1 /* top.c - Provide a view of process activity in real time.
2 *
3 * Copyright 2013 Bilal Qureshi <bilal.jmi@gmail.com>
4 * Copyright 2013 Ashwini Kumar <ak.ashwini@gmail.com>
5 * Copyright 2013 Kyungwan Han <asura321@gmail.com>
6 *
7 * No Standard
8
9 USE_TOP(NEWTOY(top, ">0d#=3n#<1mb", TOYFLAG_USR|TOYFLAG_BIN))
10
11 config TOP
12 bool "top"
13 default n
14 help
15
16 usage: top [-mb] [ -d seconds ] [ -n iterations ]
17
18 Provide a view of process activity in real time.
19 Keys
20 N/M/P/T show CPU usage, sort by pid/mem/cpu/time
21 S show memory
22 R reverse sort
23 H toggle threads
24 C,1 toggle SMP
25 Q,^C exit
26
27 Options
28 -n Iterations before exiting
29 -d Delay between updates
30 -m Same as 's' key
31 -b Batch mode
32 */
33
34 #define FOR_top
35 #include "toys.h"
36 #include <signal.h>
37 #include <poll.h>
38
39 GLOBALS(
40 long iterations;
41 long delay;
42
43 long cmp_field;
44 long reverse;
45 long rows;
46 long smp;
47 long threads;
48 long m_flag;
49 long num_new_procs;
50 long scroll_offset;
51 struct termios inf;
52 )
53
54 #define PROC_NAME_LEN 512 //For long cmdline.
55 #define INIT_PROCS 50
56
57 struct cpu_info {
58 long unsigned utime, ntime, stime, itime;
59 long unsigned iowtime, irqtime, sirqtime, steal;
60 unsigned long long total;
61 };
62
63 enum CODE{
64 KEY_UP = 0x100, KEY_DOWN, KEY_HOME,
65 KEY_END, KEY_PAGEUP, KEY_PAGEDN,
66 };
67
68 struct keycode_map_s {
69 char *key;
70 int code;
71 };
72
73 struct proc_info {
74 struct proc_info *next;
75 pid_t pid, ppid;
76 uid_t uid;
77 char name[PROC_NAME_LEN];
78 char tname[PROC_NAME_LEN];
79 char state[4];
80 int prs;
81 unsigned long utime, stime, delta_utime, delta_stime, delta_time;
82 unsigned long vss, vssrw, rss, rss_shr, drt, drt_shr, stack;
83 };
84
85 static struct proc_info *free_procs, **old_procs, **new_procs;
86 static struct cpu_info old_cpu[10], new_cpu[10]; //1 total, 8 cores, 1 null
87 static int (*proc_cmp)(const void *a, const void *b);
88
find_old_proc(pid_t pid)89 static struct proc_info *find_old_proc(pid_t pid)
90 {
91 int i;
92
93 for (i = 0; old_procs && old_procs[i]; i++)
94 if (old_procs[i]->pid == pid) return old_procs[i];
95
96 return NULL;
97 }
98
read_stat(char * filename,struct proc_info * proc)99 static void read_stat(char *filename, struct proc_info *proc)
100 {
101 int nice;
102 FILE *file;
103 char *open_paren, *close_paren;
104
105 if (!(file = fopen(filename, "r"))) return;
106 fgets(toybuf, sizeof(toybuf), file);
107 fclose(file);
108
109 // Split at first '(' and last ')' to get process name.
110 open_paren = strchr(toybuf, '(');
111 close_paren = strrchr(toybuf, ')');
112 if (!open_paren || !close_paren) return;
113
114 *open_paren = *close_paren = '\0';
115 snprintf(proc->tname, PROC_NAME_LEN, "[%s]",open_paren + 1);
116
117 // Scan rest of string.
