1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #if V8_TARGET_ARCH_X64
8 
9 #include "src/cpu-profiler.h"
10 #include "src/log.h"
11 #include "src/macro-assembler.h"
12 #include "src/regexp-macro-assembler.h"
13 #include "src/regexp-stack.h"
14 #include "src/serialize.h"
15 #include "src/unicode.h"
16 #include "src/x64/regexp-macro-assembler-x64.h"
17 
18 namespace v8 {
19 namespace internal {
20 
21 #ifndef V8_INTERPRETED_REGEXP
22 
23 /*
24  * This assembler uses the following register assignment convention
25  * - rdx : Currently loaded character(s) as Latin1 or UC16.  Must be loaded
26  *         using LoadCurrentCharacter before using any of the dispatch methods.
27  *         Temporarily stores the index of capture start after a matching pass
28  *         for a global regexp.
29  * - rdi : Current position in input, as negative offset from end of string.
30  *         Please notice that this is the byte offset, not the character
31  *         offset!  Is always a 32-bit signed (negative) offset, but must be
32  *         maintained sign-extended to 64 bits, since it is used as index.
33  * - rsi : End of input (points to byte after last character in input),
34  *         so that rsi+rdi points to the current character.
35  * - rbp : Frame pointer.  Used to access arguments, local variables and
36  *         RegExp registers.
37  * - rsp : Points to tip of C stack.
38  * - rcx : Points to tip of backtrack stack.  The backtrack stack contains
39  *         only 32-bit values.  Most are offsets from some base (e.g., character
40  *         positions from end of string or code location from Code* pointer).
41  * - r8  : Code object pointer.  Used to convert between absolute and
42  *         code-object-relative addresses.
43  *
44  * The registers rax, rbx, r9 and r11 are free to use for computations.
45  * If changed to use r12+, they should be saved as callee-save registers.
46  * The macro assembler special registers r12 and r13 (kSmiConstantRegister,
47  * kRootRegister) aren't special during execution of RegExp code (they don't
48  * hold the values assumed when creating JS code), so no Smi or Root related
49  * macro operations can be used.
50  *
51  * Each call to a C++ method should retain these registers.
52  *
53  * The stack will have the following content, in some order, indexable from the
54  * frame pointer (see, e.g., kStackHighEnd):
55  *    - Isolate* isolate     (address of the current isolate)
56  *    - direct_call          (if 1, direct call from JavaScript code, if 0 call
57  *                            through the runtime system)
58  *    - stack_area_base      (high end of the memory area to use as
59  *                            backtracking stack)
60  *    - capture array size   (may fit multiple sets of matches)
61  *    - int* capture_array   (int[num_saved_registers_], for output).
62  *    - end of input         (address of end of string)
63  *    - start of input       (address of first character in string)
64  *    - start index          (character index of start)
65  *    - String* input_string (input string)
66  *    - return address
67  *    - backup of callee save registers (rbx, possibly rsi and rdi).
68  *    - success counter      (only useful for global regexp to count matches)
69  *    - Offset of location before start of input (effectively character
70  *      position -1).  Used to initialize capture registers to a non-position.
71  *    - At start of string (if 1, we are starting at the start of the
72  *      string, otherwise 0)
73  *    - register 0  rbp[-n]   (Only positions must be stored in the first
74  *    - register 1  rbp[-n-8]  num_saved_registers_ registers)
75  *    - ...
76  *
77  * The first num_saved_registers_ registers are initialized to point to
78  * "character -1" in the string (i.e., char_size() bytes before the first
79  * character of the string).  The remaining registers starts out uninitialized.
80  *
81  * The first seven values must be provided by the calling code by
82  * calling the code's entry address cast to a function pointer with the
83  * following signature:
84  * int (*match)(String* input_string,
85  *              int start_index,
86  *              Address start,
87  *              Address end,
88  *              int* capture_output_array,
89  *              bool at_start,
90  *              byte* stack_area_base,
91  *              bool direct_call)
92  */
93 
94 #define __ ACCESS_MASM((&masm_))
95 
RegExpMacroAssemblerX64(Mode mode,int registers_to_save,Zone * zone)96 RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(
97     Mode mode,
98     int registers_to_save,
99     Zone* zone)
100     : NativeRegExpMacroAssembler(zone),
101       masm_(zone->isolate(), NULL, kRegExpCodeSize),
102       no_root_array_scope_(&masm_),
103       code_relative_fixup_positions_(4, zone),
104       mode_(mode),
105       num_registers_(registers_to_save),
106       num_saved_registers_(registers_to_save),
107       entry_label_(),
108       start_label_(),
109       success_label_(),
110       backtrack_label_(),
111       exit_label_() {
112   DCHECK_EQ(0, registers_to_save % 2);
113   __ jmp(&entry_label_);   // We'll write the entry code when we know more.
114   __ bind(&start_label_);  // And then continue from here.
115 }
116 
117 
~RegExpMacroAssemblerX64()118 RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() {
119   // Unuse labels in case we throw away the assembler without calling GetCode.
120   entry_label_.Unuse();
121   start_label_.Unuse();
122   success_label_.Unuse();
123   backtrack_label_.Unuse();
124   exit_label_.Unuse();
125   check_preempt_label_.Unuse();
126   stack_overflow_label_.Unuse();
127 }
128 
129 
stack_limit_slack()130 int RegExpMacroAssemblerX64::stack_limit_slack()  {
131   return RegExpStack::kStackLimitSlack;
132 }
133 
134 
AdvanceCurrentPosition(int by)135 void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) {
136   if (by != 0) {
137     __ addq(rdi, Immediate(by * char_size()));
138   }
139 }
140 
141 
AdvanceRegister(int reg,int by)142 void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) {
143   DCHECK(reg >= 0);
144   DCHECK(reg < num_registers_);
145   if (by != 0) {
146     __ addp(register_location(reg), Immediate(by));
147   }
148 }
149 
150 
Backtrack()151 void RegExpMacroAssemblerX64::Backtrack() {
152   CheckPreemption();
153   // Pop Code* offset from backtrack stack, add Code* and jump to location.
154   Pop(rbx);
155   __ addp(rbx, code_object_pointer());
156   __ jmp(rbx);
157 }
158 
159 
Bind(Label * label)160 void RegExpMacroAssemblerX64::Bind(Label* label) {
161   __ bind(label);
162 }
163 
164 
CheckCharacter(uint32_t c,Label * on_equal)165 void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) {
166   __ cmpl(current_character(), Immediate(c));
167   BranchOrBacktrack(equal, on_equal);
168 }
169 
170 
CheckCharacterGT(uc16 limit,Label * on_greater)171 void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) {
172   __ cmpl(current_character(), Immediate(limit));
173   BranchOrBacktrack(greater, on_greater);
174 }
175 
176 
CheckAtStart(Label * on_at_start)177 void RegExpMacroAssemblerX64::CheckAtStart(Label* on_at_start) {
178   Label not_at_start;
179   // Did we start the match at the start of the string at all?
180   __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
181   BranchOrBacktrack(not_equal, &not_at_start);
182   // If we did, are we still at the start of the input?
