1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkReduceOrder.h"
8 
reduce(const SkDLine & line)9 int SkReduceOrder::reduce(const SkDLine& line) {
10     fLine[0] = line[0];
11     int different = line[0] != line[1];
12     fLine[1] = line[different];
13     return 1 + different;
14 }
15 
coincident_line(const SkDQuad & quad,SkDQuad & reduction)16 static int coincident_line(const SkDQuad& quad, SkDQuad& reduction) {
17     reduction[0] = reduction[1] = quad[0];
18     return 1;
19 }
20 
reductionLineCount(const SkDQuad & reduction)21 static int reductionLineCount(const SkDQuad& reduction) {
22     return 1 + !reduction[0].approximatelyEqual(reduction[1]);
23 }
24 
vertical_line(const SkDQuad & quad,SkDQuad & reduction)25 static int vertical_line(const SkDQuad& quad, SkDQuad& reduction) {
26     reduction[0] = quad[0];
27     reduction[1] = quad[2];
28     return reductionLineCount(reduction);
29 }
30 
horizontal_line(const SkDQuad & quad,SkDQuad & reduction)31 static int horizontal_line(const SkDQuad& quad, SkDQuad& reduction) {
32     reduction[0] = quad[0];
33     reduction[1] = quad[2];
34     return reductionLineCount(reduction);
35 }
36 
check_linear(const SkDQuad & quad,int minX,int maxX,int minY,int maxY,SkDQuad & reduction)37 static int check_linear(const SkDQuad& quad,
38         int minX, int maxX, int minY, int maxY, SkDQuad& reduction) {
39     int startIndex = 0;
40     int endIndex = 2;
41     while (quad[startIndex].approximatelyEqual(quad[endIndex])) {
42         --endIndex;
43         if (endIndex == 0) {
44             SkDebugf("%s shouldn't get here if all four points are about equal", __FUNCTION__);
45             SkASSERT(0);
46         }
47     }
48     if (!quad.isLinear(startIndex, endIndex)) {
49         return 0;
50     }
51     // four are colinear: return line formed by outside
52     reduction[0] = quad[0];
53     reduction[1] = quad[2];
54     return reductionLineCount(reduction);
55 }
56 
57 // reduce to a quadratic or smaller
58 // look for identical points
59 // look for all four points in a line
60     // note that three points in a line doesn't simplify a cubic
61 // look for approximation with single quadratic
62     // save approximation with multiple quadratics for later
reduce(const SkDQuad & quad)63 int SkReduceOrder::reduce(const SkDQuad& quad) {
64     int index, minX, maxX, minY, maxY;
65     int minXSet, minYSet;
66     minX = maxX = minY = maxY = 0;
67     minXSet = minYSet = 0;
68     for (index = 1; index < 3; ++index) {
69         if (quad[minX].fX > quad[index].fX) {
70             minX = index;
71         }
72         if (quad[minY].fY > quad[index].fY) {
73             minY = index;
74         }
75         if (quad[maxX].fX < quad[index].fX) {
76             maxX = index;
77         }
78         if (quad[maxY].fY < quad[index].fY) {
79             maxY = index;
80         }
81     }
82     for (index = 0; index < 3; ++index) {
83         if (AlmostEqualUlps(quad[index].fX, quad[minX].fX)) {
84             minXSet |= 1 << index;
85         }
86         if (AlmostEqualUlps(quad[index].fY, quad[minY].fY)) {
87             minYSet |= 1 << index;
88         }
89     }
90     if (minXSet == 0x7) {  // test for vertical line
91         if (minYSet == 0x7) {  // return 1 if all three are coincident
92             return coincident_line(quad, fQuad);
93         }
94         return vertical_line(quad, fQuad);
95     }
96     if (minYSet == 0x7) {  // test for horizontal line
97         return horizontal_line(quad, fQuad);
98     }
99     int result = check_linear(quad, minX, maxX, minY, maxY, fQuad);
