   {
3795     // Call the runtime system in a fresh internal frame.
3796     ExternalReference miss =
3797         ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
3798     FrameScope scope(masm, StackFrame::INTERNAL);
3799     __ Push(a1, a0);
3800     __ Push(ra, a1, a0);
3801     __ li(t0, Operand(Smi::FromInt(op())));
3802     __ addiu(sp, sp, -kPointerSize);
3803     __ CallExternalReference(miss, 3, USE_DELAY_SLOT);
3804     __ sw(t0, MemOperand(sp));  // In the delay slot.
3805     // Compute the entry point of the rewritten stub.
3806     __ Addu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
3807     // Restore registers.
3808     __ Pop(a1, a0, ra);
3809   }
3810   __ Jump(a2);
3811 }
3812 
3813 
Generate(MacroAssembler * masm)3814 void DirectCEntryStub::Generate(MacroAssembler* masm) {
3815   // Make place for arguments to fit C calling convention. Most of the callers
3816   // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame
3817   // so they handle stack restoring and we don't have to do that here.
3818   // Any caller of DirectCEntryStub::GenerateCall must take care of dropping
3819   // kCArgsSlotsSize stack space after the call.
3820   __ Subu(sp, sp, Operand(kCArgsSlotsSize));
3821   // Place the return address on the stack, making the call
3822   // GC safe. The RegExp backend also relies on this.
3823   __ sw(ra, MemOperand(sp, kCArgsSlotsSize));
3824   __ Call(t9);  // Call the C++ function.
3825   __ lw(t9, MemOperand(sp, kCArgsSlotsSize));
3826 
3827   if (FLAG_debug_code && FLAG_enable_slow_asserts) {
3828     // In case of an error the return address may point to a memory area
3829     // filled with kZapValue by the GC.
3830     // Dereference the address and check for this.
3831     __ lw(t0, MemOperand(t9));
3832     __ Assert(ne, kReceivedInvalidReturnAddress, t0,
3833         Operand(reinterpret_cast<uint32_t>(kZapValue)));
3834   }
3835   __ Jump(t9);
3836 }
3837 
3838 
GenerateCall(MacroAssembler * masm,Register target)3839 void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
3840                                     Register target) {
3841   intptr_t loc =
3842       reinterpret_cast<intptr_t>(GetCode().location());
3843   __ Move(t9, target);
3844   __ li(ra, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE);
3845   __ Call(ra);
3846 }
3847 
3848 
GenerateNegativeLookup(MacroAssembler * masm,Label * miss,Label * done,Register receiver,Register properties,Handle<Name> name,Register scratch0)3849 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3850                                                       Label* miss,
3851                                                       Label* done,
3852                                                       Register receiver,
3853                                                       Register properties,
3854                                                       Handle<Name> name,
3855                                                       Register scratch0) {
3856   DCHECK(name->IsUniqueName());
3857   // If names of slots in range from 1 to kProbes - 1 for the hash value are
3858   // not equal to the name and kProbes-th slot is not used (its name is the
3859   // undefined value), it guarantees the hash table doesn't contain the
3860   // property. It's true even if some slots represent deleted properties
3861   // (their names are the hole value).
3862   for (int i = 0; i < kInlinedProbes; i++) {
3863     // scratch0 points to properties hash.
3864     // Compute the masked index: (hash + i + i * i) & mask.
3865     Register index = scratch0;
3866     // Capacity is smi 2^n.
3867     __ lw(index, FieldMemOperand(properties, kCapacityOffset));
3868     __ Subu(index, index, Operand(1));
3869     __ And(index, index, Operand(
3870         Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))));
3871 
3872     // Scale the index by multiplying by the entry size.
3873     DCHECK(NameDictionary::kEntrySize == 3);
3874     __ sll(at, index, 1);
3875     __ Addu(index, index, at);
3876 
3877     Register entity_name = scratch0;
3878     // Having undefined at this place means the name is not contained.
3879     DCHECK_EQ(kSmiTagSize, 1);
3880     Register tmp = properties;
3881     __ sll(scratch0, index, 1);
3882     __ Addu(tmp, properties, scratch0);
3883     __ lw(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
3884 
3885     DCHECK(!tmp.is(entity_name));
3886     __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
3887     __ Branch(done, eq, entity_name, Operand(tmp));
3888 
3889     // Load the hole ready for use below:
3890     __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
3891 
3892     // Stop if found the property.
3893     __ Branch(miss, eq, entity_name, Operand(Handle<Name>(name)));
3894 
3895     Label good;
3896     __ Branch(&good, eq, entity_name, Operand(tmp));
3897 
3898     // Check if the entry name is not a unique name.
3899     __ lw(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
3900     __ lbu(entity_name,
3901            FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
3902     __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
3903     __ bind(&good);
3904 
3905     // Restore the properties.
3906     __ lw(properties,
3907           FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3908   }
3909 
3910   const int spill_mask =
3911       (ra.bit() | t2.bit() | t1.bit() | t0.bit() | a3.bit() |
3912        a2.bit() | a1.bit() | a0.bit() | v0.bit());
3913 
3914   __ MultiPush(spill_mask);
3915   __ lw(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3916   __ li(a1, Operand(Handle<Name>(name)));
3917   NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
3918   __ CallStub(&stub);
3919   __ mov(at, v0);
3920   __ MultiPop(spill_mask);
3921 
3922   __ Branch(done, eq, at, Operand(zero_reg));
3923   __ Branch(miss, ne, at, Operand(zero_reg));
3924 }
3925 
3926 
3927 // Probe the name dictionary in the |elements| register. Jump to the
3928 // |done| label if a property with the given name is found. Jump to
3929 // the |miss| label otherwise.