183   __ leap(rax, Operand(rsi, rdi, times_1, 0));
184   __ cmpp(rax, Operand(rbp, kInputStart));
185   BranchOrBacktrack(equal, on_at_start);
186   __ bind(&not_at_start);
187 }
188 
189 
CheckNotAtStart(Label * on_not_at_start)190 void RegExpMacroAssemblerX64::CheckNotAtStart(Label* on_not_at_start) {
191   // Did we start the match at the start of the string at all?
192   __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
193   BranchOrBacktrack(not_equal, on_not_at_start);
194   // If we did, are we still at the start of the input?
195   __ leap(rax, Operand(rsi, rdi, times_1, 0));
196   __ cmpp(rax, Operand(rbp, kInputStart));
197   BranchOrBacktrack(not_equal, on_not_at_start);
198 }
199 
200 
CheckCharacterLT(uc16 limit,Label * on_less)201 void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) {
202   __ cmpl(current_character(), Immediate(limit));
203   BranchOrBacktrack(less, on_less);
204 }
205 
206 
CheckGreedyLoop(Label * on_equal)207 void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) {
208   Label fallthrough;
209   __ cmpl(rdi, Operand(backtrack_stackpointer(), 0));
210   __ j(not_equal, &fallthrough);
211   Drop();
212   BranchOrBacktrack(no_condition, on_equal);
213   __ bind(&fallthrough);
214 }
215 
216 
CheckNotBackReferenceIgnoreCase(int start_reg,Label * on_no_match)217 void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase(
218     int start_reg,
219     Label* on_no_match) {
220   Label fallthrough;
221   ReadPositionFromRegister(rdx, start_reg);  // Offset of start of capture
222   ReadPositionFromRegister(rbx, start_reg + 1);  // Offset of end of capture
223   __ subp(rbx, rdx);  // Length of capture.
224 
225   // -----------------------
226   // rdx  = Start offset of capture.
227   // rbx = Length of capture
228 
229   // If length is negative, this code will fail (it's a symptom of a partial or
230   // illegal capture where start of capture after end of capture).
231   // This must not happen (no back-reference can reference a capture that wasn't
232   // closed before in the reg-exp, and we must not generate code that can cause
233   // this condition).
234 
235   // If length is zero, either the capture is empty or it is nonparticipating.
236   // In either case succeed immediately.
237   __ j(equal, &fallthrough);
238 
239   // -----------------------
240   // rdx - Start of capture
241   // rbx - length of capture
242   // Check that there are sufficient characters left in the input.
243   __ movl(rax, rdi);
244   __ addl(rax, rbx);
245   BranchOrBacktrack(greater, on_no_match);
246 
247   if (mode_ == LATIN1) {
248     Label loop_increment;
249     if (on_no_match == NULL) {
250       on_no_match = &backtrack_label_;
251     }
252 
253     __ leap(r9, Operand(rsi, rdx, times_1, 0));
254     __ leap(r11, Operand(rsi, rdi, times_1, 0));
255     __ addp(rbx, r9);  // End of capture
256     // ---------------------
257     // r11 - current input character address
258     // r9 - current capture character address
259     // rbx - end of capture
260 
261     Label loop;
262     __ bind(&loop);
263     __ movzxbl(rdx, Operand(r9, 0));
264     __ movzxbl(rax, Operand(r11, 0));
265     // al - input character
266     // dl - capture character
267     __ cmpb(rax, rdx);
268     __ j(equal, &loop_increment);
269 
270     // Mismatch, try case-insensitive match (converting letters to lower-case).
271     // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's
272     // a match.
273     __ orp(rax, Immediate(0x20));  // Convert match character to lower-case.
274     __ orp(rdx, Immediate(0x20));  // Convert capture character to lower-case.
275     __ cmpb(rax, rdx);
276     __ j(not_equal, on_no_match);  // Definitely not equal.
277     __ subb(rax, Immediate('a'));
278     __ cmpb(rax, Immediate('z' - 'a'));
279     __ j(below_equal, &loop_increment);  // In range 'a'-'z'.
280     // Latin-1: Check for values in range [224,254] but not 247.
281     __ subb(rax, Immediate(224 - 'a'));
282     __ cmpb(rax, Immediate(254 - 224));
283     __ j(above, on_no_match);  // Weren't Latin-1 letters.
284     __ cmpb(rax, Immediate(247 - 224));  // Check for 247.
285     __ j(equal, on_no_match);
286     __ bind(&loop_increment);
287     // Increment pointers into match and capture strings.
288     __ addp(r11, Immediate(1));
289     __ addp(r9, Immediate(1));
290     // Compare to end of capture, and loop if not done.
291     __ cmpp(r9, rbx);
292     __ j(below, &loop);
293 
294     // Compute new value of character position after the matched part.
295     __ movp(rdi, r11);
296     __ subq(rdi, rsi);
297   } else {
298     DCHECK(mode_ == UC16);
299     // Save important/volatile registers before calling C function.
300 #ifndef _WIN64
301     // Caller save on Linux and callee save in Windows.
302     __ pushq(rsi);
303     __ pushq(rdi);
304 #endif
305     __ pushq(backtrack_stackpointer());
306 
307     static const int num_arguments = 4;
308     __ PrepareCallCFunction(num_arguments);
309 
310     // Put arguments into parameter registers. Parameters are
311     //   Address byte_offset1 - Address captured substring's start.
312     //   Address byte_offset2 - Address of current character position.
313     //   size_t byte_length - length of capture in bytes(!)
314     //   Isolate* isolate
315 #ifdef _WIN64
316     // Compute and set byte_offset1 (start of capture).
317     __ leap(rcx, Operand(rsi, rdx, times_1, 0));
318     // Set byte_offset2.
319     __ leap(rdx, Operand(rsi, rdi, times_1, 0));
320     // Set byte_length.
321     __ movp(r8, rbx);
322     // Isolate.
323     __ LoadAddress(r9, ExternalReference::isolate_address(isolate()));
324 #else  // AMD64 calling convention
325     // Compute byte_offset2 (current position = rsi+rdi).
326     __ leap(rax, Operand(rsi, rdi, times_1, 0));
327     // Compute and set byte_offset1 (start of capture).
328     __ leap(rdi, Operand(rsi, rdx, times_1, 0));
329     // Set byte_offset2.
330     __ movp(rsi, rax);
331     // Set byte_length.
332     __ movp(rdx, rbx);
333     // Isolate.
334     __ LoadAddress(rcx, ExternalReference::isolate_address(isolate()));
335 #endif
336 
337     { // NOLINT: Can't find a way to open this scope without confusing the
338       // linter.
339       AllowExternalCallThatCantCauseGC scope(&masm_);
340       ExternalReference compare =
341           ExternalReference::re_case_insensitive_compare_uc16(isolate());
342       __ CallCFunction(compare, num_arguments);
343     }
344 
345     // Restore original values before reacting on result value.
346     __ Move(code_object_pointer(), masm_.CodeObject());
347     __ popq(backtrack_stackpointer());
348 #ifndef _WIN64
349     __ popq(rdi);
350     __ popq(rsi);
351 #endif
352 
353     // Check if function returned non-zero for success or zero for failure.
