1
2 /*
3 * Copyright 2011 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10 #include "SkPDFShader.h"
11
12 #include "SkData.h"
13 #include "SkPDFCanon.h"
14 #include "SkPDFDevice.h"
15 #include "SkPDFFormXObject.h"
16 #include "SkPDFGraphicState.h"
17 #include "SkPDFResourceDict.h"
18 #include "SkPDFUtils.h"
19 #include "SkScalar.h"
20 #include "SkStream.h"
21 #include "SkTemplates.h"
22 #include "SkTypes.h"
23
inverse_transform_bbox(const SkMatrix & matrix,SkRect * bbox)24 static bool inverse_transform_bbox(const SkMatrix& matrix, SkRect* bbox) {
25 SkMatrix inverse;
26 if (!matrix.invert(&inverse)) {
27 return false;
28 }
29 inverse.mapRect(bbox);
30 return true;
31 }
32
unitToPointsMatrix(const SkPoint pts[2],SkMatrix * matrix)33 static void unitToPointsMatrix(const SkPoint pts[2], SkMatrix* matrix) {
34 SkVector vec = pts[1] - pts[0];
35 SkScalar mag = vec.length();
36 SkScalar inv = mag ? SkScalarInvert(mag) : 0;
37
38 vec.scale(inv);
39 matrix->setSinCos(vec.fY, vec.fX);
40 matrix->preScale(mag, mag);
41 matrix->postTranslate(pts[0].fX, pts[0].fY);
42 }
43
44 /* Assumes t + startOffset is on the stack and does a linear interpolation on t
45 between startOffset and endOffset from prevColor to curColor (for each color
46 component), leaving the result in component order on the stack. It assumes
47 there are always 3 components per color.
48 @param range endOffset - startOffset
49 @param curColor[components] The current color components.
50 @param prevColor[components] The previous color components.
51 @param result The result ps function.
52 */
interpolateColorCode(SkScalar range,SkScalar * curColor,SkScalar * prevColor,SkString * result)53 static void interpolateColorCode(SkScalar range, SkScalar* curColor,
54 SkScalar* prevColor, SkString* result) {
55 SkASSERT(range != SkIntToScalar(0));
56 static const int kColorComponents = 3;
57
58 // Figure out how to scale each color component.
59 SkScalar multiplier[kColorComponents];
60 for (int i = 0; i < kColorComponents; i++) {
61 multiplier[i] = (curColor[i] - prevColor[i]) / range;
62 }
63
64 // Calculate when we no longer need to keep a copy of the input parameter t.
65 // If the last component to use t is i, then dupInput[0..i - 1] = true
66 // and dupInput[i .. components] = false.
67 bool dupInput[kColorComponents];
68 dupInput[kColorComponents - 1] = false;
69 for (int i = kColorComponents - 2; i >= 0; i--) {
70 dupInput[i] = dupInput[i + 1] || multiplier[i + 1] != 0;
71 }
72
73 if (!dupInput[0] && multiplier[0] == 0) {
74 result->append("pop ");
75 }
76
77 for (int i = 0; i < kColorComponents; i++) {
78 // If the next components needs t and this component will consume a
79 // copy, make another copy.
80 if (dupInput[i] && multiplier[i] != 0) {
81 result->append("dup ");
82 }
83
84 if (multiplier[i] == 0) {
85 result->appendScalar(prevColor[i]);
86 result->append(" ");
87 } else {
88 if (multiplier[i] != 1) {
89 result->appendScalar(multiplier[i]);
90 result->append(" mul ");
91 }
92 if (prevColor[i] != 0) {
93 result->appendScalar(prevColor[i]);
94 result->append(" add ");
95 }
96 }
97
98 if (dupInput[i]) {
99 result->append("exch\n");
100 }
101 }
102 }
103
104 /* Generate Type 4 function code to map t=[0,1) to the passed gradient,
105 clamping at the edges of the range. The generated code will be of the form:
106 if (t < 0) {
107 return colorData[0][r,g,b];
108 } else {
109 if (t < info.fColorOffsets[1]) {
110 return linearinterpolation(colorData[0][r,g,b],
111 colorData[1][r,g,b]);
112 } else {
113 if (t < info.fColorOffsets[2]) {
114 return linearinterpolation(colorData[1][r,g,b],
115 colorData[2][r,g,b]);
116 } else {
117
118 ... } else {
119 return colorData[info.fColorCount - 1][r,g,b];
120 }
121 ...
122 }
123 }
124 */
gradientFunctionCode(const SkShader::GradientInfo & info,SkString * result)125 static void gradientFunctionCode(const SkShader::GradientInfo& info,
126 SkString* result) {
127 /* We want to linearly interpolate from the previous color to the next.
128 Scale the colors from 0..255 to 0..1 and determine the multipliers
129 for interpolation.
130 C{r,g,b}(t, section) = t - offset_(section-1) + t * Multiplier{r,g,b}.
131 */
132 static const int kColorComponents = 3;
133 typedef SkScalar ColorTuple[kColorComponents];
134 SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(info.fColorCount);
135 ColorTuple *colorData = colorDataAlloc.get();
136 const SkScalar scale = SkScalarInvert(SkIntToScalar(255));
137 for (int i = 0; i < info.fColorCount; i++) {
138 colorData[i][0] = SkScalarMul(SkColorGetR(info.fColors[i]), scale);
139 colorData[i][1] = SkScalarMul(SkColorGetG(info.fColors[i]), scale);
140 colorData[i][2] = SkScalarMul(SkColorGetB(info.fColors[i]), scale);
141 }
142
143 // Clamp the initial color.
144 result->append("dup 0 le {pop ");
145 result->appendScalar(colorData[0][0]);
146 result->append(" ");
147 result->appendScalar(colorData[0][1]);
148 result->append(" ");
149 result->appendScalar(colorData[0][2]);
150 result->append(" }\n");
151
152 // The gradient colors.
153 int gradients = 0;
154 for (int i = 1 ; i < info.fColorCount; i++) {
155 if (info.fColorOffsets[i] == info.fColorOffsets[i - 1]) {
156 continue;
157 }
158 gradients++;
159
160 result->append("{dup ");
161 result->appendScalar(info.fColorOffsets[i]);
162 result->append(" le {");
163 if (info.fColorOffsets[i - 1] != 0) {
164 result->appendScalar(info.fColorOffsets[i - 1]);
165 result->append(" sub\n");
166 }
167
168 interpolateColorCode(info.fColorOffsets[i] - info.fColorOffsets[i - 1],
169 colorData[i], colorData[i - 1], result);
170 result->append("}\n");
171 }
172
173 // Clamp the final color.
