1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Main internal TSan header file.
13 //
14 // Ground rules:
15 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
16 // function-scope locals)
17 // - All functions/classes/etc reside in namespace __tsan, except for those
18 // declared in tsan_interface.h.
19 // - Platform-specific files should be used instead of ifdefs (*).
20 // - No system headers included in header files (*).
21 // - Platform specific headres included only into platform-specific files (*).
22 //
23 // (*) Except when inlining is critical for performance.
24 //===----------------------------------------------------------------------===//
25
26 #ifndef TSAN_RTL_H
27 #define TSAN_RTL_H
28
29 #include "sanitizer_common/sanitizer_allocator.h"
30 #include "sanitizer_common/sanitizer_allocator_internal.h"
31 #include "sanitizer_common/sanitizer_asm.h"
32 #include "sanitizer_common/sanitizer_common.h"
33 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
34 #include "sanitizer_common/sanitizer_libignore.h"
35 #include "sanitizer_common/sanitizer_suppressions.h"
36 #include "sanitizer_common/sanitizer_thread_registry.h"
37 #include "tsan_clock.h"
38 #include "tsan_defs.h"
39 #include "tsan_flags.h"
40 #include "tsan_sync.h"
41 #include "tsan_trace.h"
42 #include "tsan_vector.h"
43 #include "tsan_report.h"
44 #include "tsan_platform.h"
45 #include "tsan_mutexset.h"
46 #include "tsan_ignoreset.h"
47 #include "tsan_stack_trace.h"
48
49 #if SANITIZER_WORDSIZE != 64
50 # error "ThreadSanitizer is supported only on 64-bit platforms"
51 #endif
52
53 namespace __tsan {
54
55 #ifndef SANITIZER_GO
56 struct MapUnmapCallback;
57 #ifdef __mips64
58 static const uptr kAllocatorSpace = 0;
59 static const uptr kAllocatorSize = SANITIZER_MMAP_RANGE_SIZE;
60 static const uptr kAllocatorRegionSizeLog = 20;
61 static const uptr kAllocatorNumRegions =
62 kAllocatorSize >> kAllocatorRegionSizeLog;
63 typedef TwoLevelByteMap<(kAllocatorNumRegions >> 12), 1 << 12,
64 MapUnmapCallback> ByteMap;
65 typedef SizeClassAllocator32<kAllocatorSpace, kAllocatorSize, 0,
66 CompactSizeClassMap, kAllocatorRegionSizeLog, ByteMap,
67 MapUnmapCallback> PrimaryAllocator;
68 #else
69 typedef SizeClassAllocator64<kHeapMemBeg, kHeapMemEnd - kHeapMemBeg, 0,
70 DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
71 #endif
72 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
73 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
74 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
75 SecondaryAllocator> Allocator;
76 Allocator *allocator();
77 #endif
78
79 void TsanCheckFailed(const char *file, int line, const char *cond,
80 u64 v1, u64 v2);
81
82 const u64 kShadowRodata = (u64)-1; // .rodata shadow marker
83
84 // FastState (from most significant bit):
85 // ignore : 1
86 // tid : kTidBits
87 // unused : -
88 // history_size : 3
89 // epoch : kClkBits
90 class FastState {
91 public:
FastState(u64 tid,u64 epoch)92 FastState(u64 tid, u64 epoch) {
93 x_ = tid << kTidShift;
94 x_ |= epoch;
95 DCHECK_EQ(tid, this->tid());
96 DCHECK_EQ(epoch, this->epoch());
97 DCHECK_EQ(GetIgnoreBit(), false);
98 }
99
FastState(u64 x)100 explicit FastState(u64 x)
101 : x_(x) {
102 }
103
raw()104 u64 raw() const {
105 return x_;
106 }
107
tid()108 u64 tid() const {
109 u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
110 return res;
111 }
112
TidWithIgnore()113 u64 TidWithIgnore() const {
114 u64 res = x_ >> kTidShift;
115 return res;
116 }
117
epoch()118 u64 epoch() const {
119 u64 res = x_ & ((1ull << kClkBits) - 1);
120 return res;
121 }
122
IncrementEpoch()123 void IncrementEpoch() {
124 u64 old_epoch = epoch();
125 x_ += 1;
126 DCHECK_EQ(old_epoch + 1, epoch());
127 (void)old_epoch;
128 }
129
SetIgnoreBit()130 void SetIgnoreBit() { x_ |= kIgnoreBit; }
ClearIgnoreBit()131 void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
GetIgnoreBit()132 bool GetIgnoreBit() const { return (s64)x_ < 0; }
133
SetHistorySize(int hs)134 void SetHistorySize(int hs) {
135 CHECK_GE(hs, 0);
136 CHECK_LE(hs, 7);
137 x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift);
138 }
139
140 ALWAYS_INLINE
GetHistorySize()141 int GetHistorySize() const {
142 return (int)((x_ >> kHistoryShift) & kHistoryMask);
143 }
144
ClearHistorySize()145 void ClearHistorySize() {
146 SetHistorySize(0);
147 }
148
149 ALWAYS_INLINE
GetTracePos()150 u64 GetTracePos() const {
151 const int hs = GetHistorySize();
152 // When hs == 0, the trace consists of 2 parts.