354     __ testp(rax, rax);
355     BranchOrBacktrack(zero, on_no_match);
356     // On success, increment position by length of capture.
357     // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs).
358     __ addq(rdi, rbx);
359   }
360   __ bind(&fallthrough);
361 }
362 
363 
CheckNotBackReference(int start_reg,Label * on_no_match)364 void RegExpMacroAssemblerX64::CheckNotBackReference(
365     int start_reg,
366     Label* on_no_match) {
367   Label fallthrough;
368 
369   // Find length of back-referenced capture.
370   ReadPositionFromRegister(rdx, start_reg);  // Offset of start of capture
371   ReadPositionFromRegister(rax, start_reg + 1);  // Offset of end of capture
372   __ subp(rax, rdx);  // Length to check.
373 
374   // Fail on partial or illegal capture (start of capture after end of capture).
375   // This must not happen (no back-reference can reference a capture that wasn't
376   // closed before in the reg-exp).
377   __ Check(greater_equal, kInvalidCaptureReferenced);
378 
379   // Succeed on empty capture (including non-participating capture)
380   __ j(equal, &fallthrough);
381 
382   // -----------------------
383   // rdx - Start of capture
384   // rax - length of capture
385 
386   // Check that there are sufficient characters left in the input.
387   __ movl(rbx, rdi);
388   __ addl(rbx, rax);
389   BranchOrBacktrack(greater, on_no_match);
390 
391   // Compute pointers to match string and capture string
392   __ leap(rbx, Operand(rsi, rdi, times_1, 0));  // Start of match.
393   __ addp(rdx, rsi);  // Start of capture.
394   __ leap(r9, Operand(rdx, rax, times_1, 0));  // End of capture
395 
396   // -----------------------
397   // rbx - current capture character address.
398   // rbx - current input character address .
399   // r9 - end of input to match (capture length after rbx).
400 
401   Label loop;
402   __ bind(&loop);
403   if (mode_ == LATIN1) {
404     __ movzxbl(rax, Operand(rdx, 0));
405     __ cmpb(rax, Operand(rbx, 0));
406   } else {
407     DCHECK(mode_ == UC16);
408     __ movzxwl(rax, Operand(rdx, 0));
409     __ cmpw(rax, Operand(rbx, 0));
410   }
411   BranchOrBacktrack(not_equal, on_no_match);
412   // Increment pointers into capture and match string.
413   __ addp(rbx, Immediate(char_size()));
414   __ addp(rdx, Immediate(char_size()));
415   // Check if we have reached end of match area.
416   __ cmpp(rdx, r9);
417   __ j(below, &loop);
418 
419   // Success.
420   // Set current character position to position after match.
421   __ movp(rdi, rbx);
422   __ subq(rdi, rsi);
423 
424   __ bind(&fallthrough);
425 }
426 
427 
CheckNotCharacter(uint32_t c,Label * on_not_equal)428 void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c,
429                                                 Label* on_not_equal) {
430   __ cmpl(current_character(), Immediate(c));
431   BranchOrBacktrack(not_equal, on_not_equal);
432 }
433 
434 
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)435 void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c,
436                                                      uint32_t mask,
437                                                      Label* on_equal) {
438   if (c == 0) {
439     __ testl(current_character(), Immediate(mask));
440   } else {
441     __ movl(rax, Immediate(mask));
442     __ andp(rax, current_character());
443     __ cmpl(rax, Immediate(c));
444   }
445   BranchOrBacktrack(equal, on_equal);
446 }
447 
448 
CheckNotCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_not_equal)449 void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c,
450                                                         uint32_t mask,
451                                                         Label* on_not_equal) {
452   if (c == 0) {
453     __ testl(current_character(), Immediate(mask));
454   } else {
455     __ movl(rax, Immediate(mask));
456     __ andp(rax, current_character());
457     __ cmpl(rax, Immediate(c));
458   }
459   BranchOrBacktrack(not_equal, on_not_equal);
460 }
461 
462 
CheckNotCharacterAfterMinusAnd(uc16 c,uc16 minus,uc16 mask,Label * on_not_equal)463 void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd(
464     uc16 c,
465     uc16 minus,
466     uc16 mask,
467     Label* on_not_equal) {
468   DCHECK(minus < String::kMaxUtf16CodeUnit);
469   __ leap(rax, Operand(current_character(), -minus));
470   __ andp(rax, Immediate(mask));
471   __ cmpl(rax, Immediate(c));
472   BranchOrBacktrack(not_equal, on_not_equal);
473 }
474 
475 
CheckCharacterInRange(uc16 from,uc16 to,Label * on_in_range)476 void RegExpMacroAssemblerX64::CheckCharacterInRange(
477     uc16 from,
478     uc16 to,
479     Label* on_in_range) {
480   __ leal(rax, Operand(current_character(), -from));
481   __ cmpl(rax, Immediate(to - from));
482   BranchOrBacktrack(below_equal, on_in_range);
483 }
484 
485 
CheckCharacterNotInRange(uc16 from,uc16 to,Label * on_not_in_range)486 void RegExpMacroAssemblerX64::CheckCharacterNotInRange(
487     uc16 from,
488     uc16 to,
489     Label* on_not_in_range) {
490   __ leal(rax, Operand(current_character(), -from));
491   __ cmpl(rax, Immediate(to - from));
492   BranchOrBacktrack(above, on_not_in_range);
493 }
494 
495 
CheckBitInTable(Handle<ByteArray> table,Label * on_bit_set)496 void RegExpMacroAssemblerX64::CheckBitInTable(
497     Handle<ByteArray> table,
498     Label* on_bit_set) {
499   __ Move(rax, table);
500   Register index = current_character();
501   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
502     __ movp(rbx, current_character());
503     __ andp(rbx, Immediate(kTableMask));
504     index = rbx;
505   }
506   __ cmpb(FieldOperand(rax, index, times_1, ByteArray::kHeaderSize),
507           Immediate(0));
508   BranchOrBacktrack(not_equal, on_bit_set);
509 }
510 
511 
CheckSpecialCharacterClass(uc16 type,Label * on_no_match)512 bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type,
513                                                          Label* on_no_match) {
514   // Range checks (c in min..max) are generally implemented by an unsigned
515   // (c - min) <= (max - min) check, using the sequence:
516   //   leap(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min))
517   //   cmp(rax, Immediate(max - min))
518   switch (type) {
519   case 's':
520     // Match space-characters
521     if (mode_ == LATIN1) {
522       // One byte space characters are '\t'..'\r', ' ' and \u00a0.
523       Label success;
524       __ cmpl(current_character(), Immediate(' '));
525       __ j(equal, &success, Label::kNear);
526       // Check range 0x09..0x0d
527       __ leap(rax, Operand(current_character(), -'\t'));
528       __ cmpl(rax, Immediate('\r' - '\t'));
529       __ j(below_equal, &success, Label::kNear);
530       // \u00a0 (NBSP).