174 result->append("{pop ");
175 result->appendScalar(colorData[info.fColorCount - 1][0]);
176 result->append(" ");
177 result->appendScalar(colorData[info.fColorCount - 1][1]);
178 result->append(" ");
179 result->appendScalar(colorData[info.fColorCount - 1][2]);
180
181 for (int i = 0 ; i < gradients + 1; i++) {
182 result->append("} ifelse\n");
183 }
184 }
185
186 /* Map a value of t on the stack into [0, 1) for Repeat or Mirror tile mode. */
tileModeCode(SkShader::TileMode mode,SkString * result)187 static void tileModeCode(SkShader::TileMode mode, SkString* result) {
188 if (mode == SkShader::kRepeat_TileMode) {
189 result->append("dup truncate sub\n"); // Get the fractional part.
190 result->append("dup 0 le {1 add} if\n"); // Map (-1,0) => (0,1)
191 return;
192 }
193
194 if (mode == SkShader::kMirror_TileMode) {
195 // Map t mod 2 into [0, 1, 1, 0].
196 // Code Stack
197 result->append("abs " // Map negative to positive.
198 "dup " // t.s t.s
199 "truncate " // t.s t
200 "dup " // t.s t t
201 "cvi " // t.s t T
202 "2 mod " // t.s t (i mod 2)
203 "1 eq " // t.s t true|false
204 "3 1 roll " // true|false t.s t
205 "sub " // true|false 0.s
206 "exch " // 0.s true|false
207 "{1 exch sub} if\n"); // 1 - 0.s|0.s
208 }
209 }
210
211 /**
212 * Returns PS function code that applies inverse perspective
213 * to a x, y point.
214 * The function assumes that the stack has at least two elements,
215 * and that the top 2 elements are numeric values.
216 * After executing this code on a PS stack, the last 2 elements are updated
217 * while the rest of the stack is preserved intact.
218 * inversePerspectiveMatrix is the inverse perspective matrix.
219 */
apply_perspective_to_coordinates(const SkMatrix & inversePerspectiveMatrix)220 static SkString apply_perspective_to_coordinates(
221 const SkMatrix& inversePerspectiveMatrix) {
222 SkString code;
223 if (!inversePerspectiveMatrix.hasPerspective()) {
224 return code;
225 }
226
227 // Perspective matrix should be:
228 // 1 0 0
229 // 0 1 0
230 // p0 p1 p2
231
232 const SkScalar p0 = inversePerspectiveMatrix[SkMatrix::kMPersp0];
233 const SkScalar p1 = inversePerspectiveMatrix[SkMatrix::kMPersp1];
234 const SkScalar p2 = inversePerspectiveMatrix[SkMatrix::kMPersp2];
235
236 // y = y / (p2 + p0 x + p1 y)
237 // x = x / (p2 + p0 x + p1 y)
238
239 // Input on stack: x y
240 code.append(" dup "); // x y y
241 code.appendScalar(p1); // x y y p1
242 code.append(" mul " // x y y*p1
243 " 2 index "); // x y y*p1 x
244 code.appendScalar(p0); // x y y p1 x p0
245 code.append(" mul "); // x y y*p1 x*p0
246 code.appendScalar(p2); // x y y p1 x*p0 p2
247 code.append(" add " // x y y*p1 x*p0+p2
248 "add " // x y y*p1+x*p0+p2
249 "3 1 roll " // y*p1+x*p0+p2 x y
250 "2 index " // z x y y*p1+x*p0+p2
251 "div " // y*p1+x*p0+p2 x y/(y*p1+x*p0+p2)
252 "3 1 roll " // y/(y*p1+x*p0+p2) y*p1+x*p0+p2 x
253 "exch " // y/(y*p1+x*p0+p2) x y*p1+x*p0+p2
254 "div " // y/(y*p1+x*p0+p2) x/(y*p1+x*p0+p2)
255 "exch\n"); // x/(y*p1+x*p0+p2) y/(y*p1+x*p0+p2)
256 return code;
257 }
258
linearCode(const SkShader::GradientInfo & info,const SkMatrix & perspectiveRemover)259 static SkString linearCode(const SkShader::GradientInfo& info,
260 const SkMatrix& perspectiveRemover) {
261 SkString function("{");
262
263 function.append(apply_perspective_to_coordinates(perspectiveRemover));
264
265 function.append("pop\n"); // Just ditch the y value.
266 tileModeCode(info.fTileMode, &function);
267 gradientFunctionCode(info, &function);
268 function.append("}");
269 return function;
270 }
271
radialCode(const SkShader::GradientInfo & info,const SkMatrix & perspectiveRemover)272 static SkString radialCode(const SkShader::GradientInfo& info,
273 const SkMatrix& perspectiveRemover) {
274 SkString function("{");
275
276 function.append(apply_perspective_to_coordinates(perspectiveRemover));
277
278 // Find the distance from the origin.
279 function.append("dup " // x y y
280 "mul " // x y^2
281 "exch " // y^2 x
282 "dup " // y^2 x x
283 "mul " // y^2 x^2
284 "add " // y^2+x^2
285 "sqrt\n"); // sqrt(y^2+x^2)
286
287 tileModeCode(info.fTileMode, &function);
288 gradientFunctionCode(info, &function);
289 function.append("}");
290 return function;
291 }
292
293 /* Conical gradient shader, based on the Canvas spec for radial gradients
294 See: http://www.w3.org/TR/2dcontext/#dom-context-2d-createradialgradient
295 */
twoPointConicalCode(const SkShader::GradientInfo & info,const SkMatrix & perspectiveRemover)296 static SkString twoPointConicalCode(const SkShader::GradientInfo& info,
297 const SkMatrix& perspectiveRemover) {
298 SkScalar dx = info.fPoint[1].fX - info.fPoint[0].fX;
299 SkScalar dy = info.fPoint[1].fY - info.fPoint[0].fY;
300 SkScalar r0 = info.fRadius[0];
301 SkScalar dr = info.fRadius[1] - info.fRadius[0];
302 SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) -
303 SkScalarMul(dr, dr);
304
305 // First compute t, if the pixel falls outside the cone, then we'll end
306 // with 'false' on the stack, otherwise we'll push 'true' with t below it
307
308 // We start with a stack of (x y), copy it and then consume one copy in
309 // order to calculate b and the other to calculate c.
310 SkString function("{");
311
312 function.append(apply_perspective_to_coordinates(perspectiveRemover));
313
314 function.append("2 copy ");
315
316 // Calculate b and b^2; b = -2 * (y * dy + x * dx + r0 * dr).