3930 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
GeneratePositiveLookup(MacroAssembler * masm,Label * miss,Label * done,Register elements,Register name,Register scratch1,Register scratch2)3931 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3932                                                       Label* miss,
3933                                                       Label* done,
3934                                                       Register elements,
3935                                                       Register name,
3936                                                       Register scratch1,
3937                                                       Register scratch2) {
3938   DCHECK(!elements.is(scratch1));
3939   DCHECK(!elements.is(scratch2));
3940   DCHECK(!name.is(scratch1));
3941   DCHECK(!name.is(scratch2));
3942 
3943   __ AssertName(name);
3944 
3945   // Compute the capacity mask.
3946   __ lw(scratch1, FieldMemOperand(elements, kCapacityOffset));
3947   __ sra(scratch1, scratch1, kSmiTagSize);  // convert smi to int
3948   __ Subu(scratch1, scratch1, Operand(1));
3949 
3950   // Generate an unrolled loop that performs a few probes before
3951   // giving up. Measurements done on Gmail indicate that 2 probes
3952   // cover ~93% of loads from dictionaries.
3953   for (int i = 0; i < kInlinedProbes; i++) {
3954     // Compute the masked index: (hash + i + i * i) & mask.
3955     __ lw(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
3956     if (i > 0) {
3957       // Add the probe offset (i + i * i) left shifted to avoid right shifting
3958       // the hash in a separate instruction. The value hash + i + i * i is right
3959       // shifted in the following and instruction.
3960       DCHECK(NameDictionary::GetProbeOffset(i) <
3961              1 << (32 - Name::kHashFieldOffset));
3962       __ Addu(scratch2, scratch2, Operand(
3963           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3964     }
3965     __ srl(scratch2, scratch2, Name::kHashShift);
3966     __ And(scratch2, scratch1, scratch2);
3967 
3968     // Scale the index by multiplying by the element size.
3969     DCHECK(NameDictionary::kEntrySize == 3);
3970     // scratch2 = scratch2 * 3.
3971 
3972     __ sll(at, scratch2, 1);
3973     __ Addu(scratch2, scratch2, at);
3974 
3975     // Check if the key is identical to the name.
3976     __ sll(at, scratch2, 2);
3977     __ Addu(scratch2, elements, at);
3978     __ lw(at, FieldMemOperand(scratch2, kElementsStartOffset));
3979     __ Branch(done, eq, name, Operand(at));
3980   }
3981 
3982   const int spill_mask =
3983       (ra.bit() | t2.bit() | t1.bit() | t0.bit() |
3984        a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) &
3985       ~(scratch1.bit() | scratch2.bit());
3986 
3987   __ MultiPush(spill_mask);
3988   if (name.is(a0)) {
3989     DCHECK(!elements.is(a1));
3990     __ Move(a1, name);
3991     __ Move(a0, elements);
3992   } else {
3993     __ Move(a0, elements);
3994     __ Move(a1, name);
3995   }
3996   NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
3997   __ CallStub(&stub);
3998   __ mov(scratch2, a2);
3999   __ mov(at, v0);
4000   __ MultiPop(spill_mask);
4001 
4002   __ Branch(done, ne, at, Operand(zero_reg));
4003   __ Branch(miss, eq, at, Operand(zero_reg));
4004 }
4005 
4006 
Generate(MacroAssembler * masm)4007 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
4008   // This stub overrides SometimesSetsUpAFrame() to return false.  That means
4009   // we cannot call anything that could cause a GC from this stub.
4010   // Registers:
4011   //  result: NameDictionary to probe
4012   //  a1: key
4013   //  dictionary: NameDictionary to probe.
4014   //  index: will hold an index of entry if lookup is successful.
4015   //         might alias with result_.
4016   // Returns:
4017   //  result_ is zero if lookup failed, non zero otherwise.
4018 
4019   Register result = v0;
4020   Register dictionary = a0;
4021   Register key = a1;
4022   Register index = a2;
4023   Register mask = a3;
4024   Register hash = t0;
4025   Register undefined = t1;
4026   Register entry_key = t2;
4027 
4028   Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
4029 
4030   __ lw(mask, FieldMemOperand(dictionary, kCapacityOffset));
4031   __ sra(mask, mask, kSmiTagSize);
4032   __ Subu(mask, mask, Operand(1));
4033 
4034   __ lw(hash, FieldMemOperand(key, Name::kHashFieldOffset));
4035 
4036   __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
4037 
4038   for (int i = kInlinedProbes; i < kTotalProbes; i++) {
4039     // Compute the masked index: (hash + i + i * i) & mask.
4040     // Capacity is smi 2^n.
4041     if (i > 0) {
4042       // Add the probe offset (i + i * i) left shifted to avoid right shifting
4043       // the hash in a separate instruction. The value hash + i + i * i is right
4044       // shifted in the following and instruction.