531       __ cmpl(rax, Immediate(0x00a0 - '\t'));
532       BranchOrBacktrack(not_equal, on_no_match);
533       __ bind(&success);
534       return true;
535     }
536     return false;
537   case 'S':
538     // The emitted code for generic character classes is good enough.
539     return false;
540   case 'd':
541     // Match ASCII digits ('0'..'9')
542     __ leap(rax, Operand(current_character(), -'0'));
543     __ cmpl(rax, Immediate('9' - '0'));
544     BranchOrBacktrack(above, on_no_match);
545     return true;
546   case 'D':
547     // Match non ASCII-digits
548     __ leap(rax, Operand(current_character(), -'0'));
549     __ cmpl(rax, Immediate('9' - '0'));
550     BranchOrBacktrack(below_equal, on_no_match);
551     return true;
552   case '.': {
553     // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
554     __ movl(rax, current_character());
555     __ xorp(rax, Immediate(0x01));
556     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
557     __ subl(rax, Immediate(0x0b));
558     __ cmpl(rax, Immediate(0x0c - 0x0b));
559     BranchOrBacktrack(below_equal, on_no_match);
560     if (mode_ == UC16) {
561       // Compare original value to 0x2028 and 0x2029, using the already
562       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
563       // 0x201d (0x2028 - 0x0b) or 0x201e.
564       __ subl(rax, Immediate(0x2028 - 0x0b));
565       __ cmpl(rax, Immediate(0x2029 - 0x2028));
566       BranchOrBacktrack(below_equal, on_no_match);
567     }
568     return true;
569   }
570   case 'n': {
571     // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
572     __ movl(rax, current_character());
573     __ xorp(rax, Immediate(0x01));
574     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
575     __ subl(rax, Immediate(0x0b));
576     __ cmpl(rax, Immediate(0x0c - 0x0b));
577     if (mode_ == LATIN1) {
578       BranchOrBacktrack(above, on_no_match);
579     } else {
580       Label done;
581       BranchOrBacktrack(below_equal, &done);
582       // Compare original value to 0x2028 and 0x2029, using the already
583       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
584       // 0x201d (0x2028 - 0x0b) or 0x201e.
585       __ subl(rax, Immediate(0x2028 - 0x0b));
586       __ cmpl(rax, Immediate(0x2029 - 0x2028));
587       BranchOrBacktrack(above, on_no_match);
588       __ bind(&done);
589     }
590     return true;
591   }
592   case 'w': {
593     if (mode_ != LATIN1) {
594       // Table is 256 entries, so all Latin1 characters can be tested.
595       __ cmpl(current_character(), Immediate('z'));
596       BranchOrBacktrack(above, on_no_match);
597     }
598     __ Move(rbx, ExternalReference::re_word_character_map());
599     DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
600     __ testb(Operand(rbx, current_character(), times_1, 0),
601              current_character());
602     BranchOrBacktrack(zero, on_no_match);
603     return true;
604   }
605   case 'W': {
606     Label done;
607     if (mode_ != LATIN1) {
608       // Table is 256 entries, so all Latin1 characters can be tested.
609       __ cmpl(current_character(), Immediate('z'));
610       __ j(above, &done);
611     }
612     __ Move(rbx, ExternalReference::re_word_character_map());
613     DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
614     __ testb(Operand(rbx, current_character(), times_1, 0),
615              current_character());
616     BranchOrBacktrack(not_zero, on_no_match);
617     if (mode_ != LATIN1) {
618       __ bind(&done);
619     }
620     return true;
621   }
622 
623   case '*':
624     // Match any character.
625     return true;
626   // No custom implementation (yet): s(UC16), S(UC16).
627   default:
628     return false;
629   }
630 }
631 
632 
Fail()633 void RegExpMacroAssemblerX64::Fail() {
634   STATIC_ASSERT(FAILURE == 0);  // Return value for failure is zero.
635   if (!global()) {
636     __ Set(rax, FAILURE);
637   }
638   __ jmp(&exit_label_);
639 }
640 
641 
GetCode(Handle<String> source)642 Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) {
643   Label return_rax;
644   // Finalize code - write the entry point code now we know how many
645   // registers we need.
646   // Entry code:
647   __ bind(&entry_label_);
648 
649   // Tell the system that we have a stack frame.  Because the type is MANUAL, no
650   // is generated.
651   FrameScope scope(&masm_, StackFrame::MANUAL);
652 
653   // Actually emit code to start a new stack frame.
654   __ pushq(rbp);
655   __ movp(rbp, rsp);
656   // Save parameters and callee-save registers. Order here should correspond
657   //  to order of kBackup_ebx etc.
658 #ifdef _WIN64
659   // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots.
660   // Store register parameters in pre-allocated stack slots,
661   __ movq(Operand(rbp, kInputString), rcx);
662   __ movq(Operand(rbp, kStartIndex), rdx);  // Passed as int32 in edx.
663   __ movq(Operand(rbp, kInputStart), r8);
664   __ movq(Operand(rbp, kInputEnd), r9);
665   // Callee-save on Win64.
666   __ pushq(rsi);
667   __ pushq(rdi);
668   __ pushq(rbx);
669 #else
670   // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack).
671   // Push register parameters on stack for reference.
672   DCHECK_EQ(kInputString, -1 * kRegisterSize);
673   DCHECK_EQ(kStartIndex, -2 * kRegisterSize);
674   DCHECK_EQ(kInputStart, -3 * kRegisterSize);
675   DCHECK_EQ(kInputEnd, -4 * kRegisterSize);
676   DCHECK_EQ(kRegisterOutput, -5 * kRegisterSize);
677   DCHECK_EQ(kNumOutputRegisters, -6 * kRegisterSize);
678   __ pushq(rdi);
679   __ pushq(rsi);
680   __ pushq(rdx);
681   __ pushq(rcx);
682   __ pushq(r8);
683   __ pushq(r9);
684 
685   __ pushq(rbx);  // Callee-save
686 #endif
687 
688   __ Push(Immediate(0));  // Number of successful matches in a global regexp.
689   __ Push(Immediate(0));  // Make room for "input start - 1" constant.
690 
691   // Check if we have space on the stack for registers.
692   Label stack_limit_hit;
693   Label stack_ok;
694 
695   ExternalReference stack_limit =
696       ExternalReference::address_of_stack_limit(isolate());
697   __ movp(rcx, rsp);
698   __ Move(kScratchRegister, stack_limit);
699   __ subp(rcx, Operand(kScratchRegister, 0));
700   // Handle it if the stack pointer is already below the stack limit.
701   __ j(below_equal, &stack_limit_hit);
702   // Check if there is room for the variable number of registers above
703   // the stack limit.
704   __ cmpp(rcx, Immediate(num_registers_ * kPointerSize));
705   __ j(above_equal, &stack_ok);
706   // Exit with OutOfMemory exception. There is not enough space on the stack
707   // for our working registers.
708   __ Set(rax, EXCEPTION);
709   __ jmp(&return_rax);
710 
711   __ bind(&stack_limit_hit);
712   __ Move(code_object_pointer(), masm_.CodeObject());
713   CallCheckStackGuardState();  // Preserves no registers beside rbp and rsp.
714   __ testp(rax, rax);
715   // If returned value is non-zero, we exit with the returned value as result.