118 sscanf(close_paren + 1, " %c %d %*d %*d %*d %*d %*d %*d %*d %*d %*d "
119 "%lu %lu %*d %*d %*d %d %*d %*d %*d %lu %ld "
120 "%*d %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d %d",
121 &proc->state[0], &proc->ppid, &proc->utime, &proc->stime, &nice,
122 &proc->vss, &proc->rss, &proc->prs);
123 if (!proc->vss && proc->state[0] != 'Z') proc->state[1] = 'W';
124 else proc->state[1] = ' ';
125 if (nice < 0 ) proc->state[2] = '<';
126 else if (nice) proc->state[2] = 'N';
127 else proc->state[2] = ' ';
128 }
129
read_status(char * filename,struct proc_info * proc)130 static void read_status(char *filename, struct proc_info *proc)
131 {
132 FILE *file;
133
134 if (!(file = fopen(filename, "r"))) return;
135 while (fgets(toybuf, sizeof(toybuf), file))
136 if (sscanf(toybuf, "Uid: %u", &(proc->uid)) == 1) break;
137
138 fclose(file);
139 }
140
read_cmdline(char * filename,struct proc_info * proc)141 static void read_cmdline(char *filename, struct proc_info *proc)
142 {
143 int fd, len, rbytes = 0;
144 char *ch, *base, tname[PROC_NAME_LEN];
145
146 if ((fd = open(filename, O_RDONLY)) == -1) return;
147 rbytes = readall(fd, toybuf, sizeof(toybuf));
148 close(fd);
149 if (rbytes <= 0) {
150 strcpy(proc->name, proc->tname);
151 return;
152 }
153 toybuf[rbytes] = '\0';
154 while (--rbytes >= 0 && toybuf[rbytes] == '\0') continue;
155
156 snprintf(tname, PROC_NAME_LEN, "%s", proc->tname+1);
157 tname[strlen(tname) - 1] = '\0';
158 ch = strchr(toybuf, ' ');
159 if (ch) *ch = '\0';
160 base = strrchr(toybuf, '/');
161 if (base) base++;
162 else base = toybuf;
163
164 for (; rbytes >= 0; rbytes--)
165 if ((unsigned char)toybuf[rbytes] < ' ') toybuf[rbytes] = ' ';
166
167 if (*base == '-') base++;
168 len = strlen(tname);
169 if (strncmp(base, tname, len)) {
170 len +=3; //{,}, \0
171 rbytes = strlen(toybuf);
172 memmove(toybuf+ len, toybuf, rbytes+1);
173 snprintf(toybuf, sizeof(toybuf), "{%s}", tname);
174 toybuf[len-1] = ' ';
175 }
176 snprintf(proc->name, PROC_NAME_LEN, "%s", toybuf);
177 }
178
add_proc(int proc_num,struct proc_info * proc)179 static void add_proc(int proc_num, struct proc_info *proc)
180 {
181 int i;
182
183 if (proc_num >= TT.num_new_procs-1) {
184 new_procs = xrealloc(new_procs, (INIT_PROCS + TT.num_new_procs)
185 * sizeof(struct proc_info *));
186 for (i = TT.num_new_procs; i < (INIT_PROCS + TT.num_new_procs); i++)
187 new_procs[i] = NULL;
188 TT.num_new_procs += INIT_PROCS;
189 }
190 new_procs[proc_num] = proc;
191 }
192
signal_handler(int sig)193 void signal_handler(int sig)
194 {
195 tcsetattr(STDIN_FILENO, TCSANOW, &TT.inf);
196 xputc('\n');
197 signal(sig, SIG_DFL);
198 raise(sig);
199 _exit(sig | 128);
200 }
201
get_key_code(char * ch,int i)202 static int get_key_code(char *ch, int i)
203 {
204 static struct keycode_map_s type2[] = {
205 {"OA",KEY_UP}, {"OB",KEY_DOWN}, {"OH",KEY_HOME},
206 {"OF",KEY_END}, {"[A",KEY_UP}, {"[B",KEY_DOWN},
207 {"[H",KEY_HOME}, {"[F",KEY_END}, {NULL, 0}
208 };
209
210 static struct keycode_map_s type3[] = {
211 {"[1~", KEY_HOME}, {"[4~", KEY_END}, {"[5~", KEY_PAGEUP},