317 function.appendScalar(dy);
318 function.append(" mul exch ");
319 function.appendScalar(dx);
320 function.append(" mul add ");
321 function.appendScalar(SkScalarMul(r0, dr));
322 function.append(" add -2 mul dup dup mul\n");
323
324 // c = x^2 + y^2 + radius0^2
325 function.append("4 2 roll dup mul exch dup mul add ");
326 function.appendScalar(SkScalarMul(r0, r0));
327 function.append(" sub dup 4 1 roll\n");
328
329 // Contents of the stack at this point: c, b, b^2, c
330
331 // if a = 0, then we collapse to a simpler linear case
332 if (a == 0) {
333
334 // t = -c/b
335 function.append("pop pop div neg dup ");
336
337 // compute radius(t)
338 function.appendScalar(dr);
339 function.append(" mul ");
340 function.appendScalar(r0);
341 function.append(" add\n");
342
343 // if r(t) < 0, then it's outside the cone
344 function.append("0 lt {pop false} {true} ifelse\n");
345
346 } else {
347
348 // quadratic case: the Canvas spec wants the largest
349 // root t for which radius(t) > 0
350
351 // compute the discriminant (b^2 - 4ac)
352 function.appendScalar(SkScalarMul(SkIntToScalar(4), a));
353 function.append(" mul sub dup\n");
354
355 // if d >= 0, proceed
356 function.append("0 ge {\n");
357
358 // an intermediate value we'll use to compute the roots:
359 // q = -0.5 * (b +/- sqrt(d))
360 function.append("sqrt exch dup 0 lt {exch -1 mul} if");
361 function.append(" add -0.5 mul dup\n");
362
363 // first root = q / a
364 function.appendScalar(a);
365 function.append(" div\n");
366
367 // second root = c / q
368 function.append("3 1 roll div\n");
369
370 // put the larger root on top of the stack
371 function.append("2 copy gt {exch} if\n");
372
373 // compute radius(t) for larger root
374 function.append("dup ");
375 function.appendScalar(dr);
376 function.append(" mul ");
377 function.appendScalar(r0);
378 function.append(" add\n");
379
380 // if r(t) > 0, we have our t, pop off the smaller root and we're done
381 function.append(" 0 gt {exch pop true}\n");
382
383 // otherwise, throw out the larger one and try the smaller root
384 function.append("{pop dup\n");
385 function.appendScalar(dr);
386 function.append(" mul ");
387 function.appendScalar(r0);
388 function.append(" add\n");
389
390 // if r(t) < 0, push false, otherwise the smaller root is our t
391 function.append("0 le {pop false} {true} ifelse\n");
392 function.append("} ifelse\n");
393
394 // d < 0, clear the stack and push false
395 function.append("} {pop pop pop false} ifelse\n");
396 }
397
398 // if the pixel is in the cone, proceed to compute a color
399 function.append("{");
400 tileModeCode(info.fTileMode, &function);
401 gradientFunctionCode(info, &function);
402
403 // otherwise, just write black
404 function.append("} {0 0 0} ifelse }");
405
406 return function;
407 }
408
sweepCode(const SkShader::GradientInfo & info,const SkMatrix & perspectiveRemover)409 static SkString sweepCode(const SkShader::GradientInfo& info,
410 const SkMatrix& perspectiveRemover) {
411 SkString function("{exch atan 360 div\n");
412 tileModeCode(info.fTileMode, &function);
413 gradientFunctionCode(info, &function);
414 function.append("}");
415 return function;
416 }
417
drawBitmapMatrix(SkCanvas * canvas,const SkBitmap & bm,const SkMatrix & matrix)418 static void drawBitmapMatrix(SkCanvas* canvas, const SkBitmap& bm, const SkMatrix& matrix) {
419 SkAutoCanvasRestore acr(canvas, true);
420 canvas->concat(matrix);
421 canvas->drawBitmap(bm, 0, 0);
422 }
423
424 class SkPDFShader::State {
425 public:
426 SkShader::GradientType fType;
427 SkShader::GradientInfo fInfo;
428 SkAutoFree fColorData; // This provides storage for arrays in fInfo.
429 SkMatrix fCanvasTransform;
430 SkMatrix fShaderTransform;
431 SkIRect fBBox;
432
433 SkBitmap fImage;
434 uint32_t fPixelGeneration;
435 SkShader::TileMode fImageTileModes[2];
436
437 State(const SkShader& shader, const SkMatrix& canvasTransform,
438 const SkIRect& bbox, SkScalar rasterScale);
439
440 bool operator==(const State& b) const;
441
442 SkPDFShader::State* CreateAlphaToLuminosityState() const;
443 SkPDFShader::State* CreateOpaqueState() const;
444
445 bool GradientHasAlpha() const;
446
447 private:
448 State(const State& other);
449 State operator=(const State& rhs);
450 void AllocateGradientInfoStorage();
451 };
452
453 ////////////////////////////////////////////////////////////////////////////////
454
SkPDFFunctionShader(SkPDFShader::State * state)455 SkPDFFunctionShader::SkPDFFunctionShader(SkPDFShader::State* state)
456 : SkPDFDict("Pattern"), fShaderState(state) {}
457
~SkPDFFunctionShader()458 SkPDFFunctionShader::~SkPDFFunctionShader() {}
459
equals(const SkPDFShader::State & state) const460 bool SkPDFFunctionShader::equals(const SkPDFShader::State& state) const {
461 return state == *fShaderState;
462 }
463
464 ////////////////////////////////////////////////////////////////////////////////
465
SkPDFAlphaFunctionShader(SkPDFShader::State * state)466 SkPDFAlphaFunctionShader::SkPDFAlphaFunctionShader(SkPDFShader::State* state)
467 : fShaderState(state) {}
468
equals(const SkPDFShader::State & state) const469 bool SkPDFAlphaFunctionShader::equals(const SkPDFShader::State& state) const {
470 return state == *fShaderState;
471 }
472
~SkPDFAlphaFunctionShader()473 SkPDFAlphaFunctionShader::~SkPDFAlphaFunctionShader() {}
474
475 ////////////////////////////////////////////////////////////////////////////////
476
SkPDFImageShader(SkPDFShader::State * state)477 SkPDFImageShader::SkPDFImageShader(SkPDFShader::State* state)
478 : fShaderState(state) {}
479
equals(const SkPDFShader::State & state) const480 bool SkPDFImageShader::equals(const SkPDFShader::State& state) const {
481 return state == *fShaderState;
482 }
483
~SkPDFImageShader()484 SkPDFImageShader::~SkPDFImageShader() {}
485
486 ////////////////////////////////////////////////////////////////////////////////
487
get_pdf_shader_by_state(SkPDFCanon * canon,SkScalar dpi,SkAutoTDelete<SkPDFShader::State> * autoState)488 static SkPDFObject* get_pdf_shader_by_state(
489 SkPDFCanon* canon,
490 SkScalar dpi,
491 SkAutoTDelete<SkPDFShader::State>* autoState) {
492 const SkPDFShader::State& state = **autoState;
493 if (state.fType == SkShader::kNone_GradientType && state.fImage.isNull()) {
494 // TODO(vandebo) This drops SKComposeShader on the floor. We could
495 // handle compose shader by pulling things up to a layer, drawing with
496 // the first shader, applying the xfer mode and drawing again with the
497 // second shader, then applying the layer to the original drawing.