716   __ j(not_zero, &return_rax);
717 
718   __ bind(&stack_ok);
719 
720   // Allocate space on stack for registers.
721   __ subp(rsp, Immediate(num_registers_ * kPointerSize));
722   // Load string length.
723   __ movp(rsi, Operand(rbp, kInputEnd));
724   // Load input position.
725   __ movp(rdi, Operand(rbp, kInputStart));
726   // Set up rdi to be negative offset from string end.
727   __ subq(rdi, rsi);
728   // Set rax to address of char before start of the string
729   // (effectively string position -1).
730   __ movp(rbx, Operand(rbp, kStartIndex));
731   __ negq(rbx);
732   if (mode_ == UC16) {
733     __ leap(rax, Operand(rdi, rbx, times_2, -char_size()));
734   } else {
735     __ leap(rax, Operand(rdi, rbx, times_1, -char_size()));
736   }
737   // Store this value in a local variable, for use when clearing
738   // position registers.
739   __ movp(Operand(rbp, kInputStartMinusOne), rax);
740 
741 #if V8_OS_WIN
742   // Ensure that we have written to each stack page, in order. Skipping a page
743   // on Windows can cause segmentation faults. Assuming page size is 4k.
744   const int kPageSize = 4096;
745   const int kRegistersPerPage = kPageSize / kPointerSize;
746   for (int i = num_saved_registers_ + kRegistersPerPage - 1;
747       i < num_registers_;
748       i += kRegistersPerPage) {
749     __ movp(register_location(i), rax);  // One write every page.
750   }
751 #endif  // V8_OS_WIN
752 
753   // Initialize code object pointer.
754   __ Move(code_object_pointer(), masm_.CodeObject());
755 
756   Label load_char_start_regexp, start_regexp;
757   // Load newline if index is at start, previous character otherwise.
758   __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
759   __ j(not_equal, &load_char_start_regexp, Label::kNear);
760   __ Set(current_character(), '\n');
761   __ jmp(&start_regexp, Label::kNear);
762 
763   // Global regexp restarts matching here.
764   __ bind(&load_char_start_regexp);
765   // Load previous char as initial value of current character register.
766   LoadCurrentCharacterUnchecked(-1, 1);
767   __ bind(&start_regexp);
768 
769   // Initialize on-stack registers.
770   if (num_saved_registers_ > 0) {
771     // Fill saved registers with initial value = start offset - 1
772     // Fill in stack push order, to avoid accessing across an unwritten
773     // page (a problem on Windows).
774     if (num_saved_registers_ > 8) {
775       __ Set(rcx, kRegisterZero);
776       Label init_loop;
777       __ bind(&init_loop);
778       __ movp(Operand(rbp, rcx, times_1, 0), rax);
779       __ subq(rcx, Immediate(kPointerSize));
780       __ cmpq(rcx,
781               Immediate(kRegisterZero - num_saved_registers_ * kPointerSize));
782       __ j(greater, &init_loop);
783     } else {  // Unroll the loop.
784       for (int i = 0; i < num_saved_registers_; i++) {
785         __ movp(register_location(i), rax);
786       }
787     }
788   }
789 
790   // Initialize backtrack stack pointer.
791   __ movp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
792 
793   __ jmp(&start_label_);
794 
795   // Exit code:
796   if (success_label_.is_linked()) {
797     // Save captures when successful.
798     __ bind(&success_label_);
799     if (num_saved_registers_ > 0) {
800       // copy captures to output
801       __ movp(rdx, Operand(rbp, kStartIndex));
802       __ movp(rbx, Operand(rbp, kRegisterOutput));
803       __ movp(rcx, Operand(rbp, kInputEnd));
804       __ subp(rcx, Operand(rbp, kInputStart));
805       if (mode_ == UC16) {
806         __ leap(rcx, Operand(rcx, rdx, times_2, 0));
807       } else {
808         __ addp(rcx, rdx);
809       }
810       for (int i = 0; i < num_saved_registers_; i++) {
811         __ movp(rax, register_location(i));
812         if (i == 0 && global_with_zero_length_check()) {
813           // Keep capture start in rdx for the zero-length check later.
814           __ movp(rdx, rax);
815         }
816         __ addp(rax, rcx);  // Convert to index from start, not end.
817         if (mode_ == UC16) {
818           __ sarp(rax, Immediate(1));  // Convert byte index to character index.
819         }
820         __ movl(Operand(rbx, i * kIntSize), rax);
821       }
822     }
823 
824     if (global()) {
825       // Restart matching if the regular expression is flagged as global.
826       // Increment success counter.
827       __ incp(Operand(rbp, kSuccessfulCaptures));
828       // Capture results have been stored, so the number of remaining global
829       // output registers is reduced by the number of stored captures.
830       __ movsxlq(rcx, Operand(rbp, kNumOutputRegisters));
831       __ subp(rcx, Immediate(num_saved_registers_));
832       // Check whether we have enough room for another set of capture results.
833       __ cmpp(rcx, Immediate(num_saved_registers_));
834       __ j(less, &exit_label_);
835 
836       __ movp(Operand(rbp, kNumOutputRegisters), rcx);
837       // Advance the location for output.
838       __ addp(Operand(rbp, kRegisterOutput),
839               Immediate(num_saved_registers_ * kIntSize));
840 
841       // Prepare rax to initialize registers with its value in the next run.
842       __ movp(rax, Operand(rbp, kInputStartMinusOne));
843 
844       if (global_with_zero_length_check()) {
845         // Special case for zero-length matches.
846         // rdx: capture start index
847         __ cmpp(rdi, rdx);
848         // Not a zero-length match, restart.
849         __ j(not_equal, &load_char_start_regexp);
850         // rdi (offset from the end) is zero if we already reached the end.
851         __ testp(rdi, rdi);
852         __ j(zero, &exit_label_, Label::kNear);
853         // Advance current position after a zero-length match.
854         if (mode_ == UC16) {
855           __ addq(rdi, Immediate(2));
856         } else {
857           __ incq(rdi);
858         }
859       }
860 
861       __ jmp(&load_char_start_regexp);
862     } else {
863       __ movp(rax, Immediate(SUCCESS));
864     }
865   }
866 
867   __ bind(&exit_label_);
868   if (global()) {
869     // Return the number of successful captures.
870     __ movp(rax, Operand(rbp, kSuccessfulCaptures));
871   }
872 
873   __ bind(&return_rax);
874 #ifdef _WIN64
875   // Restore callee save registers.
876   __ leap(rsp, Operand(rbp, kLastCalleeSaveRegister));
877   __ popq(rbx);
878   __ popq(rdi);
879   __ popq(rsi);
880   // Stack now at rbp.
881 #else
882   // Restore callee save register.
883   __ movp(rbx, Operand(rbp, kBackup_rbx));
884   // Skip rsp to rbp.
885   __ movp(rsp, rbp);
886 #endif
887   // Exit function frame, restore previous one.