4045       DCHECK(NameDictionary::GetProbeOffset(i) <
4046              1 << (32 - Name::kHashFieldOffset));
4047       __ Addu(index, hash, Operand(
4048           NameDictionary::GetProbeOffset(i) << Name::kHashShift));
4049     } else {
4050       __ mov(index, hash);
4051     }
4052     __ srl(index, index, Name::kHashShift);
4053     __ And(index, mask, index);
4054 
4055     // Scale the index by multiplying by the entry size.
4056     DCHECK(NameDictionary::kEntrySize == 3);
4057     // index *= 3.
4058     __ mov(at, index);
4059     __ sll(index, index, 1);
4060     __ Addu(index, index, at);
4061 
4062 
4063     DCHECK_EQ(kSmiTagSize, 1);
4064     __ sll(index, index, 2);
4065     __ Addu(index, index, dictionary);
4066     __ lw(entry_key, FieldMemOperand(index, kElementsStartOffset));
4067 
4068     // Having undefined at this place means the name is not contained.
4069     __ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));
4070 
4071     // Stop if found the property.
4072     __ Branch(&in_dictionary, eq, entry_key, Operand(key));
4073 
4074     if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
4075       // Check if the entry name is not a unique name.
4076       __ lw(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
4077       __ lbu(entry_key,
4078              FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
4079       __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
4080     }
4081   }
4082 
4083   __ bind(&maybe_in_dictionary);
4084   // If we are doing negative lookup then probing failure should be
4085   // treated as a lookup success. For positive lookup probing failure
4086   // should be treated as lookup failure.
4087   if (mode() == POSITIVE_LOOKUP) {
4088     __ Ret(USE_DELAY_SLOT);
4089     __ mov(result, zero_reg);
4090   }
4091 
4092   __ bind(&in_dictionary);
4093   __ Ret(USE_DELAY_SLOT);
4094   __ li(result, 1);
4095 
4096   __ bind(&not_in_dictionary);
4097   __ Ret(USE_DELAY_SLOT);
4098   __ mov(result, zero_reg);
4099 }
4100 
4101 
GenerateFixedRegStubsAheadOfTime(Isolate * isolate)4102 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
4103     Isolate* isolate) {
4104   StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
4105   stub1.GetCode();
4106   // Hydrogen code stubs need stub2 at snapshot time.
4107   StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
4108   stub2.GetCode();
4109 }
4110 
4111 
4112 // Takes the input in 3 registers: address_ value_ and object_.  A pointer to
4113 // the value has just been written into the object, now this stub makes sure
4114 // we keep the GC informed.  The word in the object where the value has been
4115 // written is in the address register.
Generate(MacroAssembler * masm)4116 void RecordWriteStub::Generate(MacroAssembler* masm) {
4117   Label skip_to_incremental_noncompacting;
4118   Label skip_to_incremental_compacting;
4119 
4120   // The first two branch+nop instructions are generated with labels so as to
4121   // get the offset fixed up correctly by the bind(Label*) call.  We patch it
4122   // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
4123   // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
4124   // incremental heap marking.
4125   // See RecordWriteStub::Patch for details.
4126   __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
4127   __ nop();
4128   __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
4129   __ nop();
4130 
4131   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4132     __ RememberedSetHelper(object(),
4133                            address(),
4134                            value(),
4135                            save_fp_regs_mode(),
4136                            MacroAssembler::kReturnAtEnd);
4137   }
4138   __ Ret();
4139 
4140   __ bind(&skip_to_incremental_noncompacting);
4141   GenerateIncremental(masm, INCREMENTAL);
4142 
4143   __ bind(&skip_to_incremental_compacting);
4144   GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4145 
4146   // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
4147   // Will be checked in IncrementalMarking::ActivateGeneratedStub.
4148 
4149   PatchBranchIntoNop(masm, 0);
4150   PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
4151 }
4152 
4153 
GenerateIncremental(MacroAssembler * masm,Mode mode)4154 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
4155   regs_.Save(masm);
4156 
4157   if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4158     Label dont_need_remembered_set;
4159 
4160     __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
4161     __ JumpIfNotInNewSpace(regs_.scratch0(),  // Value.
4162                            regs_.scratch0(),
4163                            &dont_need_remembered_set);
4164 
4165     __ CheckPageFlag(regs_.object(),
4166                      regs_.scratch0(),
4167                      1 << MemoryChunk::SCAN_ON_SCAVENGE,
4168                      ne,
4169                      &dont_need_remembered_set);
4170 
4171     // First notify the incremental marker if necessary, then update the
4172     // remembered set.