498 return NULL;
499 } else if (state.fType == SkShader::kNone_GradientType) {
500 SkPDFObject* shader = canon->findImageShader(state);
501 return shader ? SkRef(shader)
502 : SkPDFImageShader::Create(canon, dpi, autoState);
503 } else if (state.GradientHasAlpha()) {
504 SkPDFObject* shader = canon->findAlphaShader(state);
505 return shader ? SkRef(shader)
506 : SkPDFAlphaFunctionShader::Create(canon, dpi, autoState);
507 } else {
508 SkPDFObject* shader = canon->findFunctionShader(state);
509 return shader ? SkRef(shader)
510 : SkPDFFunctionShader::Create(canon, autoState);
511 }
512 }
513
514 // static
GetPDFShader(SkPDFCanon * canon,SkScalar dpi,const SkShader & shader,const SkMatrix & matrix,const SkIRect & surfaceBBox,SkScalar rasterScale)515 SkPDFObject* SkPDFShader::GetPDFShader(SkPDFCanon* canon,
516 SkScalar dpi,
517 const SkShader& shader,
518 const SkMatrix& matrix,
519 const SkIRect& surfaceBBox,
520 SkScalar rasterScale) {
521 SkAutoTDelete<SkPDFShader::State> state(
522 SkNEW_ARGS(State, (shader, matrix, surfaceBBox, rasterScale)));
523 return get_pdf_shader_by_state(canon, dpi, &state);
524 }
525
get_gradient_resource_dict(SkPDFObject * functionShader,SkPDFObject * gState)526 static SkPDFDict* get_gradient_resource_dict(
527 SkPDFObject* functionShader,
528 SkPDFObject* gState) {
529 SkTDArray<SkPDFObject*> patterns;
530 if (functionShader) {
531 patterns.push(functionShader);
532 }
533 SkTDArray<SkPDFObject*> graphicStates;
534 if (gState) {
535 graphicStates.push(gState);
536 }
537 return SkPDFResourceDict::Create(&graphicStates, &patterns, NULL, NULL);
538 }
539
populate_tiling_pattern_dict(SkPDFDict * pattern,SkRect & bbox,SkPDFDict * resources,const SkMatrix & matrix)540 static void populate_tiling_pattern_dict(SkPDFDict* pattern,
541 SkRect& bbox,
542 SkPDFDict* resources,
543 const SkMatrix& matrix) {
544 const int kTiling_PatternType = 1;
545 const int kColoredTilingPattern_PaintType = 1;
546 const int kConstantSpacing_TilingType = 1;
547
548 pattern->insertName("Type", "Pattern");
549 pattern->insertInt("PatternType", kTiling_PatternType);
550 pattern->insertInt("PaintType", kColoredTilingPattern_PaintType);
551 pattern->insertInt("TilingType", kConstantSpacing_TilingType);
552 pattern->insertObject("BBox", SkPDFUtils::RectToArray(bbox));
553 pattern->insertScalar("XStep", bbox.width());
554 pattern->insertScalar("YStep", bbox.height());
555 pattern->insertObject("Resources", SkRef(resources));
556 if (!matrix.isIdentity()) {
557 pattern->insertObject("Matrix", SkPDFUtils::MatrixToArray(matrix));
558 }
559 }
560
561 /**
562 * Creates a content stream which fills the pattern P0 across bounds.
563 * @param gsIndex A graphics state resource index to apply, or <0 if no
564 * graphics state to apply.
565 */
create_pattern_fill_content(int gsIndex,SkRect & bounds)566 static SkStream* create_pattern_fill_content(int gsIndex, SkRect& bounds) {
567 SkDynamicMemoryWStream content;
568 if (gsIndex >= 0) {
569 SkPDFUtils::ApplyGraphicState(gsIndex, &content);
570 }
571 SkPDFUtils::ApplyPattern(0, &content);
572 SkPDFUtils::AppendRectangle(bounds, &content);
573 SkPDFUtils::PaintPath(SkPaint::kFill_Style, SkPath::kEvenOdd_FillType,
574 &content);
575
576 return content.detachAsStream();
577 }
578
579 /**
580 * Creates a ExtGState with the SMask set to the luminosityShader in
581 * luminosity mode. The shader pattern extends to the bbox.
582 */
create_smask_graphic_state(SkPDFCanon * canon,SkScalar dpi,const SkPDFShader::State & state)583 static SkPDFObject* create_smask_graphic_state(
584 SkPDFCanon* canon, SkScalar dpi, const SkPDFShader::State& state) {
585 SkRect bbox;
586 bbox.set(state.fBBox);
587
588 SkAutoTDelete<SkPDFShader::State> alphaToLuminosityState(
589 state.CreateAlphaToLuminosityState());
590 SkAutoTUnref<SkPDFObject> luminosityShader(
591 get_pdf_shader_by_state(canon, dpi, &alphaToLuminosityState));
592
593 SkAutoTDelete<SkStream> alphaStream(create_pattern_fill_content(-1, bbox));
594
595 SkAutoTUnref<SkPDFDict>
596 resources(get_gradient_resource_dict(luminosityShader, NULL));
597
598 SkAutoTUnref<SkPDFFormXObject> alphaMask(
599 new SkPDFFormXObject(alphaStream.get(), bbox, resources.get()));
600
601 return SkPDFGraphicState::GetSMaskGraphicState(
602 alphaMask.get(), false,
603 SkPDFGraphicState::kLuminosity_SMaskMode);
604 }
605
Create(SkPDFCanon * canon,SkScalar dpi,SkAutoTDelete<SkPDFShader::State> * autoState)606 SkPDFAlphaFunctionShader* SkPDFAlphaFunctionShader::Create(
607 SkPDFCanon* canon,
608 SkScalar dpi,
609 SkAutoTDelete<SkPDFShader::State>* autoState) {
610 const SkPDFShader::State& state = **autoState;
611 SkRect bbox;
612 bbox.set(state.fBBox);
613
614 SkAutoTDelete<SkPDFShader::State> opaqueState(state.CreateOpaqueState());
615
616 SkAutoTUnref<SkPDFObject> colorShader(
617 get_pdf_shader_by_state(canon, dpi, &opaqueState));
618 if (!colorShader) {
619 return NULL;
620 }
621
622 // Create resource dict with alpha graphics state as G0 and
623 // pattern shader as P0, then write content stream.
624 SkAutoTUnref<SkPDFObject> alphaGs(
625 create_smask_graphic_state(canon, dpi, state));
626
627 SkPDFAlphaFunctionShader* alphaFunctionShader =
628 SkNEW_ARGS(SkPDFAlphaFunctionShader, (autoState->detach()));
629
630 SkAutoTUnref<SkPDFDict> resourceDict(
631 get_gradient_resource_dict(colorShader.get(), alphaGs.get()));
632
633 SkAutoTDelete<SkStream> colorStream(
634 create_pattern_fill_content(0, bbox));
635 alphaFunctionShader->setData(colorStream.get());
636
637 populate_tiling_pattern_dict(alphaFunctionShader, bbox, resourceDict.get(),
638 SkMatrix::I());
639 canon->addAlphaShader(alphaFunctionShader);
640 return alphaFunctionShader;
641 }
642
643 // Finds affine and persp such that in = affine * persp.