212 {"[6~", KEY_PAGEDN}, {"[7~", KEY_HOME}, {"[8~", KEY_END},
213 {NULL, 0}
214 };
215 struct keycode_map_s *table, *keytable[3] = {type2, type3, NULL};
216 int j;
217
218 if ( i > 3 || i < 1) return -1;
219
220 for (j=0; (table = keytable[j]); j++) {
221 while (table->key) {
222 if (!strncmp(ch, table->key, i)) break;
223 table++;
224 }
225 if (table->key) {
226 if (i == 1 || (i == 2 && j)) return 1;
227 return table->code;
228 }
229 }
230 return -1;
231 }
232
read_input(int delay)233 static int read_input(int delay)
234 {
235 struct pollfd pfd[1];
236 int ret, fret = 0, cnt = 0, escproc = 0, timeout = delay * 1000;
237 char ch, seq[4] = {0,};
238 struct termios newf;
239
240 tcgetattr(0, &TT.inf);
241 if (toys.optflags & FLAG_b) {
242 sleep(delay);
243 return 0;
244 }
245 pfd[0].fd = 0;
246 pfd[0].events = POLLIN;
247
248 //prepare terminal for input, without Enter of Carriage return
249 memcpy(&newf, &TT.inf, sizeof(struct termios));
250 newf.c_lflag &= ~(ICANON | ECHO | ECHONL);
251 newf.c_cc[VMIN] = 1;
252 newf.c_cc[VTIME] = 0;
253 tcsetattr(0, TCSANOW, &newf);
254
255 while (1) {
256 if ((ret = poll(pfd, 1, timeout)) >= 0) break;
257 else {
258 if (timeout > 0) timeout--;
259 if (errno == EINTR) continue;
260 perror_exit("poll");
261 }
262 }
263
264 while (ret) {
265 if (read(STDIN_FILENO, &ch, 1) != 1) toys.optflags |= FLAG_b;
266 else if (ch == '\033' || escproc) {
267 int code;
268 //process ESC keys
269 if (!escproc) {
270 if (!poll(pfd, 1, 50)) break; //no more chars
271 escproc = 1;
272 continue;
273 }
274 seq[cnt++] = ch;
275 code = get_key_code(seq, cnt);
276 switch(code) {
277 case -1: //no match
278 fret = 0;
279 break;
280 case 1: //read more
281 continue;
282 default: // got the key
283 fret = code;
284 break;
285 }
286 } else if ((ch == TT.inf.c_cc[VINTR])
287 || (ch == TT.inf.c_cc[VEOF]))
288 fret = 'q';
289 else fret = ch | 0x20;
290 break;
291 }
292 tcsetattr(0, TCSANOW, &TT.inf);
293 return fret;
294 }
295
296 // Allocation for Processes
alloc_proc(void)297 static struct proc_info *alloc_proc(void)
298 {
299 struct proc_info *proc;
300
301 if (free_procs) {
302 proc = free_procs;
303 free_procs = free_procs->next;
304 memset(proc, 0, sizeof(*proc));
305 } else proc = xzalloc(sizeof(*proc));
306
307 return proc;
308 }
309
free_proc_list(struct proc_info * procs)310 static void free_proc_list(struct proc_info *procs)
311 {
312 struct proc_info *tmp = procs;
313
314 for (;tmp; tmp = procs) {
315 procs = procs->next;
316 free(tmp);
317 }
318 }
319
320 // Free allocated Processes in order to avoid memory leaks
free_proc(struct proc_info * proc)321 static void free_proc(struct proc_info *proc)
322 {
323 proc->next = free_procs;
324 free_procs = proc;
325 }
326
add_new_proc(pid_t pid,pid_t tid)327 static struct proc_info *add_new_proc(pid_t pid, pid_t tid)
328 {
329 char filename[64];
330 struct proc_info *proc = alloc_proc();
331
332 proc->pid = (tid)? tid : pid;
333 if (!tid) {
334 sprintf(filename, "/proc/%d/stat", pid);
335 read_stat(filename, proc);
336 sprintf(filename, "/proc/%d/cmdline", pid);