4173     CheckNeedsToInformIncrementalMarker(
4174         masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
4175     InformIncrementalMarker(masm);
4176     regs_.Restore(masm);
4177     __ RememberedSetHelper(object(),
4178                            address(),
4179                            value(),
4180                            save_fp_regs_mode(),
4181                            MacroAssembler::kReturnAtEnd);
4182 
4183     __ bind(&dont_need_remembered_set);
4184   }
4185 
4186   CheckNeedsToInformIncrementalMarker(
4187       masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
4188   InformIncrementalMarker(masm);
4189   regs_.Restore(masm);
4190   __ Ret();
4191 }
4192 
4193 
InformIncrementalMarker(MacroAssembler * masm)4194 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4195   regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
4196   int argument_count = 3;
4197   __ PrepareCallCFunction(argument_count, regs_.scratch0());
4198   Register address =
4199       a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
4200   DCHECK(!address.is(regs_.object()));
4201   DCHECK(!address.is(a0));
4202   __ Move(address, regs_.address());
4203   __ Move(a0, regs_.object());
4204   __ Move(a1, address);
4205   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
4206 
4207   AllowExternalCallThatCantCauseGC scope(masm);
4208   __ CallCFunction(
4209       ExternalReference::incremental_marking_record_write_function(isolate()),
4210       argument_count);
4211   regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4212 }
4213 
4214 
CheckNeedsToInformIncrementalMarker(MacroAssembler * masm,OnNoNeedToInformIncrementalMarker on_no_need,Mode mode)4215 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4216     MacroAssembler* masm,
4217     OnNoNeedToInformIncrementalMarker on_no_need,
4218     Mode mode) {
4219   Label on_black;
4220   Label need_incremental;
4221   Label need_incremental_pop_scratch;
4222 
4223   __ And(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
4224   __ lw(regs_.scratch1(),
4225         MemOperand(regs_.scratch0(),
4226                    MemoryChunk::kWriteBarrierCounterOffset));
4227   __ Subu(regs_.scratch1(), regs_.scratch1(), Operand(1));
4228   __ sw(regs_.scratch1(),
4229          MemOperand(regs_.scratch0(),
4230                     MemoryChunk::kWriteBarrierCounterOffset));
4231   __ Branch(&need_incremental, lt, regs_.scratch1(), Operand(zero_reg));
4232 
4233   // Let's look at the color of the object:  If it is not black we don't have
4234   // to inform the incremental marker.
4235   __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
4236 
4237   regs_.Restore(masm);
4238   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4239     __ RememberedSetHelper(object(),
4240                            address(),
4241                            value(),
4242                            save_fp_regs_mode(),
4243                            MacroAssembler::kReturnAtEnd);
4244   } else {
4245     __ Ret();
4246   }
4247 
4248   __ bind(&on_black);
4249 
4250   // Get the value from the slot.
4251   __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
4252 
4253   if (mode == INCREMENTAL_COMPACTION) {
4254     Label ensure_not_white;
4255 
4256     __ CheckPageFlag(regs_.scratch0(),  // Contains value.
4257                      regs_.scratch1(),  // Scratch.
4258                      MemoryChunk::kEvacuationCandidateMask,
4259                      eq,
4260                      &ensure_not_white);
4261 
4262     __ CheckPageFlag(regs_.object(),
4263                      regs_.scratch1(),  // Scratch.
4264                      MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4265                      eq,
4266                      &need_incremental);
4267 
4268     __ bind(&ensure_not_white);
4269   }
4270 
4271   // We need extra registers for this, so we push the object and the address
4272   // register temporarily.
4273   __ Push(regs_.object(), regs_.address());
4274   __ EnsureNotWhite(regs_.scratch0(),  // The value.
4275                     regs_.scratch1(),  // Scratch.
4276                     regs_.object(),  // Scratch.
4277                     regs_.address(),  // Scratch.
4278                     &need_incremental_pop_scratch);
4279   __ Pop(regs_.object(), regs_.address());
4280 
4281   regs_.Restore(masm);
4282   if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4283     __ RememberedSetHelper(object(),
4284                            address(),
4285                            value(),
4286                            save_fp_regs_mode(),
4287                            MacroAssembler::kReturnAtEnd);
4288   } else {
4289     __ Ret();
4290   }
4291 
4292   __ bind(&need_incremental_pop_scratch);
4293   __ Pop(regs_.object(), regs_.address());
4294 
4295   __ bind(&need_incremental);
4296 
4297   // Fall through when we need to inform the incremental marker.
4298 }
4299 
4300 
Generate(MacroAssembler * masm)4301 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4302   // ----------- S t a t e -------------
4303   //  -- a0    : element value to store
4304   //  -- a3    : element index as smi
4305   //  -- sp[0] : array literal index in function as smi
4306   //  -- sp[4] : array literal
4307   // clobbers a1, a2, t0
4308   // -----------------------------------
4309 
4310   Label element_done;
4311   Label double_elements;
4312   Label smi_element;
4313   Label slow_elements;
4314   Label fast_elements;
4315 
4316   // Get array literal index, array literal and its map.
4317   __ lw(t0, MemOperand(sp, 0 * kPointerSize));
4318   __ lw(a1, MemOperand(sp, 1 * kPointerSize));
4319   __ lw(a2, FieldMemOperand(a1, JSObject::kMapOffset));
4320 
4321   __ CheckFastElements(a2, t1, &double_elements);
4322   // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
4323   __ JumpIfSmi(a0, &smi_element);
4324   __ CheckFastSmiElements(a2, t1, &fast_elements);
4325 
4326   // Store into the array literal requires a elements transition. Call into
4327   // the runtime.
4328   __ bind(&slow_elements);
4329   // call.
4330   __ Push(a1, a3, a0);
4331   __ lw(t1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4332   __ lw(t1, FieldMemOperand(t1, JSFunction::kLiteralsOffset));
4333   __ Push(t1, t0);
4334   __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4335 
4336   // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4337   __ bind(&fast_elements);
4338   __ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset));
4339   __ sll(t2, a3, kPointerSizeLog2 - kSmiTagSize);
4340   __ Addu(t2, t1, t2);
4341   __ Addu(t2, t2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4342   __ sw(a0, MemOperand(t2, 0));
4343   // Update the write barrier for the array store.