100     if (result) {
101         return result;
102     }
103     fQuad = quad;
104     return 3;
105 }
106 
107 ////////////////////////////////////////////////////////////////////////////////////
108 
coincident_line(const SkDCubic & cubic,SkDCubic & reduction)109 static int coincident_line(const SkDCubic& cubic, SkDCubic& reduction) {
110     reduction[0] = reduction[1] = cubic[0];
111     return 1;
112 }
113 
reductionLineCount(const SkDCubic & reduction)114 static int reductionLineCount(const SkDCubic& reduction) {
115     return 1 + !reduction[0].approximatelyEqual(reduction[1]);
116 }
117 
vertical_line(const SkDCubic & cubic,SkDCubic & reduction)118 static int vertical_line(const SkDCubic& cubic, SkDCubic& reduction) {
119     reduction[0] = cubic[0];
120     reduction[1] = cubic[3];
121     return reductionLineCount(reduction);
122 }
123 
horizontal_line(const SkDCubic & cubic,SkDCubic & reduction)124 static int horizontal_line(const SkDCubic& cubic, SkDCubic& reduction) {
125     reduction[0] = cubic[0];
126     reduction[1] = cubic[3];
127     return reductionLineCount(reduction);
128 }
129 
130 // check to see if it is a quadratic or a line
check_quadratic(const SkDCubic & cubic,SkDCubic & reduction)131 static int check_quadratic(const SkDCubic& cubic, SkDCubic& reduction) {
132     double dx10 = cubic[1].fX - cubic[0].fX;
133     double dx23 = cubic[2].fX - cubic[3].fX;
134     double midX = cubic[0].fX + dx10 * 3 / 2;
135     double sideAx = midX - cubic[3].fX;
136     double sideBx = dx23 * 3 / 2;
137     if (approximately_zero(sideAx) ? !approximately_equal(sideAx, sideBx)
138             : !AlmostEqualUlps(sideAx, sideBx)) {
139         return 0;
140     }
141     double dy10 = cubic[1].fY - cubic[0].fY;
142     double dy23 = cubic[2].fY - cubic[3].fY;
143     double midY = cubic[0].fY + dy10 * 3 / 2;
144     double sideAy = midY - cubic[3].fY;
145     double sideBy = dy23 * 3 / 2;
146     if (approximately_zero(sideAy) ? !approximately_equal(sideAy, sideBy)
147             : !AlmostEqualUlps(sideAy, sideBy)) {
148         return 0;
149     }
150     reduction[0] = cubic[0];
151     reduction[1].fX = midX;
152     reduction[1].fY = midY;
153     reduction[2] = cubic[3];
154     return 3;
155 }
156 
check_linear(const SkDCubic & cubic,int minX,int maxX,int minY,int maxY,SkDCubic & reduction)157 static int check_linear(const SkDCubic& cubic,
158         int minX, int maxX, int minY, int maxY, SkDCubic& reduction) {
159     int startIndex = 0;
160     int endIndex = 3;
161     while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) {
162         --endIndex;
163         if (endIndex == 0) {
164             endIndex = 3;
165             break;
166         }
167     }
168     if (!cubic.isLinear(startIndex, endIndex)) {
169         return 0;
170     }
171     // four are colinear: return line formed by outside
172     reduction[0] = cubic[0];
173     reduction[1] = cubic[3];
174     return reductionLineCount(reduction);
175 }
176 
177 /* food for thought:
178 http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html
179 
180 Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the
181 corresponding quadratic Bezier are (given in convex combinations of
182 points):
183 
184 q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4
185 q2 = -c1 + (3/2)c2 + (3/2)c3 - c4
186 q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4
187 
188 Of course, this curve does not interpolate the end-points, but it would
189 be interesting to see the behaviour of such a curve in an applet.