337 read_cmdline(filename, proc);
338 sprintf(filename, "/proc/%d/status", pid);
339 read_status(filename, proc);
340 } else{
341 sprintf(filename, "/proc/%d/task/%d/stat", pid,tid);
342 read_stat(filename, proc);
343 sprintf(filename, "/proc/%d/task/%d/cmdline", pid, tid);
344 read_cmdline(filename, proc);
345 }
346 return proc;
347 }
348
read_smaps(pid_t pid,struct proc_info * p)349 static void read_smaps(pid_t pid, struct proc_info *p)
350 {
351 FILE *fp;
352 char *line;
353 size_t len;
354 long long start, end, val, prvcl, prvdr, shrdr, shrcl;
355 int count;
356
357 p->vss = p->rss = 0;
358 start = end = val = prvcl = prvdr = shrdr = shrcl = 0;
359 sprintf(toybuf, "/proc/%u/smaps", pid);
360 if (!(fp = fopen(toybuf, "r"))) {
361 error_msg("No %ld\n", (long)pid);
362 return;
363 }
364 for (;;) {
365 int off;
366
367 line = 0;
368 if (0 >= getline(&line, &len, fp)) break;
369 count = sscanf(line, "%llx-%llx %s %*s %*s %*s %n",
370 &start, &end, toybuf, &off);
371
372 if (count == 3) {
373 end = end - start;
374 if (strncmp(line+off, "/dev/", 5) || !strcmp(line+off, "/dev/zero\n")) {
375 p->vss += end;
376 if (toybuf[1] == 'w') p->vssrw += end;
377 }
378 if (line[off] && !strncmp(line+off, "[stack]",7)) p->stack += end;
379 } else {
380 if (0<sscanf(line, "Private_Clean: %lld", &val)) prvcl += val;
381 if (0<sscanf(line, "Private_Dirty: %lld", &val)) prvdr += val;
382 if (0<sscanf(line, "Shared_Dirty: %lld", &val)) shrdr += val;
383 if (0<sscanf(line, "Shared_Clean: %lld", &val)) shrcl += val;
384 }
385 free(line);
386 }
387 free(line); //incase it broke out.
388 p->rss_shr = shrdr + shrcl;
389 p->drt = prvdr + shrdr;
390 p->drt_shr = shrdr;
391 p->rss = p->rss_shr + prvdr + prvcl;
392 fclose(fp);
393 }
394
read_procs(void)395 static void read_procs(void) // Read Processes
396 {
397 DIR *proc_dir, *thr_dir;
398 struct dirent *pid_dir, *t_dir;
399 struct proc_info *proc;
400 pid_t pid, tid;
401 int proc_num = 0;
402
403 proc_dir = opendir("/proc");
404 if (!proc_dir) perror_exit("Could not open /proc");
405
406 new_procs = xzalloc(INIT_PROCS * sizeof(struct proc_info *));
407 TT.num_new_procs = INIT_PROCS;
408
409 while ((pid_dir = readdir(proc_dir))) {
410 if (!isdigit(pid_dir->d_name[0])) continue;
411
412 pid = atoi(pid_dir->d_name);
413 proc = add_new_proc(pid, 0);
414 if (TT.m_flag) {
415 read_smaps(pid, proc);
416 if (!proc->vss) {
417 free(proc);
418 continue;
419 }
420 }
421 add_proc(proc_num++, proc);
422
423 if (TT.threads) {
424 char filename[64];
425 uid_t uid = proc->uid;
426
427 sprintf(filename,"/proc/%d/task",pid);
428 if ((thr_dir = opendir(filename))) {
429 while ((t_dir = readdir(thr_dir))) {
430 if (!isdigit(t_dir->d_name[0])) continue;
431
432 tid = atoi(t_dir->d_name);
433 if (pid == tid) continue;
434 proc = add_new_proc(pid, tid);
435 proc->uid = uid; //child will have same uid as parent.
436 add_proc(proc_num++, proc);
437 }
438 closedir(thr_dir);
439 }
440 }
441 }
442
443 closedir(proc_dir);
444 TT.num_new_procs = proc_num;
445 }
446
447 //calculate percentage.