888   __ popq(rbp);
889   __ ret(0);
890 
891   // Backtrack code (branch target for conditional backtracks).
892   if (backtrack_label_.is_linked()) {
893     __ bind(&backtrack_label_);
894     Backtrack();
895   }
896 
897   Label exit_with_exception;
898 
899   // Preempt-code
900   if (check_preempt_label_.is_linked()) {
901     SafeCallTarget(&check_preempt_label_);
902 
903     __ pushq(backtrack_stackpointer());
904     __ pushq(rdi);
905 
906     CallCheckStackGuardState();
907     __ testp(rax, rax);
908     // If returning non-zero, we should end execution with the given
909     // result as return value.
910     __ j(not_zero, &return_rax);
911 
912     // Restore registers.
913     __ Move(code_object_pointer(), masm_.CodeObject());
914     __ popq(rdi);
915     __ popq(backtrack_stackpointer());
916     // String might have moved: Reload esi from frame.
917     __ movp(rsi, Operand(rbp, kInputEnd));
918     SafeReturn();
919   }
920 
921   // Backtrack stack overflow code.
922   if (stack_overflow_label_.is_linked()) {
923     SafeCallTarget(&stack_overflow_label_);
924     // Reached if the backtrack-stack limit has been hit.
925 
926     Label grow_failed;
927     // Save registers before calling C function
928 #ifndef _WIN64
929     // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI.
930     __ pushq(rsi);
931     __ pushq(rdi);
932 #endif
933 
934     // Call GrowStack(backtrack_stackpointer())
935     static const int num_arguments = 3;
936     __ PrepareCallCFunction(num_arguments);
937 #ifdef _WIN64
938     // Microsoft passes parameters in rcx, rdx, r8.
939     // First argument, backtrack stackpointer, is already in rcx.
940     __ leap(rdx, Operand(rbp, kStackHighEnd));  // Second argument
941     __ LoadAddress(r8, ExternalReference::isolate_address(isolate()));
942 #else
943     // AMD64 ABI passes parameters in rdi, rsi, rdx.
944     __ movp(rdi, backtrack_stackpointer());   // First argument.
945     __ leap(rsi, Operand(rbp, kStackHighEnd));  // Second argument.
946     __ LoadAddress(rdx, ExternalReference::isolate_address(isolate()));
947 #endif
948     ExternalReference grow_stack =
949         ExternalReference::re_grow_stack(isolate());
950     __ CallCFunction(grow_stack, num_arguments);
951     // If return NULL, we have failed to grow the stack, and
952     // must exit with a stack-overflow exception.
953     __ testp(rax, rax);
954     __ j(equal, &exit_with_exception);
955     // Otherwise use return value as new stack pointer.
956     __ movp(backtrack_stackpointer(), rax);
957     // Restore saved registers and continue.
958     __ Move(code_object_pointer(), masm_.CodeObject());
959 #ifndef _WIN64
960     __ popq(rdi);
961     __ popq(rsi);
962 #endif
963     SafeReturn();
964   }
965 
966   if (exit_with_exception.is_linked()) {
967     // If any of the code above needed to exit with an exception.
968     __ bind(&exit_with_exception);
969     // Exit with Result EXCEPTION(-1) to signal thrown exception.
970     __ Set(rax, EXCEPTION);
971     __ jmp(&return_rax);
972   }
973 
974   FixupCodeRelativePositions();
975 
976   CodeDesc code_desc;
977   masm_.GetCode(&code_desc);
978   Isolate* isolate = this->isolate();
979   Handle<Code> code = isolate->factory()->NewCode(
980       code_desc, Code::ComputeFlags(Code::REGEXP),
981       masm_.CodeObject());
982   PROFILE(isolate, RegExpCodeCreateEvent(*code, *source));
983   return Handle<HeapObject>::cast(code);
984 }
985 
986 
GoTo(Label * to)987 void RegExpMacroAssemblerX64::GoTo(Label* to) {
988   BranchOrBacktrack(no_condition, to);
989 }
990 
991 
IfRegisterGE(int reg,int comparand,Label * if_ge)992 void RegExpMacroAssemblerX64::IfRegisterGE(int reg,
993                                            int comparand,
994                                            Label* if_ge) {
995   __ cmpp(register_location(reg), Immediate(comparand));
996   BranchOrBacktrack(greater_equal, if_ge);
997 }
998 
999 
IfRegisterLT(int reg,int comparand,Label * if_lt)1000 void RegExpMacroAssemblerX64::IfRegisterLT(int reg,
1001                                            int comparand,
1002                                            Label* if_lt) {
1003   __ cmpp(register_location(reg), Immediate(comparand));
1004   BranchOrBacktrack(less, if_lt);
1005 }
1006 
1007 
IfRegisterEqPos(int reg,Label * if_eq)1008 void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg,
1009                                               Label* if_eq) {
1010   __ cmpp(rdi, register_location(reg));
1011   BranchOrBacktrack(equal, if_eq);
1012 }
1013 
1014 
1015 RegExpMacroAssembler::IrregexpImplementation
Implementation()1016     RegExpMacroAssemblerX64::Implementation() {
1017   return kX64Implementation;
1018 }
1019 
1020 
LoadCurrentCharacter(int cp_offset,Label * on_end_of_input,bool check_bounds,int characters)1021 void RegExpMacroAssemblerX64::LoadCurrentCharacter(int cp_offset,
1022                                                    Label* on_end_of_input,
1023                                                    bool check_bounds,
1024                                                    int characters) {
1025   DCHECK(cp_offset >= -1);      // ^ and \b can look behind one character.
1026   DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
1027   if (check_bounds) {
1028     CheckPosition(cp_offset + characters - 1, on_end_of_input);
1029   }
1030   LoadCurrentCharacterUnchecked(cp_offset, characters);
1031 }
1032 
1033 
PopCurrentPosition()1034 void RegExpMacroAssemblerX64::PopCurrentPosition() {
1035   Pop(rdi);
1036 }
1037 
1038 
PopRegister(int register_index)1039 void RegExpMacroAssemblerX64::PopRegister(int register_index) {
1040   Pop(rax);
1041   __ movp(register_location(register_index), rax);
1042 }
1043 
1044 
PushBacktrack(Label * label)1045 void RegExpMacroAssemblerX64::PushBacktrack(Label* label) {
1046   Push(label);
1047   CheckStackLimit();
1048 }
1049 
1050 
PushCurrentPosition()1051 void RegExpMacroAssemblerX64::PushCurrentPosition() {
1052   Push(rdi);
1053 }
1054 
1055 
PushRegister(int register_index,StackCheckFlag check_stack_limit)1056 void RegExpMacroAssemblerX64::PushRegister(int register_index,
1057                                            StackCheckFlag check_stack_limit) {
1058   __ movp(rax, register_location(register_index));
1059   Push(rax);
1060   if (check_stack_limit) CheckStackLimit();
1061 }
1062 
1063 
1064 STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size);
1065 
1066 
ReadCurrentPositionFromRegister(int reg)1067 void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) {
1068   if (kPointerSize == kInt64Size) {
1069     __ movq(rdi, register_location(reg));
1070   } else {
1071     // Need sign extension for x32 as rdi might be used as an index register.