644 // but it returns the inverse of perspective matrix.
split_perspective(const SkMatrix in,SkMatrix * affine,SkMatrix * perspectiveInverse)645 static bool split_perspective(const SkMatrix in, SkMatrix* affine,
646 SkMatrix* perspectiveInverse) {
647 const SkScalar p2 = in[SkMatrix::kMPersp2];
648
649 if (SkScalarNearlyZero(p2)) {
650 return false;
651 }
652
653 const SkScalar zero = SkIntToScalar(0);
654 const SkScalar one = SkIntToScalar(1);
655
656 const SkScalar sx = in[SkMatrix::kMScaleX];
657 const SkScalar kx = in[SkMatrix::kMSkewX];
658 const SkScalar tx = in[SkMatrix::kMTransX];
659 const SkScalar ky = in[SkMatrix::kMSkewY];
660 const SkScalar sy = in[SkMatrix::kMScaleY];
661 const SkScalar ty = in[SkMatrix::kMTransY];
662 const SkScalar p0 = in[SkMatrix::kMPersp0];
663 const SkScalar p1 = in[SkMatrix::kMPersp1];
664
665 // Perspective matrix would be:
666 // 1 0 0
667 // 0 1 0
668 // p0 p1 p2
669 // But we need the inverse of persp.
670 perspectiveInverse->setAll(one, zero, zero,
671 zero, one, zero,
672 -p0/p2, -p1/p2, 1/p2);
673
674 affine->setAll(sx - p0 * tx / p2, kx - p1 * tx / p2, tx / p2,
675 ky - p0 * ty / p2, sy - p1 * ty / p2, ty / p2,
676 zero, zero, one);
677
678 return true;
679 }
680
681 namespace {
create_range_object()682 SkPDFObject* create_range_object() {
683 SkPDFArray* range = SkNEW(SkPDFArray);
684 range->reserve(6);
685 range->appendInt(0);
686 range->appendInt(1);
687 range->appendInt(0);
688 range->appendInt(1);
689 range->appendInt(0);
690 range->appendInt(1);
691 return range;
692 }
693
unref(T * ptr)694 template <typename T> void unref(T* ptr) { ptr->unref();}
695 } // namespace
696
697 SK_DECLARE_STATIC_LAZY_PTR(SkPDFObject, rangeObject,
698 create_range_object, unref<SkPDFObject>);
699
make_ps_function(const SkString & psCode,SkPDFArray * domain)700 static SkPDFStream* make_ps_function(const SkString& psCode,
701 SkPDFArray* domain) {
702 SkAutoDataUnref funcData(
703 SkData::NewWithCopy(psCode.c_str(), psCode.size()));
704 SkPDFStream* result = SkNEW_ARGS(SkPDFStream, (funcData.get()));
705 result->insertInt("FunctionType", 4);
706 result->insertObject("Domain", SkRef(domain));
707 result->insertObject("Range", SkRef(rangeObject.get()));
708 return result;
709 }
710
Create(SkPDFCanon * canon,SkAutoTDelete<SkPDFShader::State> * autoState)711 SkPDFFunctionShader* SkPDFFunctionShader::Create(
712 SkPDFCanon* canon, SkAutoTDelete<SkPDFShader::State>* autoState) {
713 const SkPDFShader::State& state = **autoState;
714
715 SkString (*codeFunction)(const SkShader::GradientInfo& info,
716 const SkMatrix& perspectiveRemover) = NULL;
717 SkPoint transformPoints[2];
718
719 // Depending on the type of the gradient, we want to transform the
720 // coordinate space in different ways.
721 const SkShader::GradientInfo* info = &state.fInfo;
722 transformPoints[0] = info->fPoint[0];
723 transformPoints[1] = info->fPoint[1];
724 switch (state.fType) {
725 case SkShader::kLinear_GradientType:
726 codeFunction = &linearCode;
727 break;
728 case SkShader::kRadial_GradientType:
729 transformPoints[1] = transformPoints[0];
730 transformPoints[1].fX += info->fRadius[0];
731 codeFunction = &radialCode;
732 break;
733 case SkShader::kConical_GradientType: {
734 transformPoints[1] = transformPoints[0];
735 transformPoints[1].fX += SK_Scalar1;
736 codeFunction = &twoPointConicalCode;
737 break;
738 }
739 case SkShader::kSweep_GradientType:
740 transformPoints[1] = transformPoints[0];
741 transformPoints[1].fX += SK_Scalar1;
742 codeFunction = &sweepCode;
743 break;
744 case SkShader::kColor_GradientType:
745 case SkShader::kNone_GradientType:
746 default:
747 return NULL;
748 }
749
750 // Move any scaling (assuming a unit gradient) or translation
751 // (and rotation for linear gradient), of the final gradient from
752 // info->fPoints to the matrix (updating bbox appropriately). Now
753 // the gradient can be drawn on on the unit segment.
754 SkMatrix mapperMatrix;
755 unitToPointsMatrix(transformPoints, &mapperMatrix);
756
757 SkMatrix finalMatrix = state.fCanvasTransform;
758 finalMatrix.preConcat(state.fShaderTransform);
759 finalMatrix.preConcat(mapperMatrix);
760
761 // Preserves as much as posible in the final matrix, and only removes
762 // the perspective. The inverse of the perspective is stored in
763 // perspectiveInverseOnly matrix and has 3 useful numbers
764 // (p0, p1, p2), while everything else is either 0 or 1.
765 // In this way the shader will handle it eficiently, with minimal code.
766 SkMatrix perspectiveInverseOnly = SkMatrix::I();
767 if (finalMatrix.hasPerspective()) {
768 if (!split_perspective(finalMatrix,
769 &finalMatrix, &perspectiveInverseOnly)) {
770 return NULL;
771 }
772 }
773
774 SkRect bbox;
775 bbox.set(state.fBBox);
776 if (!inverse_transform_bbox(finalMatrix, &bbox)) {
777 return NULL;
778 }
779
780 SkAutoTUnref<SkPDFArray> domain(new SkPDFArray);
781 domain->reserve(4);
782 domain->appendScalar(bbox.fLeft);
783 domain->appendScalar(bbox.fRight);
784 domain->appendScalar(bbox.fTop);
785 domain->appendScalar(bbox.fBottom);
786
787 SkString functionCode;
788 // The two point radial gradient further references
789 // state.fInfo
790 // in translating from x, y coordinates to the t parameter. So, we have
791 // to transform the points and radii according to the calculated matrix.