4344   __ RecordWrite(t1, t2, a0, kRAHasNotBeenSaved, kDontSaveFPRegs,
4345                  EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
4346   __ Ret(USE_DELAY_SLOT);
4347   __ mov(v0, a0);
4348 
4349   // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4350   // and value is Smi.
4351   __ bind(&smi_element);
4352   __ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset));
4353   __ sll(t2, a3, kPointerSizeLog2 - kSmiTagSize);
4354   __ Addu(t2, t1, t2);
4355   __ sw(a0, FieldMemOperand(t2, FixedArray::kHeaderSize));
4356   __ Ret(USE_DELAY_SLOT);
4357   __ mov(v0, a0);
4358 
4359   // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
4360   __ bind(&double_elements);
4361   __ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset));
4362   __ StoreNumberToDoubleElements(a0, a3, t1, t3, t5, a2, &slow_elements);
4363   __ Ret(USE_DELAY_SLOT);
4364   __ mov(v0, a0);
4365 }
4366 
4367 
Generate(MacroAssembler * masm)4368 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4369   CEntryStub ces(isolate(), 1, kSaveFPRegs);
4370   __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4371   int parameter_count_offset =
4372       StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4373   __ lw(a1, MemOperand(fp, parameter_count_offset));
4374   if (function_mode() == JS_FUNCTION_STUB_MODE) {
4375     __ Addu(a1, a1, Operand(1));
4376   }
4377   masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4378   __ sll(a1, a1, kPointerSizeLog2);
4379   __ Ret(USE_DELAY_SLOT);
4380   __ Addu(sp, sp, a1);
4381 }
4382 
4383 
Generate(MacroAssembler * masm)4384 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4385   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4386   VectorLoadStub stub(isolate(), state());
4387   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4388 }
4389 
4390 
Generate(MacroAssembler * masm)4391 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4392   EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4393   VectorKeyedLoadStub stub(isolate());
4394   __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4395 }
4396 
4397 
MaybeCallEntryHook(MacroAssembler * masm)4398 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4399   if (masm->isolate()->function_entry_hook() != NULL) {
4400     ProfileEntryHookStub stub(masm->isolate());
4401     __ push(ra);
4402     __ CallStub(&stub);
4403     __ pop(ra);
4404   }
4405 }
4406 
4407 
Generate(MacroAssembler * masm)4408 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4409   // The entry hook is a "push ra" instruction, followed by a call.
4410   // Note: on MIPS "push" is 2 instruction
4411   const int32_t kReturnAddressDistanceFromFunctionStart =
4412       Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize);
4413 
4414   // This should contain all kJSCallerSaved registers.
4415   const RegList kSavedRegs =
4416      kJSCallerSaved |  // Caller saved registers.
4417      s5.bit();         // Saved stack pointer.
4418 
4419   // We also save ra, so the count here is one higher than the mask indicates.
4420   const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
4421 
4422   // Save all caller-save registers as this may be called from anywhere.
4423   __ MultiPush(kSavedRegs | ra.bit());
4424 
4425   // Compute the function's address for the first argument.
4426   __ Subu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart));
4427 
4428   // The caller's return address is above the saved temporaries.
4429   // Grab that for the second argument to the hook.
4430   __ Addu(a1, sp, Operand(kNumSavedRegs * kPointerSize));
4431 
4432   // Align the stack if necessary.
4433   int frame_alignment = masm->ActivationFrameAlignment();
4434   if (frame_alignment > kPointerSize) {
4435     __ mov(s5, sp);
4436     DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
4437     __ And(sp, sp, Operand(-frame_alignment));
4438   }
4439   __ Subu(sp, sp, kCArgsSlotsSize);
4440 #if defined(V8_HOST_ARCH_MIPS)
4441   int32_t entry_hook =
4442       reinterpret_cast<int32_t>(isolate()->function_entry_hook());
4443   __ li(t9, Operand(entry_hook));
4444 #else
4445   // Under the simulator we need to indirect the entry hook through a
4446   // trampoline function at a known address.
4447   // It additionally takes an isolate as a third parameter.
4448   __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
4449 
4450   ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4451   __ li(t9, Operand(ExternalReference(&dispatcher,
4452                                       ExternalReference::BUILTIN_CALL,
4453                                       isolate())));
4454 #endif
4455   // Call C function through t9 to conform ABI for PIC.
4456   __ Call(t9);
4457 
4458   // Restore the stack pointer if needed.
4459   if (frame_alignment > kPointerSize) {
4460     __ mov(sp, s5);
4461   } else {
4462     __ Addu(sp, sp, kCArgsSlotsSize);
4463   }
4464 
4465   // Also pop ra to get Ret(0).