190 
191 --
192 Kalle Rutanen
193 http://kaba.hilvi.org
194 
195 */
196 
197 // reduce to a quadratic or smaller
198 // look for identical points
199 // look for all four points in a line
200     // note that three points in a line doesn't simplify a cubic
201 // look for approximation with single quadratic
202     // save approximation with multiple quadratics for later
reduce(const SkDCubic & cubic,Quadratics allowQuadratics)203 int SkReduceOrder::reduce(const SkDCubic& cubic, Quadratics allowQuadratics) {
204     int index, minX, maxX, minY, maxY;
205     int minXSet, minYSet;
206     minX = maxX = minY = maxY = 0;
207     minXSet = minYSet = 0;
208     for (index = 1; index < 4; ++index) {
209         if (cubic[minX].fX > cubic[index].fX) {
210             minX = index;
211         }
212         if (cubic[minY].fY > cubic[index].fY) {
213             minY = index;
214         }
215         if (cubic[maxX].fX < cubic[index].fX) {
216             maxX = index;
217         }
218         if (cubic[maxY].fY < cubic[index].fY) {
219             maxY = index;
220         }
221     }
222     for (index = 0; index < 4; ++index) {
223         double cx = cubic[index].fX;
224         double cy = cubic[index].fY;
225         double denom = SkTMax(fabs(cx), SkTMax(fabs(cy),
226                 SkTMax(fabs(cubic[minX].fX), fabs(cubic[minY].fY))));
227         if (denom == 0) {
228             minXSet |= 1 << index;
229             minYSet |= 1 << index;
230             continue;
231         }
232         double inv = 1 / denom;
233         if (approximately_equal_half(cx * inv, cubic[minX].fX * inv)) {
234             minXSet |= 1 << index;
235         }
236         if (approximately_equal_half(cy * inv, cubic[minY].fY * inv)) {
237             minYSet |= 1 << index;
238         }
239     }
240     if (minXSet == 0xF) {  // test for vertical line
241         if (minYSet == 0xF) {  // return 1 if all four are coincident
242             return coincident_line(cubic, fCubic);
243         }
244         return vertical_line(cubic, fCubic);
245     }
246     if (minYSet == 0xF) {  // test for horizontal line
247         return horizontal_line(cubic, fCubic);
248     }
249     int result = check_linear(cubic, minX, maxX, minY, maxY, fCubic);
250     if (result) {
251         return result;
252     }
253     if (allowQuadratics == SkReduceOrder::kAllow_Quadratics
254             && (result = check_quadratic(cubic, fCubic))) {
255         return result;
256     }
257     fCubic = cubic;
258     return 4;
259 }
260 
Quad(const SkPoint a[3],SkPoint * reducePts)261 SkPath::Verb SkReduceOrder::Quad(const SkPoint a[3], SkPoint* reducePts) {
262     SkDQuad quad;
263     quad.set(a);
264     SkReduceOrder reducer;
265     int order = reducer.reduce(quad);
266     if (order == 2) {  // quad became line
267         for (int index = 0; index < order; ++index) {
268             *reducePts++ = reducer.fLine[index].asSkPoint();
269         }
270     }
271     return SkPathOpsPointsToVerb(order - 1);
272 }
273 
Conic(const SkPoint a[3],SkScalar weight,SkPoint * reducePts)274 SkPath::Verb SkReduceOrder::Conic(const SkPoint a[3], SkScalar weight, SkPoint* reducePts) {
275     SkPath::Verb verb = SkReduceOrder::Quad(a, reducePts);
276     if (verb > SkPath::kLine_Verb && weight == 1) {
277         return SkPath::kQuad_Verb;
278     }
279     return verb == SkPath::kQuad_Verb ? SkPath::kConic_Verb : verb;
280 }
281 
Cubic(const SkPoint a[4],SkPoint * reducePts)282 SkPath::Verb SkReduceOrder::Cubic(const SkPoint a[4], SkPoint* reducePts) {
283     if (SkDPoint::ApproximatelyEqual(a[0], a[1]) && SkDPoint::ApproximatelyEqual(a[0], a[2])
284             && SkDPoint::ApproximatelyEqual(a[0], a[3])) {
285         reducePts[0] = a[0];
286         return SkPath::kMove_Verb;
287     }
288     SkDCubic cubic;
289     cubic.set(a);
290     SkReduceOrder reducer;
291     int order = reducer.reduce(cubic, kAllow_Quadratics);
292     if (order == 2 || order == 3) {  // cubic became line or quad
293         for (int index = 0; index < order; ++index) {
294             *reducePts++ = reducer.fQuad[index].asSkPoint();
295         }
296     }
297     return SkPathOpsPointsToVerb(order - 1);
298 }
299