153 const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
154 return epoch() & mask;
155 }
156
157 private:
158 friend class Shadow;
159 static const int kTidShift = 64 - kTidBits - 1;
160 static const u64 kIgnoreBit = 1ull << 63;
161 static const u64 kFreedBit = 1ull << 63;
162 static const u64 kHistoryShift = kClkBits;
163 static const u64 kHistoryMask = 7;
164 u64 x_;
165 };
166
167 // Shadow (from most significant bit):
168 // freed : 1
169 // tid : kTidBits
170 // is_atomic : 1
171 // is_read : 1
172 // size_log : 2
173 // addr0 : 3
174 // epoch : kClkBits
175 class Shadow : public FastState {
176 public:
Shadow(u64 x)177 explicit Shadow(u64 x)
178 : FastState(x) {
179 }
180
Shadow(const FastState & s)181 explicit Shadow(const FastState &s)
182 : FastState(s.x_) {
183 ClearHistorySize();
184 }
185
SetAddr0AndSizeLog(u64 addr0,unsigned kAccessSizeLog)186 void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
187 DCHECK_EQ((x_ >> kClkBits) & 31, 0);
188 DCHECK_LE(addr0, 7);
189 DCHECK_LE(kAccessSizeLog, 3);
190 x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits;
191 DCHECK_EQ(kAccessSizeLog, size_log());
192 DCHECK_EQ(addr0, this->addr0());
193 }
194
SetWrite(unsigned kAccessIsWrite)195 void SetWrite(unsigned kAccessIsWrite) {
196 DCHECK_EQ(x_ & kReadBit, 0);
197 if (!kAccessIsWrite)
198 x_ |= kReadBit;
199 DCHECK_EQ(kAccessIsWrite, IsWrite());
200 }
201
SetAtomic(bool kIsAtomic)202 void SetAtomic(bool kIsAtomic) {
203 DCHECK(!IsAtomic());
204 if (kIsAtomic)
205 x_ |= kAtomicBit;
206 DCHECK_EQ(IsAtomic(), kIsAtomic);
207 }
208
IsAtomic()209 bool IsAtomic() const {
210 return x_ & kAtomicBit;
211 }
212
IsZero()213 bool IsZero() const {
214 return x_ == 0;
215 }
216
TidsAreEqual(const Shadow s1,const Shadow s2)217 static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
218 u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
219 DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
220 return shifted_xor == 0;
221 }
222
223 static ALWAYS_INLINE
Addr0AndSizeAreEqual(const Shadow s1,const Shadow s2)224 bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
225 u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31;
226 return masked_xor == 0;
227 }
228
TwoRangesIntersect(Shadow s1,Shadow s2,unsigned kS2AccessSize)229 static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2,
230 unsigned kS2AccessSize) {
231 bool res = false;
232 u64 diff = s1.addr0() - s2.addr0();
233 if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT
234 // if (s1.addr0() + size1) > s2.addr0()) return true;
235 if (s1.size() > -diff)
236 res = true;
237 } else {
238 // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
239 if (kS2AccessSize > diff)
240 res = true;
241 }
242 DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2));
243 DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1));
244 return res;
245 }
246
addr0()247 u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; }
size()248 u64 ALWAYS_INLINE size() const { return 1ull << size_log(); }
IsWrite()249 bool ALWAYS_INLINE IsWrite() const { return !IsRead(); }
IsRead()250 bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; }
251
252 // The idea behind the freed bit is as follows.