show_percent(long unsigned num,long unsigned den)448 static char* show_percent(long unsigned num, long unsigned den)
449 {
450 long res;
451 static char ch, buff[12]={'\0'};
452
453 if(num > den) num = den;
454 res = (num * 100)/den;
455 sprintf(buff,"%ld", (num * 100)% den);
456 ch = *buff;
457 sprintf(buff, "%ld.%c",res, ch);
458 return buff;
459 }
460
print_header(struct sysinfo * info,unsigned int cols)461 static int print_header(struct sysinfo *info, unsigned int cols)
462 {
463 int fd, j, k, rows =0;
464 long unsigned total, meminfo_cached, anon, meminfo_mapped,
465 meminfo_slab, meminfo_dirty, meminfo_writeback, swapT, swapF;
466 char *buff;
467
468 fd = xopen("/proc/meminfo", O_RDONLY);
469 while ((buff = get_line(fd))) {
470 if (!strncmp(buff, "Cached", 6))
471 sscanf(buff,"%*s %lu\n",&meminfo_cached);
472 else if (!strncmp(buff, "AnonPages", 9))
473 sscanf(buff,"%*s %lu\n",&anon);
474 else if (!strncmp(buff, "Mapped", 6))
475 sscanf(buff,"%*s %lu\n",&meminfo_mapped);
476 else if (!strncmp(buff, "Slab", 4))
477 sscanf(buff,"%*s %lu\n",&meminfo_slab);
478 else if (!strncmp(buff, "Dirty", 5))
479 sscanf(buff,"%*s %lu\n",&meminfo_dirty);
480 else if (!strncmp(buff, "Writeback", 9))
481 sscanf(buff,"%*s %lu\n",&meminfo_writeback);
482 else if (!strncmp(buff, "SwapTotal", 9))
483 sscanf(buff,"%*s %lu\n",&swapT);
484 else if (!strncmp(buff, "SwapFree", 8))
485 sscanf(buff,"%*s %lu\n",&swapF);
486 free(buff);
487 }
488 close(fd);
489
490 if (!(toys.optflags & FLAG_b)) printf("\033[H\033[J");
491
492 if (TT.m_flag){
493 sprintf(toybuf, "Mem total:%lu anon:%lu map:%lu free:%lu",
494 ((info->totalram) >> 10), anon, meminfo_mapped,
495 ((info->freeram) >> 10));
496 printf("%.*s\n", cols, toybuf);
497
498 sprintf(toybuf, "slab:%lu buf:%lu cache:%lu dirty:%lu write:%lu",
499 meminfo_slab, ((info->bufferram) >>10), meminfo_cached,
500 meminfo_dirty,meminfo_writeback);
501 printf("%.*s\n", cols, toybuf);
502
503 sprintf(toybuf, "Swap total:%lu free:%lu",swapT, swapF);
504 printf("%.*s\n", cols, toybuf);
505 rows += 3;
506 } else {
507 sprintf(toybuf,"Mem: %luK used, %luK free, %luK shrd, %luK buff, %luK cached",
508 (info->totalram-info->freeram) >>10, (info->freeram) >>10,
509 (info->sharedram) >>10, (info->bufferram) >>10, meminfo_cached);
510 printf("%.*s\n", cols, toybuf);
511
512 for (k = 1; new_cpu[k].total; k++) {
513 j = 0;
514 if (!TT.smp) {
515 k = 0;
516 j = sprintf(toybuf,"CPU:");
517 } else j = sprintf(toybuf,"CPU%d:", k-1);
518
519 total = (new_cpu[k].total) - (old_cpu[k].total);
520 if (!total) total = 1; //avoid denominator as 0, FPE
521 j += sprintf(toybuf + j," %s%% usr",
522 show_percent((new_cpu[k].utime - old_cpu[k].utime), total));
523 j += sprintf(toybuf+j," %s%% sys",
524 show_percent((new_cpu[k].stime - old_cpu[k].stime), total));
525 j += sprintf(toybuf+j," %s%% nic",
526 show_percent(new_cpu[k].ntime - old_cpu[k].ntime, total));
527 j += sprintf(toybuf+j," %s%% idle",
528 show_percent(new_cpu[k].itime - old_cpu[k].itime, total));
529 j += sprintf(toybuf+j," %s%% io",
530 show_percent((new_cpu[k].iowtime - old_cpu[k].iowtime), total));
531 j += sprintf(toybuf+j," %s%% irq",
532 show_percent(new_cpu[k].irqtime - old_cpu[k].irqtime, total));
533 j += sprintf(toybuf+j," %s%% sirq",
534 show_percent(new_cpu[k].sirqtime - old_cpu[k].sirqtime, total));
535 printf("%.*s\n", cols, toybuf);