4466   __ MultiPop(kSavedRegs | ra.bit());
4467   __ Ret();
4468 }
4469 
4470 
4471 template<class T>
CreateArrayDispatch(MacroAssembler * masm,AllocationSiteOverrideMode mode)4472 static void CreateArrayDispatch(MacroAssembler* masm,
4473                                 AllocationSiteOverrideMode mode) {
4474   if (mode == DISABLE_ALLOCATION_SITES) {
4475     T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4476     __ TailCallStub(&stub);
4477   } else if (mode == DONT_OVERRIDE) {
4478     int last_index = GetSequenceIndexFromFastElementsKind(
4479         TERMINAL_FAST_ELEMENTS_KIND);
4480     for (int i = 0; i <= last_index; ++i) {
4481       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4482       T stub(masm->isolate(), kind);
4483       __ TailCallStub(&stub, eq, a3, Operand(kind));
4484     }
4485 
4486     // If we reached this point there is a problem.
4487     __ Abort(kUnexpectedElementsKindInArrayConstructor);
4488   } else {
4489     UNREACHABLE();
4490   }
4491 }
4492 
4493 
CreateArrayDispatchOneArgument(MacroAssembler * masm,AllocationSiteOverrideMode mode)4494 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4495                                            AllocationSiteOverrideMode mode) {
4496   // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4497   // a3 - kind (if mode != DISABLE_ALLOCATION_SITES)
4498   // a0 - number of arguments
4499   // a1 - constructor?
4500   // sp[0] - last argument
4501   Label normal_sequence;
4502   if (mode == DONT_OVERRIDE) {
4503     DCHECK(FAST_SMI_ELEMENTS == 0);
4504     DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
4505     DCHECK(FAST_ELEMENTS == 2);
4506     DCHECK(FAST_HOLEY_ELEMENTS == 3);
4507     DCHECK(FAST_DOUBLE_ELEMENTS == 4);
4508     DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4509 
4510     // is the low bit set? If so, we are holey and that is good.
4511     __ And(at, a3, Operand(1));
4512     __ Branch(&normal_sequence, ne, at, Operand(zero_reg));
4513   }
4514 
4515   // look at the first argument
4516   __ lw(t1, MemOperand(sp, 0));
4517   __ Branch(&normal_sequence, eq, t1, Operand(zero_reg));
4518 
4519   if (mode == DISABLE_ALLOCATION_SITES) {
4520     ElementsKind initial = GetInitialFastElementsKind();
4521     ElementsKind holey_initial = GetHoleyElementsKind(initial);
4522 
4523     ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4524                                                   holey_initial,
4525                                                   DISABLE_ALLOCATION_SITES);
4526     __ TailCallStub(&stub_holey);
4527 
4528     __ bind(&normal_sequence);
4529     ArraySingleArgumentConstructorStub stub(masm->isolate(),
4530                                             initial,
4531                                             DISABLE_ALLOCATION_SITES);
4532     __ TailCallStub(&stub);
4533   } else if (mode == DONT_OVERRIDE) {
4534     // We are going to create a holey array, but our kind is non-holey.
4535     // Fix kind and retry (only if we have an allocation site in the slot).
4536     __ Addu(a3, a3, Operand(1));
4537 
4538     if (FLAG_debug_code) {
4539       __ lw(t1, FieldMemOperand(a2, 0));
4540       __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
4541       __ Assert(eq, kExpectedAllocationSite, t1, Operand(at));
4542     }
4543 
4544     // Save the resulting elements kind in type info. We can't just store a3
4545     // in the AllocationSite::transition_info field because elements kind is
4546     // restricted to a portion of the field...upper bits need to be left alone.
4547     STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4548     __ lw(t0, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4549     __ Addu(t0, t0, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
4550     __ sw(t0, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4551 
4552 
4553     __ bind(&normal_sequence);
4554     int last_index = GetSequenceIndexFromFastElementsKind(
4555         TERMINAL_FAST_ELEMENTS_KIND);
4556     for (int i = 0; i <= last_index; ++i) {
4557       ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4558       ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4559       __ TailCallStub(&stub, eq, a3, Operand(kind));
4560     }
4561 
4562     // If we reached this point there is a problem.
4563     __ Abort(kUnexpectedElementsKindInArrayConstructor);
4564   } else {
4565     UNREACHABLE();
4566   }
4567 }
4568 
4569 
4570 template<class T>
ArrayConstructorStubAheadOfTimeHelper(Isolate * isolate)4571 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4572   int to_index = GetSequenceIndexFromFastElementsKind(
4573       TERMINAL_FAST_ELEMENTS_KIND);
4574   for (int i = 0; i <= to_index; ++i) {
4575     ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4576     T stub(isolate, kind);
4577     stub.GetCode();
4578     if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4579       T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4580       stub1.GetCode();
4581     }
4582   }
4583 }
4584 
4585 
GenerateStubsAheadOfTime(Isolate * isolate)4586 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4587   ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4588       isolate);
4589   ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4590       isolate);
4591   ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4592       isolate);
4593 }
4594 
4595 
GenerateStubsAheadOfTime(Isolate * isolate)4596 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4597     Isolate* isolate) {
4598   ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4599   for (int i = 0; i < 2; i++) {
4600     // For internal arrays we only need a few things.