253 // When the memory is freed (or otherwise unaccessible) we write to the shadow
254 // values with tid/epoch related to the free and the freed bit set.
255 // During memory accesses processing the freed bit is considered
256 // as msb of tid. So any access races with shadow with freed bit set
257 // (it is as if write from a thread with which we never synchronized before).
258 // This allows us to detect accesses to freed memory w/o additional
259 // overheads in memory access processing and at the same time restore
260 // tid/epoch of free.
MarkAsFreed()261 void MarkAsFreed() {
262 x_ |= kFreedBit;
263 }
264
IsFreed()265 bool IsFreed() const {
266 return x_ & kFreedBit;
267 }
268
GetFreedAndReset()269 bool GetFreedAndReset() {
270 bool res = x_ & kFreedBit;
271 x_ &= ~kFreedBit;
272 return res;
273 }
274
IsBothReadsOrAtomic(bool kIsWrite,bool kIsAtomic)275 bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
276 bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift)
277 | (u64(kIsAtomic) << kAtomicShift));
278 DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
279 return v;
280 }
281
IsRWNotWeaker(bool kIsWrite,bool kIsAtomic)282 bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
283 bool v = ((x_ >> kReadShift) & 3)
284 <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
285 DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
286 (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
287 return v;
288 }
289
IsRWWeakerOrEqual(bool kIsWrite,bool kIsAtomic)290 bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
291 bool v = ((x_ >> kReadShift) & 3)
292 >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
293 DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
294 (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
295 return v;
296 }
297
298 private:
299 static const u64 kReadShift = 5 + kClkBits;
300 static const u64 kReadBit = 1ull << kReadShift;
301 static const u64 kAtomicShift = 6 + kClkBits;
302 static const u64 kAtomicBit = 1ull << kAtomicShift;
303
size_log()304 u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; }
305
TwoRangesIntersectSlow(const Shadow s1,const Shadow s2)306 static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) {
307 if (s1.addr0() == s2.addr0()) return true;
308 if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
309 return true;
310 if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
311 return true;
312 return false;
313 }
314 };
315
316 struct ThreadSignalContext;
317
318 struct JmpBuf {
319 uptr sp;
320 uptr mangled_sp;
321 int int_signal_send;
322 bool in_blocking_func;
323 uptr in_signal_handler;
324 uptr *shadow_stack_pos;
325 };
326
327 // This struct is stored in TLS.
328 struct ThreadState {
329 FastState fast_state;
330 // Synch epoch represents the threads's epoch before the last synchronization
331 // action. It allows to reduce number of shadow state updates.
332 // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
333 // if we are processing write to X from the same thread at epoch=200,
334 // we do nothing, because both writes happen in the same 'synch epoch'.
335 // That is, if another memory access does not race with the former write,
336 // it does not race with the latter as well.
337 // QUESTION: can we can squeeze this into ThreadState::Fast?
338 // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
339 // taken by epoch between synchs.
340 // This way we can save one load from tls.
341 u64 fast_synch_epoch;
342 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
343 // We do not distinguish beteween ignoring reads and writes
344 // for better performance.
345 int ignore_reads_and_writes;
346 int ignore_sync;
347 // Go does not support ignores.
348 #ifndef SANITIZER_GO
349 IgnoreSet mop_ignore_set;
350 IgnoreSet sync_ignore_set;
351 #endif
352 // C/C++ uses fixed size shadow stack embed into Trace.
353 // Go uses malloc-allocated shadow stack with dynamic size.