536 if (!TT.smp) break;
537 }
538
539 if ((buff = readfile("/proc/loadavg", NULL, 0))) {
540 buff[strlen(buff) -1] = '\0'; //removing '\n' at end
541 sprintf(toybuf, "Load average: %s", buff);
542 printf("%.*s\n", cols, toybuf);
543 free(buff);
544 }
545 rows += 2 + ((TT.smp) ? k-1 : 1);
546 }
547 return rows;
548 }
549
print_procs(void)550 static void print_procs(void)
551 {
552 int i, j = 0;
553 struct proc_info *old_proc, *proc;
554 long unsigned total_delta_time;
555 struct passwd *user;
556 char *user_str, user_buf[20];
557 struct sysinfo info;
558 unsigned int cols=0, rows =0;
559
560 terminal_size(&cols, &rows);
561 if (!rows){
562 rows = 24; //on serial consoles setting default
563 cols = 79;
564 }
565 if (toys.optflags & FLAG_b) rows = INT_MAX;
566 TT.rows = rows;
567
568 for (i = 0; i < TT.num_new_procs; i++) {
569 if (new_procs[i]) {
570 old_proc = find_old_proc(new_procs[i]->pid);
571 if (old_proc) {
572 new_procs[i]->delta_utime = new_procs[i]->utime - old_proc->utime;
573 new_procs[i]->delta_stime = new_procs[i]->stime - old_proc->stime;
574 } else {
575 new_procs[i]->delta_utime = 0;
576 new_procs[i]->delta_stime = 0;
577 }
578 new_procs[i]->delta_time = new_procs[i]->delta_utime
579 + new_procs[i]->delta_stime;
580 }
581 }
582
583 total_delta_time = new_cpu[0].total - old_cpu[0].total;
584 if (!total_delta_time) total_delta_time = 1;
585
586 qsort(new_procs, TT.num_new_procs, sizeof(struct proc_info *), proc_cmp);
587
588 //Memory details
589 sysinfo(&info);
590 info.totalram *= info.mem_unit;
591 info.freeram *= info.mem_unit;
592 info.sharedram *= info.mem_unit;
593 info.bufferram *= info.mem_unit;
594
595 rows -= print_header(&info, cols);
596
597 if (TT.m_flag) {
598 sprintf(toybuf, "%5s %5s %5s %5s %5s %5s %5s %5s %s", "PID", "VSZ", "VSZRW",
599 "RSS", "(SHR)", "DIRTY", "(SHR)", "STACK", "COMMAND");
600 toybuf[11 + TT.cmp_field*6] = (TT.reverse)?'_':'^'; //11 for PID,VSZ fields
601 } else sprintf(toybuf, "%5s %5s %-8s %4s %5s %5s %4s %5s %s", "PID", "PPID",
602 "USER", "STAT", "VSZ", "%VSZ", "CPU" , "%CPU", "COMMAND");
603
604 printf((toys.optflags & FLAG_b)?"%.*s\n":"\033[7m%.*s\033[0m\n",cols, toybuf);
605 rows--;
606 for (i = TT.scroll_offset; i < TT.num_new_procs; i++) {
607 j = 0;
608 proc = new_procs[i];
609
610 user = getpwuid(proc->uid);
611 if (user && user->pw_name) {
612 user_str = user->pw_name;
613 } else {
614 snprintf(user_buf, 20, "%d", proc->uid);
615 user_str = user_buf;
616 }
617
618 if (!TT.m_flag )
619 {
620 float vss_percentage = (float)(proc->vss)/info.totalram * 100;
621
622 j = sprintf(toybuf, "%5d %5d %-8.8s %-4s",proc->pid, proc->ppid, user_str,
623 proc->state);
624
625 if ((proc->vss >> 10) >= 100000)
626 j += sprintf(toybuf + j, " %4lum", ((proc->vss >> 10) >> 10));
627 else j += sprintf(toybuf+j, " %5lu", (proc->vss >> 10));
628
629 sprintf(toybuf + j," %5.1f %4d %5s %s", vss_percentage, proc->prs,
630 show_percent(proc->delta_time, total_delta_time),
631 ((proc->name[0])? proc->name : proc->tname));
632 printf("%.*s", cols, toybuf);
633 } else {
634 j = sprintf(toybuf, "%5d",proc->pid);
635
636 if ((proc->vss >> 10) >= 100000)
637 j += sprintf(toybuf + j, " %4lum", ((proc->vss >> 10) >> 10));
638 else j += sprintf(toybuf+j, " %5lu", (proc->vss >> 10));
639 if ((proc->vssrw >>10) >= 100000)
640 j += sprintf(toybuf + j, " %4lum", ((proc->vssrw >> 10) >> 10));