792 if (state.fType == SkShader::kConical_GradientType) {
793 SkShader::GradientInfo twoPointRadialInfo = *info;
794 SkMatrix inverseMapperMatrix;
795 if (!mapperMatrix.invert(&inverseMapperMatrix)) {
796 return NULL;
797 }
798 inverseMapperMatrix.mapPoints(twoPointRadialInfo.fPoint, 2);
799 twoPointRadialInfo.fRadius[0] =
800 inverseMapperMatrix.mapRadius(info->fRadius[0]);
801 twoPointRadialInfo.fRadius[1] =
802 inverseMapperMatrix.mapRadius(info->fRadius[1]);
803 functionCode = codeFunction(twoPointRadialInfo, perspectiveInverseOnly);
804 } else {
805 functionCode = codeFunction(*info, perspectiveInverseOnly);
806 }
807
808 SkAutoTUnref<SkPDFDict> pdfShader(new SkPDFDict);
809 pdfShader->insertInt("ShadingType", 1);
810 pdfShader->insertName("ColorSpace", "DeviceRGB");
811 pdfShader->insertObject("Domain", SkRef(domain.get()));
812
813 SkAutoTUnref<SkPDFStream> function(
814 make_ps_function(functionCode, domain.get()));
815 pdfShader->insertObjRef("Function", function.detach());
816
817 SkPDFFunctionShader* pdfFunctionShader =
818 SkNEW_ARGS(SkPDFFunctionShader, (autoState->detach()));
819
820 pdfFunctionShader->insertInt("PatternType", 2);
821 pdfFunctionShader->insertObject("Matrix",
822 SkPDFUtils::MatrixToArray(finalMatrix));
823 pdfFunctionShader->insertObject("Shading", pdfShader.detach());
824
825 canon->addFunctionShader(pdfFunctionShader);
826 return pdfFunctionShader;
827 }
828
Create(SkPDFCanon * canon,SkScalar dpi,SkAutoTDelete<SkPDFShader::State> * autoState)829 SkPDFImageShader* SkPDFImageShader::Create(
830 SkPDFCanon* canon,
831 SkScalar dpi,
832 SkAutoTDelete<SkPDFShader::State>* autoState) {
833 const SkPDFShader::State& state = **autoState;
834
835 state.fImage.lockPixels();
836
837 // The image shader pattern cell will be drawn into a separate device
838 // in pattern cell space (no scaling on the bitmap, though there may be
839 // translations so that all content is in the device, coordinates > 0).
840
841 // Map clip bounds to shader space to ensure the device is large enough
842 // to handle fake clamping.
843 SkMatrix finalMatrix = state.fCanvasTransform;
844 finalMatrix.preConcat(state.fShaderTransform);
845 SkRect deviceBounds;
846 deviceBounds.set(state.fBBox);
847 if (!inverse_transform_bbox(finalMatrix, &deviceBounds)) {
848 return NULL;
849 }
850
851 const SkBitmap* image = &state.fImage;
852 SkRect bitmapBounds;
853 image->getBounds(&bitmapBounds);
854
855 // For tiling modes, the bounds should be extended to include the bitmap,
856 // otherwise the bitmap gets clipped out and the shader is empty and awful.
857 // For clamp modes, we're only interested in the clip region, whether
858 // or not the main bitmap is in it.
859 SkShader::TileMode tileModes[2];
860 tileModes[0] = state.fImageTileModes[0];
861 tileModes[1] = state.fImageTileModes[1];
862 if (tileModes[0] != SkShader::kClamp_TileMode ||
863 tileModes[1] != SkShader::kClamp_TileMode) {
864 deviceBounds.join(bitmapBounds);
865 }
866
867 SkISize size = SkISize::Make(SkScalarRoundToInt(deviceBounds.width()),
868 SkScalarRoundToInt(deviceBounds.height()));
869 SkAutoTUnref<SkPDFDevice> patternDevice(
870 SkPDFDevice::CreateUnflipped(size, dpi, canon));
871 SkCanvas canvas(patternDevice.get());
872
873 SkRect patternBBox;
874 image->getBounds(&patternBBox);
875
876 // Translate the canvas so that the bitmap origin is at (0, 0).
877 canvas.translate(-deviceBounds.left(), -deviceBounds.top());
878 patternBBox.offset(-deviceBounds.left(), -deviceBounds.top());
879 // Undo the translation in the final matrix
880 finalMatrix.preTranslate(deviceBounds.left(), deviceBounds.top());
881
882 // If the bitmap is out of bounds (i.e. clamp mode where we only see the
883 // stretched sides), canvas will clip this out and the extraneous data
884 // won't be saved to the PDF.
885 canvas.drawBitmap(*image, 0, 0);
886
887 SkScalar width = SkIntToScalar(image->width());
888 SkScalar height = SkIntToScalar(image->height());
889
890 // Tiling is implied. First we handle mirroring.
891 if (tileModes[0] == SkShader::kMirror_TileMode) {
892 SkMatrix xMirror;
893 xMirror.setScale(-1, 1);
894 xMirror.postTranslate(2 * width, 0);
895 drawBitmapMatrix(&canvas, *image, xMirror);
896 patternBBox.fRight += width;
897 }
898 if (tileModes[1] == SkShader::kMirror_TileMode) {
899 SkMatrix yMirror;
900 yMirror.setScale(SK_Scalar1, -SK_Scalar1);
901 yMirror.postTranslate(0, 2 * height);
902 drawBitmapMatrix(&canvas, *image, yMirror);
903 patternBBox.fBottom += height;
904 }
905 if (tileModes[0] == SkShader::kMirror_TileMode &&
906 tileModes[1] == SkShader::kMirror_TileMode) {
907 SkMatrix mirror;
908 mirror.setScale(-1, -1);
909 mirror.postTranslate(2 * width, 2 * height);
910 drawBitmapMatrix(&canvas, *image, mirror);
911 }
912
913 // Then handle Clamping, which requires expanding the pattern canvas to
914 // cover the entire surfaceBBox.
915
916 // If both x and y are in clamp mode, we start by filling in the corners.
917 // (Which are just a rectangles of the corner colors.)
918 if (tileModes[0] == SkShader::kClamp_TileMode &&
919 tileModes[1] == SkShader::kClamp_TileMode) {
920 SkPaint paint;
921 SkRect rect;
922 rect = SkRect::MakeLTRB(deviceBounds.left(), deviceBounds.top(), 0, 0);
923 if (!rect.isEmpty()) {
924 paint.setColor(image->getColor(0, 0));
925 canvas.drawRect(rect, paint);
926 }
927
928 rect = SkRect::MakeLTRB(width, deviceBounds.top(),
929 deviceBounds.right(), 0);
930 if (!rect.isEmpty()) {
931 paint.setColor(image->getColor(image->width() - 1, 0));
932 canvas.drawRect(rect, paint);
933 }
934
935 rect = SkRect::MakeLTRB(width, height,
936 deviceBounds.right(), deviceBounds.bottom());
937 if (!rect.isEmpty()) {
938 paint.setColor(image->getColor(image->width() - 1,
939 image->height() - 1));
940 canvas.drawRect(rect, paint);
941 }
942
943 rect = SkRect::MakeLTRB(deviceBounds.left(), height,
944 0, deviceBounds.bottom());
945 if (!rect.isEmpty()) {
946 paint.setColor(image->getColor(0, image->height() - 1));
947 canvas.drawRect(rect, paint);
948 }
949 }
950
951 // Then expand the left, right, top, then bottom.