354 uptr *shadow_stack;
355 uptr *shadow_stack_end;
356 uptr *shadow_stack_pos;
357 u64 *racy_shadow_addr;
358 u64 racy_state[2];
359 MutexSet mset;
360 ThreadClock clock;
361 #ifndef SANITIZER_GO
362 AllocatorCache alloc_cache;
363 InternalAllocatorCache internal_alloc_cache;
364 Vector<JmpBuf> jmp_bufs;
365 int ignore_interceptors;
366 #endif
367 #if TSAN_COLLECT_STATS
368 u64 stat[StatCnt];
369 #endif
370 const int tid;
371 const int unique_id;
372 bool in_symbolizer;
373 bool in_ignored_lib;
374 bool is_inited;
375 bool is_dead;
376 bool is_freeing;
377 bool is_vptr_access;
378 const uptr stk_addr;
379 const uptr stk_size;
380 const uptr tls_addr;
381 const uptr tls_size;
382 ThreadContext *tctx;
383
384 #if SANITIZER_DEBUG && !SANITIZER_GO
385 InternalDeadlockDetector internal_deadlock_detector;
386 #endif
387 DDPhysicalThread *dd_pt;
388 DDLogicalThread *dd_lt;
389
390 atomic_uintptr_t in_signal_handler;
391 ThreadSignalContext *signal_ctx;
392
393 DenseSlabAllocCache block_cache;
394 DenseSlabAllocCache sync_cache;
395 DenseSlabAllocCache clock_cache;
396
397 #ifndef SANITIZER_GO
398 u32 last_sleep_stack_id;
399 ThreadClock last_sleep_clock;
400 #endif
401
402 // Set in regions of runtime that must be signal-safe and fork-safe.
403 // If set, malloc must not be called.
404 int nomalloc;
405
406 explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
407 unsigned reuse_count,
408 uptr stk_addr, uptr stk_size,
409 uptr tls_addr, uptr tls_size);
410 };
411
412 #ifndef SANITIZER_GO
413 __attribute__((tls_model("initial-exec")))
414 extern THREADLOCAL char cur_thread_placeholder[];
cur_thread()415 INLINE ThreadState *cur_thread() {
416 return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
417 }
418 #endif
419
420 class ThreadContext : public ThreadContextBase {
421 public:
422 explicit ThreadContext(int tid);
423 ~ThreadContext();
424 ThreadState *thr;
425 u32 creation_stack_id;
426 SyncClock sync;
427 // Epoch at which the thread had started.
428 // If we see an event from the thread stamped by an older epoch,
429 // the event is from a dead thread that shared tid with this thread.
430 u64 epoch0;
431 u64 epoch1;
432
433 // Override superclass callbacks.
434 void OnDead() override;
435 void OnJoined(void *arg) override;
436 void OnFinished() override;
437 void OnStarted(void *arg) override;
438 void OnCreated(void *arg) override;
439 void OnReset() override;
440 void OnDetached(void *arg) override;
441 };
442
443 struct RacyStacks {
444 MD5Hash hash[2];
445 bool operator==(const RacyStacks &other) const {
446 if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
447 return true;
448 if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
449 return true;
450 return false;
451 }
452 };
453
454 struct RacyAddress {
455 uptr addr_min;
456 uptr addr_max;
457 };
458
459 struct FiredSuppression {
460 ReportType type;
461 uptr pc;
462 Suppression *supp;
463 };
464
465 struct Context {
466 Context();
467
468 bool initialized;
469 bool after_multithreaded_fork;
470
471 MetaMap metamap;
472
473 Mutex report_mtx;
474 int nreported;
475 int nmissed_expected;
476 atomic_uint64_t last_symbolize_time_ns;
477
478 void *background_thread;
479 atomic_uint32_t stop_background_thread;
480
481 ThreadRegistry *thread_registry;
482
483 Vector<RacyStacks> racy_stacks;
484 Vector<RacyAddress> racy_addresses;
485 // Number of fired suppressions may be large enough.
486 InternalMmapVector<FiredSuppression> fired_suppressions;
487 DDetector *dd;
488
489 ClockAlloc clock_alloc;
490
491 Flags flags;
492
493 u64 stat[StatCnt];
494 u64 int_alloc_cnt[MBlockTypeCount];
495 u64 int_alloc_siz[MBlockTypeCount];
496 };
497
498 extern Context *ctx; // The one and the only global runtime context.