641 else j += sprintf(toybuf+j, " %5lu", (proc->vssrw >> 10));
642 if (proc->rss >= 100000)
643 j += sprintf(toybuf + j, " %4lum", ((proc->rss >> 10)));
644 else j += sprintf(toybuf+j, " %5lu", proc->rss);
645 if (proc->rss_shr >= 100000)
646 j += sprintf(toybuf + j, " %4lum", (proc->rss_shr >> 10));
647 else j += sprintf(toybuf+j, " %5lu", proc->rss_shr);
648 if (proc->drt >= 100000)
649 j += sprintf(toybuf + j, " %4lum", (proc->drt >> 10));
650 else j += sprintf(toybuf+j, " %5lu", proc->drt);
651 if (proc->drt_shr >= 100000)
652 j += sprintf(toybuf + j, " %4lum", (proc->drt_shr >> 10));
653 else j += sprintf(toybuf+j, " %5lu", proc->drt_shr);
654 if ((proc->stack >>10) >= 100000)
655 j += sprintf(toybuf + j, " %4lum", ((proc->stack >> 10) >> 10));
656 else j += sprintf(toybuf+j, " %5lu", (proc->stack >> 10));
657
658 sprintf(toybuf + j," %s",((proc->name[0])? proc->name : proc->tname));
659 printf("%.*s", cols, toybuf);
660 }
661 rows--;
662 if (!rows) {
663 xputc('\r');
664 break; //don't print any more process details.
665 } else xputc('\n');
666 }
667 }
668
669 /*
670 * Free old processes(displayed in old iteration) in order to
671 * avoid memory leaks
672 */
free_procs_arr(struct proc_info ** procs)673 static void free_procs_arr(struct proc_info **procs)
674 {
675 int i;
676 for (i = 0; procs && procs[i]; i++)
677 free_proc(procs[i]);
678
679 free(procs);
680 }
681
numcmp(long long a,long long b)682 static int numcmp(long long a, long long b)
683 {
684 if (a < b) return (TT.reverse)?-1 : 1;
685 if (a > b) return (TT.reverse)?1 : -1;
686 return 0;
687 }
688
top_mem_cmp(const void * a,const void * b)689 static int top_mem_cmp(const void *a, const void *b)
690 {
691 char *pa, *pb;
692
693 int n = offsetof(struct proc_info, vss) + TT.cmp_field * sizeof(unsigned long);
694 pa = *((char **)a); pb = *((char **)b);
695 return numcmp(*(unsigned long*)(pa+n), *(unsigned long*)(pb+n));
696 }
697
proc_time_cmp(const void * a,const void * b)698 static int proc_time_cmp(const void *a, const void *b)
699 {
700 struct proc_info *pa, *pb;
701
702 pa = *((struct proc_info **)a); pb = *((struct proc_info **)b);
703 return numcmp(pa->utime + pa->stime, pb->utime+pa->stime);
704 }
705
706 /*
707 * Function to compare CPU usgae % while displaying processes
708 * according to CPU usage
709 */
proc_cpu_cmp(const void * a,const void * b)710 static int proc_cpu_cmp(const void *a, const void *b)
711 {
712 struct proc_info *pa, *pb;
713
714 pa = *((struct proc_info **)a); pb = *((struct proc_info **)b);
715 return numcmp(pa->delta_time, pb->delta_time);
716 }
717
718 /*
719 * Function to compare memory taking by a process at the time of
720 * displaying processes according to Memory usage
721 */
proc_vss_cmp(const void * a,const void * b)722 static int proc_vss_cmp(const void *a, const void *b)
723 {
724 struct proc_info *pa, *pb;
725
726 pa = *((struct proc_info **)a); pb = *((struct proc_info **)b);
727 return numcmp(pa->vss, pb->vss);
728 }
729
proc_pid_cmp(const void * a,const void * b)730 static int proc_pid_cmp(const void *a, const void *b)
731 {
732 struct proc_info *pa, *pb;
733
734 pa = *((struct proc_info **)a); pb = *((struct proc_info **)b);
735 return numcmp(pa->pid, pb->pid);
736 }
737
738 /* Read CPU stats for all the cores, assuming max 8 cores
739 * to be present here.