4601     InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4602     stubh1.GetCode();
4603     InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4604     stubh2.GetCode();
4605     InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4606     stubh3.GetCode();
4607   }
4608 }
4609 
4610 
GenerateDispatchToArrayStub(MacroAssembler * masm,AllocationSiteOverrideMode mode)4611 void ArrayConstructorStub::GenerateDispatchToArrayStub(
4612     MacroAssembler* masm,
4613     AllocationSiteOverrideMode mode) {
4614   if (argument_count() == ANY) {
4615     Label not_zero_case, not_one_case;
4616     __ And(at, a0, a0);
4617     __ Branch(&not_zero_case, ne, at, Operand(zero_reg));
4618     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4619 
4620     __ bind(&not_zero_case);
4621     __ Branch(&not_one_case, gt, a0, Operand(1));
4622     CreateArrayDispatchOneArgument(masm, mode);
4623 
4624     __ bind(&not_one_case);
4625     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4626   } else if (argument_count() == NONE) {
4627     CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4628   } else if (argument_count() == ONE) {
4629     CreateArrayDispatchOneArgument(masm, mode);
4630   } else if (argument_count() == MORE_THAN_ONE) {
4631     CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4632   } else {
4633     UNREACHABLE();
4634   }
4635 }
4636 
4637 
Generate(MacroAssembler * masm)4638 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4639   // ----------- S t a t e -------------
4640   //  -- a0 : argc (only if argument_count() == ANY)
4641   //  -- a1 : constructor
4642   //  -- a2 : AllocationSite or undefined
4643   //  -- sp[0] : return address
4644   //  -- sp[4] : last argument
4645   // -----------------------------------
4646 
4647   if (FLAG_debug_code) {
4648     // The array construct code is only set for the global and natives
4649     // builtin Array functions which always have maps.
4650 
4651     // Initial map for the builtin Array function should be a map.
4652     __ lw(t0, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
4653     // Will both indicate a NULL and a Smi.
4654     __ SmiTst(t0, at);
4655     __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
4656         at, Operand(zero_reg));
4657     __ GetObjectType(t0, t0, t1);
4658     __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
4659         t1, Operand(MAP_TYPE));
4660 
4661     // We should either have undefined in a2 or a valid AllocationSite
4662     __ AssertUndefinedOrAllocationSite(a2, t0);
4663   }
4664 
4665   Label no_info;
4666   // Get the elements kind and case on that.
4667   __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4668   __ Branch(&no_info, eq, a2, Operand(at));
4669 
4670   __ lw(a3, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4671   __ SmiUntag(a3);
4672   STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4673   __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask));
4674   GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4675 
4676   __ bind(&no_info);
4677   GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4678 }
4679 
4680 
GenerateCase(MacroAssembler * masm,ElementsKind kind)4681 void InternalArrayConstructorStub::GenerateCase(
4682     MacroAssembler* masm, ElementsKind kind) {
4683 
4684   InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4685   __ TailCallStub(&stub0, lo, a0, Operand(1));
4686 
4687   InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4688   __ TailCallStub(&stubN, hi, a0, Operand(1));
4689 
4690   if (IsFastPackedElementsKind(kind)) {
4691     // We might need to create a holey array
4692     // look at the first argument.
4693     __ lw(at, MemOperand(sp, 0));
4694 
4695     InternalArraySingleArgumentConstructorStub
4696         stub1_holey(isolate(), GetHoleyElementsKind(kind));
4697     __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg));
4698   }
4699 
4700   InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4701   __ TailCallStub(&stub1);
4702 }
4703 
4704 
Generate(MacroAssembler * masm)4705 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4706   // ----------- S t a t e -------------
4707   //  -- a0 : argc
4708   //  -- a1 : constructor
4709   //  -- sp[0] : return address
4710   //  -- sp[4] : last argument
4711   // -----------------------------------
4712 
4713   if (FLAG_debug_code) {
4714     // The array construct code is only set for the global and natives
4715     // builtin Array functions which always have maps.
4716 
4717     // Initial map for the builtin Array function should be a map.
4718     __ lw(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
4719     // Will both indicate a NULL and a Smi.
4720     __ SmiTst(a3, at);
4721     __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
4722         at, Operand(zero_reg));
4723     __ GetObjectType(a3, a3, t0);
4724     __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
4725         t0, Operand(MAP_TYPE));
4726   }
4727 
4728   // Figure out the right elements kind.
4729   __ lw(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
4730 
4731   // Load the map's "bit field 2" into a3. We only need the first byte,
4732   // but the following bit field extraction takes care of that anyway.
4733   __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset));
4734   // Retrieve elements_kind from bit field 2.
4735   __ DecodeField<Map::ElementsKindBits>(a3);
4736 
4737   if (FLAG_debug_code) {
4738     Label done;
4739     __ Branch(&done, eq, a3, Operand(FAST_ELEMENTS));
4740     __ Assert(
4741         eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray,
4742         a3, Operand(FAST_HOLEY_ELEMENTS));
4743     __ bind(&done);
4744   }
4745 
4746   Label fast_elements_case;
4747   __ Branch(&fast_elements_case, eq, a3, Operand(FAST_ELEMENTS));
4748   GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4749 
4750   __ bind(&fast_elements_case);
4751   GenerateCase(masm, FAST_ELEMENTS);
4752 }
4753 
4754 
Generate(MacroAssembler * masm)4755 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
4756   // ----------- S t a t e -------------
4757   //  -- a0                  : callee
4758   //  -- t0                  : call_data
4759   //  -- a2                  : holder
4760   //  -- a1                  : api_function_address
4761   //  -- cp                  : context
4762   //  --
4763   //  -- sp[0]               : last argument
4764   //  -- ...
