1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include <stdlib.h>
29
30 #include "src/v8.h"
31
32 #include "src/base/platform/platform.h"
33 #include "src/diy-fp.h"
34 #include "src/double.h"
35 #include "test/cctest/cctest.h"
36
37
38 using namespace v8::internal;
39
40
TEST(Uint64Conversions)41 TEST(Uint64Conversions) {
42 // Start by checking the byte-order.
43 uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF);
44 CHECK_EQ(3512700564088504e-318, Double(ordered).value());
45
46 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
47 CHECK_EQ(5e-324, Double(min_double64).value());
48
49 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff);
50 CHECK_EQ(1.7976931348623157e308, Double(max_double64).value());
51 }
52
53
TEST(AsDiyFp)54 TEST(AsDiyFp) {
55 uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF);
56 DiyFp diy_fp = Double(ordered).AsDiyFp();
57 CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e());
58 // The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64.
59 CHECK(V8_2PART_UINT64_C(0x00134567, 89ABCDEF) == diy_fp.f()); // NOLINT
60
61 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
62 diy_fp = Double(min_double64).AsDiyFp();
63 CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e());
64 // This is a denormal; so no hidden bit.
65 CHECK(1 == diy_fp.f()); // NOLINT
66
67 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff);
68 diy_fp = Double(max_double64).AsDiyFp();
69 CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e());
70 CHECK(V8_2PART_UINT64_C(0x001fffff, ffffffff) == diy_fp.f()); // NOLINT
71 }
72
73
TEST(AsNormalizedDiyFp)74 TEST(AsNormalizedDiyFp) {
75 uint64_t ordered = V8_2PART_UINT64_C(0x01234567, 89ABCDEF);
76 DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp();
77 CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e());
78 CHECK((V8_2PART_UINT64_C(0x00134567, 89ABCDEF) << 11) ==
79 diy_fp.f()); // NOLINT
80
81 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
82 diy_fp = Double(min_double64).AsNormalizedDiyFp();
83 CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e());
84 // This is a denormal; so no hidden bit.
85 CHECK(V8_2PART_UINT64_C(0x80000000, 00000000) == diy_fp.f()); // NOLINT
86
87 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff);
88 diy_fp = Double(max_double64).AsNormalizedDiyFp();
89 CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e());
90 CHECK((V8_2PART_UINT64_C(0x001fffff, ffffffff) << 11) ==
91 diy_fp.f()); // NOLINT
92 }
93
94
TEST(IsDenormal)95 TEST(IsDenormal) {
96 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
97 CHECK(Double(min_double64).IsDenormal());
98 uint64_t bits = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
99 CHECK(Double(bits).IsDenormal());
100 bits = V8_2PART_UINT64_C(0x00100000, 00000000);
101 CHECK(!Double(bits).IsDenormal());
102 }
103
104
TEST(IsSpecial)105 TEST(IsSpecial) {
106 CHECK(Double(V8_INFINITY).IsSpecial());
107 CHECK(Double(-V8_INFINITY).IsSpecial());
108 CHECK(Double(v8::base::OS::nan_value()).IsSpecial());
109 uint64_t bits = V8_2PART_UINT64_C(0xFFF12345, 00000000);
110 CHECK(Double(bits).IsSpecial());
111 // Denormals are not special:
112 CHECK(!Double(5e-324).IsSpecial());
113 CHECK(!Double(-5e-324).IsSpecial());
114 // And some random numbers:
115 CHECK(!Double(0.0).IsSpecial());
116 CHECK(!Double(-0.0).IsSpecial());
117 CHECK(!Double(1.0).IsSpecial());
118 CHECK(!Double(-1.0).IsSpecial());
119 CHECK(!Double(1000000.0).IsSpecial());
120 CHECK(!Double(-1000000.0).IsSpecial());
121 CHECK(!Double(1e23).IsSpecial());
122 CHECK(!Double(-1e23).IsSpecial());
123 CHECK(!Double(1.7976931348623157e308).IsSpecial());
124 CHECK(!Double(-1.7976931348623157e308).IsSpecial());
125 }
126
127
TEST(IsInfinite)128 TEST(IsInfinite) {
129 CHECK(Double(V8_INFINITY).IsInfinite());
130 CHECK(Double(-V8_INFINITY).IsInfinite());
131 CHECK(!Double(v8::base::OS::nan_value()).IsInfinite());
132 CHECK(!Double(0.0).IsInfinite());
133 CHECK(!Double(-0.0).IsInfinite());
134 CHECK(!Double(1.0).IsInfinite());
135 CHECK(!Double(-1.0).IsInfinite());
136 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
137 CHECK(!Double(min_double64).IsInfinite());
138 }
139
140
TEST(Sign)141 TEST(Sign) {
142 CHECK_EQ(1, Double(1.0).Sign());
143 CHECK_EQ(1, Double(V8_INFINITY).Sign());
144 CHECK_EQ(-1, Double(-V8_INFINITY).Sign());
145 CHECK_EQ(1, Double(0.0).Sign());
146 CHECK_EQ(-1, Double(-0.0).Sign());
147 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
148 CHECK_EQ(1, Double(min_double64).Sign());
149 }
150
151
TEST(NormalizedBoundaries)152 TEST(NormalizedBoundaries) {
153 DiyFp boundary_plus;
154 DiyFp boundary_minus;
155 DiyFp diy_fp = Double(1.5).AsNormalizedDiyFp();
156 Double(1.5).NormalizedBoundaries(&boundary_minus, &boundary_plus);
157 CHECK_EQ(diy_fp.e(), boundary_minus.e());
158 CHECK_EQ(diy_fp.e(), boundary_plus.e());
159 // 1.5 does not have a significand of the form 2^p (for some p).