952 if (tileModes[0] == SkShader::kClamp_TileMode) {
953 SkIRect subset = SkIRect::MakeXYWH(0, 0, 1, image->height());
954 if (deviceBounds.left() < 0) {
955 SkBitmap left;
956 SkAssertResult(image->extractSubset(&left, subset));
957
958 SkMatrix leftMatrix;
959 leftMatrix.setScale(-deviceBounds.left(), 1);
960 leftMatrix.postTranslate(deviceBounds.left(), 0);
961 drawBitmapMatrix(&canvas, left, leftMatrix);
962
963 if (tileModes[1] == SkShader::kMirror_TileMode) {
964 leftMatrix.postScale(SK_Scalar1, -SK_Scalar1);
965 leftMatrix.postTranslate(0, 2 * height);
966 drawBitmapMatrix(&canvas, left, leftMatrix);
967 }
968 patternBBox.fLeft = 0;
969 }
970
971 if (deviceBounds.right() > width) {
972 SkBitmap right;
973 subset.offset(image->width() - 1, 0);
974 SkAssertResult(image->extractSubset(&right, subset));
975
976 SkMatrix rightMatrix;
977 rightMatrix.setScale(deviceBounds.right() - width, 1);
978 rightMatrix.postTranslate(width, 0);
979 drawBitmapMatrix(&canvas, right, rightMatrix);
980
981 if (tileModes[1] == SkShader::kMirror_TileMode) {
982 rightMatrix.postScale(SK_Scalar1, -SK_Scalar1);
983 rightMatrix.postTranslate(0, 2 * height);
984 drawBitmapMatrix(&canvas, right, rightMatrix);
985 }
986 patternBBox.fRight = deviceBounds.width();
987 }
988 }
989
990 if (tileModes[1] == SkShader::kClamp_TileMode) {
991 SkIRect subset = SkIRect::MakeXYWH(0, 0, image->width(), 1);
992 if (deviceBounds.top() < 0) {
993 SkBitmap top;
994 SkAssertResult(image->extractSubset(&top, subset));
995
996 SkMatrix topMatrix;
997 topMatrix.setScale(SK_Scalar1, -deviceBounds.top());
998 topMatrix.postTranslate(0, deviceBounds.top());
999 drawBitmapMatrix(&canvas, top, topMatrix);
1000
1001 if (tileModes[0] == SkShader::kMirror_TileMode) {
1002 topMatrix.postScale(-1, 1);
1003 topMatrix.postTranslate(2 * width, 0);
1004 drawBitmapMatrix(&canvas, top, topMatrix);
1005 }
1006 patternBBox.fTop = 0;
1007 }
1008
1009 if (deviceBounds.bottom() > height) {
1010 SkBitmap bottom;
1011 subset.offset(0, image->height() - 1);
1012 SkAssertResult(image->extractSubset(&bottom, subset));
1013
1014 SkMatrix bottomMatrix;
1015 bottomMatrix.setScale(SK_Scalar1, deviceBounds.bottom() - height);
1016 bottomMatrix.postTranslate(0, height);
1017 drawBitmapMatrix(&canvas, bottom, bottomMatrix);
1018
1019 if (tileModes[0] == SkShader::kMirror_TileMode) {
1020 bottomMatrix.postScale(-1, 1);
1021 bottomMatrix.postTranslate(2 * width, 0);
1022 drawBitmapMatrix(&canvas, bottom, bottomMatrix);
1023 }
1024 patternBBox.fBottom = deviceBounds.height();
1025 }
1026 }
1027
1028 // Put the canvas into the pattern stream (fContent).
1029 SkAutoTDelete<SkStreamAsset> content(patternDevice->content());
1030
1031 SkPDFImageShader* imageShader =
1032 SkNEW_ARGS(SkPDFImageShader, (autoState->detach()));
1033 imageShader->setData(content.get());
1034
1035 SkAutoTUnref<SkPDFDict> resourceDict(
1036 patternDevice->createResourceDict());
1037 populate_tiling_pattern_dict(imageShader, patternBBox,
1038 resourceDict.get(), finalMatrix);
1039
1040 imageShader->fShaderState->fImage.unlockPixels();
1041
1042 canon->addImageShader(imageShader);
1043 return imageShader;
1044 }
1045
operator ==(const SkPDFShader::State & b) const1046 bool SkPDFShader::State::operator==(const SkPDFShader::State& b) const {
1047 if (fType != b.fType ||
1048 fCanvasTransform != b.fCanvasTransform ||
1049 fShaderTransform != b.fShaderTransform ||
1050 fBBox != b.fBBox) {
1051 return false;
1052 }
1053
1054 if (fType == SkShader::kNone_GradientType) {
1055 if (fPixelGeneration != b.fPixelGeneration ||
1056 fPixelGeneration == 0 ||
1057 fImageTileModes[0] != b.fImageTileModes[0] ||
1058 fImageTileModes[1] != b.fImageTileModes[1]) {
1059 return false;
1060 }
1061 } else {
1062 if (fInfo.fColorCount != b.fInfo.fColorCount ||
1063 memcmp(fInfo.fColors, b.fInfo.fColors,
1064 sizeof(SkColor) * fInfo.fColorCount) != 0 ||
1065 memcmp(fInfo.fColorOffsets, b.fInfo.fColorOffsets,
1066 sizeof(SkScalar) * fInfo.fColorCount) != 0 ||
1067 fInfo.fPoint[0] != b.fInfo.fPoint[0] ||
1068 fInfo.fTileMode != b.fInfo.fTileMode) {
1069 return false;
1070 }
1071
1072 switch (fType) {
1073 case SkShader::kLinear_GradientType:
1074 if (fInfo.fPoint[1] != b.fInfo.fPoint[1]) {
1075 return false;
1076 }
1077 break;
1078 case SkShader::kRadial_GradientType:
1079 if (fInfo.fRadius[0] != b.fInfo.fRadius[0]) {
1080 return false;
1081 }
1082 break;
1083 case SkShader::kConical_GradientType:
1084 if (fInfo.fPoint[1] != b.fInfo.fPoint[1] ||
1085 fInfo.fRadius[0] != b.fInfo.fRadius[0] ||
1086 fInfo.fRadius[1] != b.fInfo.fRadius[1]) {
1087 return false;
1088 }
1089 break;
1090 case SkShader::kSweep_GradientType:
1091 case SkShader::kNone_GradientType:
1092 case SkShader::kColor_GradientType:
1093 break;
1094 }
1095 }
1096 return true;
1097 }
1098
State(const SkShader & shader,const SkMatrix & canvasTransform,const SkIRect & bbox,SkScalar rasterScale)1099 SkPDFShader::State::State(const SkShader& shader, const SkMatrix& canvasTransform,
1100 const SkIRect& bbox, SkScalar rasterScale)
1101 : fCanvasTransform(canvasTransform),
1102 fBBox(bbox),
1103 fPixelGeneration(0) {
1104 fInfo.fColorCount = 0;
1105 fInfo.fColors = NULL;
1106 fInfo.fColorOffsets = NULL;
1107 fShaderTransform = shader.getLocalMatrix();
1108 fImageTileModes[0] = fImageTileModes[1] = SkShader::kClamp_TileMode;
1109
1110 fType = shader.asAGradient(&fInfo);
1111
1112 if (fType == SkShader::kNone_GradientType) {
1113 SkShader::BitmapType bitmapType;
1114 SkMatrix matrix;
1115 bitmapType = shader.asABitmap(&fImage, &matrix, fImageTileModes);
1116 if (bitmapType != SkShader::kDefault_BitmapType) {
1117 // Generic fallback for unsupported shaders:
1118 // * allocate a bbox-sized bitmap
1119 // * shade the whole area
1120 // * use the result as a bitmap shader
1121
1122 // bbox is in device space. While that's exactly what we want for sizing our bitmap,
1123 // we need to map it into shader space for adjustments (to match
1124 // SkPDFImageShader::Create's behavior).