4765   //  -- sp[(argc - 1)* 4]   : first argument
4766   //  -- sp[argc * 4]        : receiver
4767   // -----------------------------------
4768 
4769   Register callee = a0;
4770   Register call_data = t0;
4771   Register holder = a2;
4772   Register api_function_address = a1;
4773   Register context = cp;
4774 
4775   int argc = this->argc();
4776   bool is_store = this->is_store();
4777   bool call_data_undefined = this->call_data_undefined();
4778 
4779   typedef FunctionCallbackArguments FCA;
4780 
4781   STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4782   STATIC_ASSERT(FCA::kCalleeIndex == 5);
4783   STATIC_ASSERT(FCA::kDataIndex == 4);
4784   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4785   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4786   STATIC_ASSERT(FCA::kIsolateIndex == 1);
4787   STATIC_ASSERT(FCA::kHolderIndex == 0);
4788   STATIC_ASSERT(FCA::kArgsLength == 7);
4789 
4790   // Save context, callee and call data.
4791   __ Push(context, callee, call_data);
4792   // Load context from callee.
4793   __ lw(context, FieldMemOperand(callee, JSFunction::kContextOffset));
4794 
4795   Register scratch = call_data;
4796   if (!call_data_undefined) {
4797     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4798   }
4799   // Push return value and default return value.
4800   __ Push(scratch, scratch);
4801   __ li(scratch,
4802         Operand(ExternalReference::isolate_address(isolate())));
4803   // Push isolate and holder.
4804   __ Push(scratch, holder);
4805 
4806   // Prepare arguments.
4807   __ mov(scratch, sp);
4808 
4809   // Allocate the v8::Arguments structure in the arguments' space since
4810   // it's not controlled by GC.
4811   const int kApiStackSpace = 4;
4812 
4813   FrameScope frame_scope(masm, StackFrame::MANUAL);
4814   __ EnterExitFrame(false, kApiStackSpace);
4815 
4816   DCHECK(!api_function_address.is(a0) && !scratch.is(a0));
4817   // a0 = FunctionCallbackInfo&
4818   // Arguments is after the return address.
4819   __ Addu(a0, sp, Operand(1 * kPointerSize));
4820   // FunctionCallbackInfo::implicit_args_
4821   __ sw(scratch, MemOperand(a0, 0 * kPointerSize));
4822   // FunctionCallbackInfo::values_
4823   __ Addu(at, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
4824   __ sw(at, MemOperand(a0, 1 * kPointerSize));
4825   // FunctionCallbackInfo::length_ = argc
4826   __ li(at, Operand(argc));
4827   __ sw(at, MemOperand(a0, 2 * kPointerSize));
4828   // FunctionCallbackInfo::is_construct_call = 0
4829   __ sw(zero_reg, MemOperand(a0, 3 * kPointerSize));
4830 
4831   const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
4832   ExternalReference thunk_ref =
4833       ExternalReference::invoke_function_callback(isolate());
4834 
4835   AllowExternalCallThatCantCauseGC scope(masm);
4836   MemOperand context_restore_operand(
4837       fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
4838   // Stores return the first js argument.
4839   int return_value_offset = 0;
4840   if (is_store) {
4841     return_value_offset = 2 + FCA::kArgsLength;
4842   } else {
4843     return_value_offset = 2 + FCA::kReturnValueOffset;
4844   }
4845   MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
4846 
4847   __ CallApiFunctionAndReturn(api_function_address,
4848                               thunk_ref,
4849                               kStackUnwindSpace,
4850                               return_value_operand,
4851                               &context_restore_operand);
4852 }
4853 
4854 
Generate(MacroAssembler * masm)4855 void CallApiGetterStub::Generate(MacroAssembler* masm) {
4856   // ----------- S t a t e -------------
4857   //  -- sp[0]                  : name
4858   //  -- sp[4 - kArgsLength*4]  : PropertyCallbackArguments object
4859   //  -- ...
4860   //  -- a2                     : api_function_address
4861   // -----------------------------------
4862 
4863   Register api_function_address = ApiGetterDescriptor::function_address();
4864   DCHECK(api_function_address.is(a2));
4865 
4866   __ mov(a0, sp);  // a0 = Handle<Name>
4867   __ Addu(a1, a0, Operand(1 * kPointerSize));  // a1 = PCA
4868 
4869   const int kApiStackSpace = 1;
4870   FrameScope frame_scope(masm, StackFrame::MANUAL);
4871   __ EnterExitFrame(false, kApiStackSpace);
4872 
4873   // Create PropertyAccessorInfo instance on the stack above the exit frame with
4874   // a1 (internal::Object** args_) as the data.
4875   __ sw(a1, MemOperand(sp, 1 * kPointerSize));
4876   __ Addu(a1, sp, Operand(1 * kPointerSize));  // a1 = AccessorInfo&
4877 
4878   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
4879 
4880   ExternalReference thunk_ref =
4881       ExternalReference::invoke_accessor_getter_callback(isolate());
4882   __ CallApiFunctionAndReturn(api_function_address,
4883                               thunk_ref,
4884                               kStackUnwindSpace,
4885                               MemOperand(fp, 6 * kPointerSize),
4886                               NULL);
4887 }
4888 
4889 
4890 #undef __
4891 
4892 } }  // namespace v8::internal
4893 
4894 #endif  // V8_TARGET_ARCH_MIPS
4895