160 // Therefore its boundaries are at the same distance.
161 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
162 CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
163
164 diy_fp = Double(1.0).AsNormalizedDiyFp();
165 Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus);
166 CHECK_EQ(diy_fp.e(), boundary_minus.e());
167 CHECK_EQ(diy_fp.e(), boundary_plus.e());
168 // 1.0 does have a significand of the form 2^p (for some p).
169 // Therefore its lower boundary is twice as close as the upper boundary.
170 CHECK_GT(boundary_plus.f() - diy_fp.f(), diy_fp.f() - boundary_minus.f());
171 CHECK((1 << 9) == diy_fp.f() - boundary_minus.f()); // NOLINT
172 CHECK((1 << 10) == boundary_plus.f() - diy_fp.f()); // NOLINT
173
174 uint64_t min_double64 = V8_2PART_UINT64_C(0x00000000, 00000001);
175 diy_fp = Double(min_double64).AsNormalizedDiyFp();
176 Double(min_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus);
177 CHECK_EQ(diy_fp.e(), boundary_minus.e());
178 CHECK_EQ(diy_fp.e(), boundary_plus.e());
179 // min-value does not have a significand of the form 2^p (for some p).
180 // Therefore its boundaries are at the same distance.
181 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
182 // Denormals have their boundaries much closer.
183 CHECK((static_cast<uint64_t>(1) << 62) ==
184 diy_fp.f() - boundary_minus.f()); // NOLINT
185
186 uint64_t smallest_normal64 = V8_2PART_UINT64_C(0x00100000, 00000000);
187 diy_fp = Double(smallest_normal64).AsNormalizedDiyFp();
188 Double(smallest_normal64).NormalizedBoundaries(&boundary_minus,
189 &boundary_plus);
190 CHECK_EQ(diy_fp.e(), boundary_minus.e());
191 CHECK_EQ(diy_fp.e(), boundary_plus.e());
192 // Even though the significand is of the form 2^p (for some p), its boundaries
193 // are at the same distance. (This is the only exception).
194 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
195 CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
196
197 uint64_t largest_denormal64 = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
198 diy_fp = Double(largest_denormal64).AsNormalizedDiyFp();
199 Double(largest_denormal64).NormalizedBoundaries(&boundary_minus,
200 &boundary_plus);
201 CHECK_EQ(diy_fp.e(), boundary_minus.e());
202 CHECK_EQ(diy_fp.e(), boundary_plus.e());
203 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
204 CHECK((1 << 11) == diy_fp.f() - boundary_minus.f()); // NOLINT
205
206 uint64_t max_double64 = V8_2PART_UINT64_C(0x7fefffff, ffffffff);
207 diy_fp = Double(max_double64).AsNormalizedDiyFp();
208 Double(max_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus);
209 CHECK_EQ(diy_fp.e(), boundary_minus.e());
210 CHECK_EQ(diy_fp.e(), boundary_plus.e());
211 // max-value does not have a significand of the form 2^p (for some p).
212 // Therefore its boundaries are at the same distance.
213 CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
214 CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
215 }
216
217
TEST(NextDouble)218 TEST(NextDouble) {
219 CHECK_EQ(4e-324, Double(0.0).NextDouble());
220 CHECK_EQ(0.0, Double(-0.0).NextDouble());
221 CHECK_EQ(-0.0, Double(-4e-324).NextDouble());
222 Double d0(-4e-324);
223 Double d1(d0.NextDouble());
224 Double d2(d1.NextDouble());
225 CHECK_EQ(-0.0, d1.value());
226 CHECK_EQ(0.0, d2.value());
227 CHECK_EQ(4e-324, d2.NextDouble());
228 CHECK_EQ(-1.7976931348623157e308, Double(-V8_INFINITY).NextDouble());
229 CHECK_EQ(V8_INFINITY,
230 Double(V8_2PART_UINT64_C(0x7fefffff, ffffffff)).NextDouble());
231 }
232