740 */
read_cpu_stat()741 static void read_cpu_stat()
742 {
743 int i;
744 size_t len;
745 char *line = 0, *params = "%lu %lu %lu %lu %lu %lu %lu %lu";
746 FILE *fp = xfopen("/proc/stat", "r");
747
748 for (i = 0; i<=8 && getline(&line, &len, fp) > 0; i++) {
749 if (i) sprintf(toybuf, "cpu%d %s", i-1, params);
750 else sprintf(toybuf, "cpu %s", params);
751 len = sscanf(line, toybuf, &new_cpu[i].utime, &new_cpu[i].ntime,
752 &new_cpu[i].stime, &new_cpu[i].itime, &new_cpu[i].iowtime,
753 &new_cpu[i].irqtime, &new_cpu[i].sirqtime, &new_cpu[i].steal);
754 if (len == 8)
755 new_cpu[i].total = new_cpu[i].utime + new_cpu[i].ntime + new_cpu[i].stime
756 + new_cpu[i].itime + new_cpu[i].iowtime + new_cpu[i].irqtime
757 + new_cpu[i].sirqtime + new_cpu[i].steal;
758
759 free(line);
760 line = 0;
761 }
762 fclose(fp);
763 }
764
top_main(void)765 void top_main(void )
766 {
767 int get_key;
768
769 proc_cmp = &proc_cpu_cmp;
770 if ( TT.delay < 0) TT.delay = 3;
771 if (toys.optflags & FLAG_m) {
772 proc_cmp = &top_mem_cmp;
773 TT.m_flag = 1;
774 }
775
776 sigatexit(signal_handler);
777 read_cpu_stat();
778 get_key = read_input(0);
779
780 while (!(toys.optflags & FLAG_n) || TT.iterations--) {
781 old_procs = new_procs;
782 memcpy(old_cpu, new_cpu, sizeof(old_cpu));
783 read_procs();
784 read_cpu_stat();
785 print_procs();
786 free_procs_arr(old_procs);
787 if ((toys.optflags & FLAG_n) && !TT.iterations) break;
788
789 get_key = read_input(TT.delay);
790 if (get_key == 'q') break;
791
792 switch(get_key) {
793 case 'n':
794 proc_cmp = &proc_pid_cmp;
795 TT.m_flag = 0;
796 break;
797 case 'h':
798 if (!TT.m_flag) TT.threads ^= 1;
799 break;
800 case 'm':
801 proc_cmp = &proc_vss_cmp;
802 TT.m_flag = 0;
803 break;
804 case 'r':
805 TT.reverse ^= 1;
806 break;
807 case 'c':
808 case '1':
809 TT.smp ^= 1;
810 break;
811 case 's':
812 TT.m_flag = 1;
813 TT.cmp_field = (TT.cmp_field + 1) % 7;//7 sort fields, vss,vssrw...
814 proc_cmp = &top_mem_cmp;
815 break;
816 case 'p':
817 proc_cmp = &proc_cpu_cmp;
818 TT.m_flag = 0;
819 break;
820 case 't':
821 proc_cmp = &proc_time_cmp;
822 TT.m_flag = 0;
823 break;
824 case KEY_UP:
825 TT.scroll_offset--;
826 break;
827 case KEY_DOWN:
828 TT.scroll_offset++;
829 break;
830 case KEY_HOME:
831 TT.scroll_offset = 0;
832 break;
833 case KEY_END:
834 TT.scroll_offset = TT.num_new_procs - TT.rows/2;
835 break;
836 case KEY_PAGEUP:
837 TT.scroll_offset -= TT.rows/2;
838 break;
839 case KEY_PAGEDN:
840 TT.scroll_offset += TT.rows/2;
841 break;
842 }
843 if (TT.scroll_offset >= TT.num_new_procs) TT.scroll_offset = TT.num_new_procs-1;
844 if (TT.scroll_offset < 0) TT.scroll_offset = 0;
845 }
846 xputc('\n');
847 if (CFG_TOYBOX_FREE) {
848 free_proc_list(free_procs);
849 free_procs = NULL;
850 free_procs_arr(new_procs);
851 free_proc_list(free_procs);
852 }
853 }
854