1125 SkRect shaderRect = SkRect::Make(bbox);
1126 if (!inverse_transform_bbox(canvasTransform, &shaderRect)) {
1127 fImage.reset();
1128 return;
1129 }
1130
1131 // Clamp the bitmap size to about 1M pixels
1132 static const SkScalar kMaxBitmapArea = 1024 * 1024;
1133 SkScalar bitmapArea = rasterScale * bbox.width() * rasterScale * bbox.height();
1134 if (bitmapArea > kMaxBitmapArea) {
1135 rasterScale *= SkScalarSqrt(kMaxBitmapArea / bitmapArea);
1136 }
1137
1138 SkISize size = SkISize::Make(SkScalarRoundToInt(rasterScale * bbox.width()),
1139 SkScalarRoundToInt(rasterScale * bbox.height()));
1140 SkSize scale = SkSize::Make(SkIntToScalar(size.width()) / shaderRect.width(),
1141 SkIntToScalar(size.height()) / shaderRect.height());
1142
1143 fImage.allocN32Pixels(size.width(), size.height());
1144 fImage.eraseColor(SK_ColorTRANSPARENT);
1145
1146 SkPaint p;
1147 p.setShader(const_cast<SkShader*>(&shader));
1148
1149 SkCanvas canvas(fImage);
1150 canvas.scale(scale.width(), scale.height());
1151 canvas.translate(-shaderRect.x(), -shaderRect.y());
1152 canvas.drawPaint(p);
1153
1154 fShaderTransform.setTranslate(shaderRect.x(), shaderRect.y());
1155 fShaderTransform.preScale(1 / scale.width(), 1 / scale.height());
1156 } else {
1157 SkASSERT(matrix.isIdentity());
1158 }
1159 fPixelGeneration = fImage.getGenerationID();
1160 } else {
1161 AllocateGradientInfoStorage();
1162 shader.asAGradient(&fInfo);
1163 }
1164 }
1165
State(const SkPDFShader::State & other)1166 SkPDFShader::State::State(const SkPDFShader::State& other)
1167 : fType(other.fType),
1168 fCanvasTransform(other.fCanvasTransform),
1169 fShaderTransform(other.fShaderTransform),
1170 fBBox(other.fBBox)
1171 {
1172 // Only gradients supported for now, since that is all that is used.
1173 // If needed, image state copy constructor can be added here later.
1174 SkASSERT(fType != SkShader::kNone_GradientType);
1175
1176 if (fType != SkShader::kNone_GradientType) {
1177 fInfo = other.fInfo;
1178
1179 AllocateGradientInfoStorage();
1180 for (int i = 0; i < fInfo.fColorCount; i++) {
1181 fInfo.fColors[i] = other.fInfo.fColors[i];
1182 fInfo.fColorOffsets[i] = other.fInfo.fColorOffsets[i];
1183 }
1184 }
1185 }
1186
1187 /**
1188 * Create a copy of this gradient state with alpha assigned to RGB luminousity.
1189 * Only valid for gradient states.
1190 */
CreateAlphaToLuminosityState() const1191 SkPDFShader::State* SkPDFShader::State::CreateAlphaToLuminosityState() const {
1192 SkASSERT(fType != SkShader::kNone_GradientType);
1193
1194 SkPDFShader::State* newState = new SkPDFShader::State(*this);
1195
1196 for (int i = 0; i < fInfo.fColorCount; i++) {
1197 SkAlpha alpha = SkColorGetA(fInfo.fColors[i]);
1198 newState->fInfo.fColors[i] = SkColorSetARGB(255, alpha, alpha, alpha);
1199 }
1200
1201 return newState;
1202 }
1203
1204 /**
1205 * Create a copy of this gradient state with alpha set to fully opaque
1206 * Only valid for gradient states.
1207 */
CreateOpaqueState() const1208 SkPDFShader::State* SkPDFShader::State::CreateOpaqueState() const {
1209 SkASSERT(fType != SkShader::kNone_GradientType);
1210
1211 SkPDFShader::State* newState = new SkPDFShader::State(*this);
1212 for (int i = 0; i < fInfo.fColorCount; i++) {
1213 newState->fInfo.fColors[i] = SkColorSetA(fInfo.fColors[i],
1214 SK_AlphaOPAQUE);
1215 }
1216
1217 return newState;
1218 }
1219
1220 /**
1221 * Returns true if state is a gradient and the gradient has alpha.
1222 */
GradientHasAlpha() const1223 bool SkPDFShader::State::GradientHasAlpha() const {
1224 if (fType == SkShader::kNone_GradientType) {
1225 return false;
1226 }
1227
1228 for (int i = 0; i < fInfo.fColorCount; i++) {
1229 SkAlpha alpha = SkColorGetA(fInfo.fColors[i]);
1230 if (alpha != SK_AlphaOPAQUE) {
1231 return true;
1232 }
1233 }
1234 return false;
1235 }
1236
AllocateGradientInfoStorage()1237 void SkPDFShader::State::AllocateGradientInfoStorage() {
1238 fColorData.set(sk_malloc_throw(
1239 fInfo.fColorCount * (sizeof(SkColor) + sizeof(SkScalar))));
1240 fInfo.fColors = reinterpret_cast<SkColor*>(fColorData.get());
1241 fInfo.fColorOffsets =
1242 reinterpret_cast<SkScalar*>(fInfo.fColors + fInfo.fColorCount);
1243 }
1244