1072     __ movsxlq(rdi, register_location(reg));
1073   }
1074 }
1075 
1076 
ReadPositionFromRegister(Register dst,int reg)1077 void RegExpMacroAssemblerX64::ReadPositionFromRegister(Register dst, int reg) {
1078   if (kPointerSize == kInt64Size) {
1079     __ movq(dst, register_location(reg));
1080   } else {
1081     // Need sign extension for x32 as dst might be used as an index register.
1082     __ movsxlq(dst, register_location(reg));
1083   }
1084 }
1085 
1086 
ReadStackPointerFromRegister(int reg)1087 void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) {
1088   __ movp(backtrack_stackpointer(), register_location(reg));
1089   __ addp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
1090 }
1091 
1092 
SetCurrentPositionFromEnd(int by)1093 void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) {
1094   Label after_position;
1095   __ cmpp(rdi, Immediate(-by * char_size()));
1096   __ j(greater_equal, &after_position, Label::kNear);
1097   __ movq(rdi, Immediate(-by * char_size()));
1098   // On RegExp code entry (where this operation is used), the character before
1099   // the current position is expected to be already loaded.
1100   // We have advanced the position, so it's safe to read backwards.
1101   LoadCurrentCharacterUnchecked(-1, 1);
1102   __ bind(&after_position);
1103 }
1104 
1105 
SetRegister(int register_index,int to)1106 void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) {
1107   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1108   __ movp(register_location(register_index), Immediate(to));
1109 }
1110 
1111 
Succeed()1112 bool RegExpMacroAssemblerX64::Succeed() {
1113   __ jmp(&success_label_);
1114   return global();
1115 }
1116 
1117 
WriteCurrentPositionToRegister(int reg,int cp_offset)1118 void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg,
1119                                                              int cp_offset) {
1120   if (cp_offset == 0) {
1121     __ movp(register_location(reg), rdi);
1122   } else {
1123     __ leap(rax, Operand(rdi, cp_offset * char_size()));
1124     __ movp(register_location(reg), rax);
1125   }
1126 }
1127 
1128 
ClearRegisters(int reg_from,int reg_to)1129 void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) {
1130   DCHECK(reg_from <= reg_to);
1131   __ movp(rax, Operand(rbp, kInputStartMinusOne));
1132   for (int reg = reg_from; reg <= reg_to; reg++) {
1133     __ movp(register_location(reg), rax);
1134   }
1135 }
1136 
1137 
WriteStackPointerToRegister(int reg)1138 void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) {
1139   __ movp(rax, backtrack_stackpointer());
1140   __ subp(rax, Operand(rbp, kStackHighEnd));
1141   __ movp(register_location(reg), rax);
1142 }
1143 
1144 
1145 // Private methods:
1146 
CallCheckStackGuardState()1147 void RegExpMacroAssemblerX64::CallCheckStackGuardState() {
1148   // This function call preserves no register values. Caller should
1149   // store anything volatile in a C call or overwritten by this function.
1150   static const int num_arguments = 3;
1151   __ PrepareCallCFunction(num_arguments);
1152 #ifdef _WIN64
1153   // Second argument: Code* of self. (Do this before overwriting r8).
1154   __ movp(rdx, code_object_pointer());
1155   // Third argument: RegExp code frame pointer.
1156   __ movp(r8, rbp);
1157   // First argument: Next address on the stack (will be address of
1158   // return address).
1159   __ leap(rcx, Operand(rsp, -kPointerSize));
1160 #else
1161   // Third argument: RegExp code frame pointer.
1162   __ movp(rdx, rbp);
1163   // Second argument: Code* of self.
1164   __ movp(rsi, code_object_pointer());
1165   // First argument: Next address on the stack (will be address of
1166   // return address).
1167   __ leap(rdi, Operand(rsp, -kRegisterSize));
1168 #endif
1169   ExternalReference stack_check =
1170       ExternalReference::re_check_stack_guard_state(isolate());
1171   __ CallCFunction(stack_check, num_arguments);
1172 }
1173 
1174 
1175 // Helper function for reading a value out of a stack frame.
1176 template <typename T>
frame_entry(Address re_frame,int frame_offset)1177 static T& frame_entry(Address re_frame, int frame_offset) {
1178   return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1179 }
1180 
1181 
CheckStackGuardState(Address * return_address,Code * re_code,Address re_frame)1182 int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
1183                                                   Code* re_code,
1184                                                   Address re_frame) {
1185   Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
1186   StackLimitCheck check(isolate);
1187   if (check.JsHasOverflowed()) {
1188     isolate->StackOverflow();
1189     return EXCEPTION;
1190   }
1191 
1192   // If not real stack overflow the stack guard was used to interrupt
1193   // execution for another purpose.
1194 
1195   // If this is a direct call from JavaScript retry the RegExp forcing the call
1196   // through the runtime system. Currently the direct call cannot handle a GC.
1197   if (frame_entry<int>(re_frame, kDirectCall) == 1) {
1198     return RETRY;
1199   }
1200 
1201   // Prepare for possible GC.
1202   HandleScope handles(isolate);
1203   Handle<Code> code_handle(re_code);
1204 
1205   Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
1206 
1207   // Current string.
1208   bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
1209 
1210   DCHECK(re_code->instruction_start() <= *return_address);
1211   DCHECK(*return_address <=
1212       re_code->instruction_start() + re_code->instruction_size());
1213 
1214   Object* result = isolate->stack_guard()->HandleInterrupts();
1215 
1216   if (*code_handle != re_code) {  // Return address no longer valid
1217     intptr_t delta = code_handle->address() - re_code->address();
1218     // Overwrite the return address on the stack.
1219     *return_address += delta;
1220   }
1221 
1222   if (result->IsException()) {
1223     return EXCEPTION;
1224   }
1225 
1226   Handle<String> subject_tmp = subject;
1227   int slice_offset = 0;
1228 
1229   // Extract the underlying string and the slice offset.
1230   if (StringShape(*subject_tmp).IsCons()) {
1231     subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
1232   } else if (StringShape(*subject_tmp).IsSliced()) {
1233     SlicedString* slice = SlicedString::cast(*subject_tmp);
1234     subject_tmp = Handle<String>(slice->parent());
1235     slice_offset = slice->offset();
1236   }
1237 
1238   // String might have changed.
1239   if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
1240     // If we changed between an Latin1 and an UC16 string, the specialized
1241     // code cannot be used, and we need to restart regexp matching from
1242     // scratch (including, potentially, compiling a new version of the code).
1243     return RETRY;
1244   }
1245 
1246   // Otherwise, the content of the string might have moved. It must still
1247   // be a sequential or external string with the same content.
1248   // Update the start and end pointers in the stack frame to the current
1249   // location (whether it has actually moved or not).
1250   DCHECK(StringShape(*subject_tmp).IsSequential() ||
1251       StringShape(*subject_tmp).IsExternal());
1252 
1253   // The original start address of the characters to match.
1254   const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
1255 
1256   // Find the current start address of the same character at the current string
1257   // position.
1258   int start_index = frame_entry<int>(re_frame, kStartIndex);
1259   const byte* new_address = StringCharacterPosition(*subject_tmp,
1260                                                     start_index + slice_offset);
1261 
1262   if (start_address != new_address) {
1263     // If there is a difference, update the object pointer and start and end
1264     // addresses in the RegExp stack frame to match the new value.
1265     const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
1266     int byte_length = static_cast<int>(end_address - start_address);
1267     frame_entry<const String*>(re_frame, kInputString) = *subject;
1268     frame_entry<const byte*>(re_frame, kInputStart) = new_address;
1269     frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
1270   } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
1271     // Subject string might have been a ConsString that underwent
1272     // short-circuiting during GC. That will not change start_address but
1273     // will change pointer inside the subject handle.
1274     frame_entry<const String*>(re_frame, kInputString) = *subject;
1275   }
1276 
1277   return 0;
1278 }
1279 
1280 
register_location(int register_index)1281 Operand RegExpMacroAssemblerX64::register_location(int register_index) {
1282   DCHECK(register_index < (1<<30));
1283   if (num_registers_ <= register_index) {
1284     num_registers_ = register_index + 1;
1285   }
1286   return Operand(rbp, kRegisterZero - register_index * kPointerSize);
1287 }
1288 
1289 
CheckPosition(int cp_offset,Label * on_outside_input)1290 void RegExpMacroAssemblerX64::CheckPosition(int cp_offset,
1291                                             Label* on_outside_input) {
1292   __ cmpl(rdi, Immediate(-cp_offset * char_size()));
1293   BranchOrBacktrack(greater_equal, on_outside_input);
1294 }
1295 
1296 
BranchOrBacktrack(Condition condition,Label * to)1297 void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition,
1298                                                 Label* to) {
1299   if (condition < 0) {  // No condition
1300     if (to == NULL) {
1301       Backtrack();
1302       return;
1303     }
1304     __ jmp(to);
1305     return;
1306   }
1307   if (to == NULL) {
1308     __ j(condition, &backtrack_label_);
1309     return;
1310   }
1311   __ j(condition, to);
1312 }
1313 
1314 
SafeCall(Label * to)1315 void RegExpMacroAssemblerX64::SafeCall(Label* to) {
1316   __ call(to);
1317 }
1318 
1319 
SafeCallTarget(Label * label)1320 void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) {
1321   __ bind(label);
1322   __ subp(Operand(rsp, 0), code_object_pointer());
1323 }
1324 
1325 
SafeReturn()1326 void RegExpMacroAssemblerX64::SafeReturn() {
1327   __ addp(Operand(rsp, 0), code_object_pointer());
1328   __ ret(0);
1329 }
1330 
1331 
Push(Register source)1332 void RegExpMacroAssemblerX64::Push(Register source) {
1333   DCHECK(!source.is(backtrack_stackpointer()));
1334   // Notice: This updates flags, unlike normal Push.
1335   __ subp(backtrack_stackpointer(), Immediate(kIntSize));
1336   __ movl(Operand(backtrack_stackpointer(), 0), source);
1337 }
1338 
1339 
Push(Immediate value)1340 void RegExpMacroAssemblerX64::Push(Immediate value) {
1341   // Notice: This updates flags, unlike normal Push.
1342   __ subp(backtrack_stackpointer(), Immediate(kIntSize));
1343   __ movl(Operand(backtrack_stackpointer(), 0), value);
1344 }
1345 
1346 
FixupCodeRelativePositions()1347 void RegExpMacroAssemblerX64::FixupCodeRelativePositions() {
1348   for (int i = 0, n = code_relative_fixup_positions_.length(); i < n; i++) {
1349     int position = code_relative_fixup_positions_[i];
1350     // The position succeeds a relative label offset from position.
1351     // Patch the relative offset to be relative to the Code object pointer
1352     // instead.
1353     int patch_position = position - kIntSize;
1354     int offset = masm_.long_at(patch_position);
1355     masm_.long_at_put(patch_position,
1356                        offset
1357                        + position
1358                        + Code::kHeaderSize
1359                        - kHeapObjectTag);
1360   }
1361   code_relative_fixup_positions_.Clear();
1362 }
1363 
1364 
Push(Label * backtrack_target)1365 void RegExpMacroAssemblerX64::Push(Label* backtrack_target) {
1366   __ subp(backtrack_stackpointer(), Immediate(kIntSize));
1367   __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target);
1368   MarkPositionForCodeRelativeFixup();
1369 }
1370 
1371 
Pop(Register target)1372 void RegExpMacroAssemblerX64::Pop(Register target) {
1373   DCHECK(!target.is(backtrack_stackpointer()));
1374   __ movsxlq(target, Operand(backtrack_stackpointer(), 0));
1375   // Notice: This updates flags, unlike normal Pop.
1376   __ addp(backtrack_stackpointer(), Immediate(kIntSize));
1377 }
1378 
1379 
Drop()1380 void RegExpMacroAssemblerX64::Drop() {
1381   __ addp(backtrack_stackpointer(), Immediate(kIntSize));
1382 }
1383 
1384 
CheckPreemption()1385 void RegExpMacroAssemblerX64::CheckPreemption() {
1386   // Check for preemption.
1387   Label no_preempt;
1388   ExternalReference stack_limit =
1389       ExternalReference::address_of_stack_limit(isolate());
1390   __ load_rax(stack_limit);
1391   __ cmpp(rsp, rax);
1392   __ j(above, &no_preempt);
1393 
1394   SafeCall(&check_preempt_label_);
1395 
1396   __ bind(&no_preempt);
1397 }
1398 
1399 
CheckStackLimit()1400 void RegExpMacroAssemblerX64::CheckStackLimit() {
1401   Label no_stack_overflow;
1402   ExternalReference stack_limit =
1403       ExternalReference::address_of_regexp_stack_limit(isolate());
1404   __ load_rax(stack_limit);
1405   __ cmpp(backtrack_stackpointer(), rax);
1406   __ j(above, &no_stack_overflow);
1407 
1408   SafeCall(&stack_overflow_label_);
1409 
1410   __ bind(&no_stack_overflow);
1411 }
1412 
1413 
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1414 void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset,
1415                                                             int characters) {
1416   if (mode_ == LATIN1) {
1417     if (characters == 4) {
1418       __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1419     } else if (characters == 2) {
1420       __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1421     } else {
1422       DCHECK(characters == 1);
1423       __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1424     }
1425   } else {
1426     DCHECK(mode_ == UC16);
1427     if (characters == 2) {
1428       __ movl(current_character(),
1429               Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
1430     } else {
1431       DCHECK(characters == 1);
1432       __ movzxwl(current_character(),
1433                  Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
1434     }
1435   }
1436 }
1437 
1438 #undef __
1439 
1440 #endif  // V8_INTERPRETED_REGEXP
1441 
1442 }}  // namespace v8::internal
1443 
1444 #endif  // V8_TARGET_ARCH_X64
1445