499
500 struct ScopedIgnoreInterceptors {
ScopedIgnoreInterceptorsScopedIgnoreInterceptors501 ScopedIgnoreInterceptors() {
502 #ifndef SANITIZER_GO
503 cur_thread()->ignore_interceptors++;
504 #endif
505 }
506
~ScopedIgnoreInterceptorsScopedIgnoreInterceptors507 ~ScopedIgnoreInterceptors() {
508 #ifndef SANITIZER_GO
509 cur_thread()->ignore_interceptors--;
510 #endif
511 }
512 };
513
514 class ScopedReport {
515 public:
516 explicit ScopedReport(ReportType typ);
517 ~ScopedReport();
518
519 void AddMemoryAccess(uptr addr, Shadow s, StackTrace stack,
520 const MutexSet *mset);
521 void AddStack(StackTrace stack, bool suppressable = false);
522 void AddThread(const ThreadContext *tctx, bool suppressable = false);
523 void AddThread(int unique_tid, bool suppressable = false);
524 void AddUniqueTid(int unique_tid);
525 void AddMutex(const SyncVar *s);
526 u64 AddMutex(u64 id);
527 void AddLocation(uptr addr, uptr size);
528 void AddSleep(u32 stack_id);
529 void SetCount(int count);
530
531 const ReportDesc *GetReport() const;
532
533 private:
534 ReportDesc *rep_;
535 // Symbolizer makes lots of intercepted calls. If we try to process them,
536 // at best it will cause deadlocks on internal mutexes.
537 ScopedIgnoreInterceptors ignore_interceptors_;
538
539 void AddDeadMutex(u64 id);
540
541 ScopedReport(const ScopedReport&);
542 void operator = (const ScopedReport&);
543 };
544
545 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
546 MutexSet *mset);
547
548 template<typename StackTraceTy>
ObtainCurrentStack(ThreadState * thr,uptr toppc,StackTraceTy * stack)549 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack) {
550 uptr size = thr->shadow_stack_pos - thr->shadow_stack;
551 uptr start = 0;
552 if (size + !!toppc > kStackTraceMax) {
553 start = size + !!toppc - kStackTraceMax;
554 size = kStackTraceMax - !!toppc;
555 }
556 stack->Init(&thr->shadow_stack[start], size, toppc);
557 }
558
559
560 #if TSAN_COLLECT_STATS
561 void StatAggregate(u64 *dst, u64 *src);
562 void StatOutput(u64 *stat);
563 #endif
564
565 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
566 #if TSAN_COLLECT_STATS
567 thr->stat[typ] += n;
568 #endif
569 }
StatSet(ThreadState * thr,StatType typ,u64 n)570 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
571 #if TSAN_COLLECT_STATS
572 thr->stat[typ] = n;
573 #endif
574 }
575
576 void MapShadow(uptr addr, uptr size);
577 void MapThreadTrace(uptr addr, uptr size);
578 void DontNeedShadowFor(uptr addr, uptr size);
579 void InitializeShadowMemory();
580 void InitializeInterceptors();
581 void InitializeLibIgnore();
582 void InitializeDynamicAnnotations();
583
584 void ForkBefore(ThreadState *thr, uptr pc);
585 void ForkParentAfter(ThreadState *thr, uptr pc);
586 void ForkChildAfter(ThreadState *thr, uptr pc);
587
588 void ReportRace(ThreadState *thr);
589 bool OutputReport(ThreadState *thr, const ScopedReport &srep);
590 bool IsFiredSuppression(Context *ctx, const ScopedReport &srep,
591 StackTrace trace);
592 bool IsExpectedReport(uptr addr, uptr size);
593 void PrintMatchedBenignRaces();
594
595 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
596 # define DPrintf Printf
597 #else
598 # define DPrintf(...)
599 #endif
600
601 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
602 # define DPrintf2 Printf
603 #else
604 # define DPrintf2(...)
605 #endif
606
607 u32 CurrentStackId(ThreadState *thr, uptr pc);
608 ReportStack *SymbolizeStackId(u32 stack_id);
609 void PrintCurrentStack(ThreadState *thr, uptr pc);
610 void PrintCurrentStackSlow(uptr pc); // uses libunwind
611
612 void Initialize(ThreadState *thr);
613 int Finalize(ThreadState *thr);
614
615 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
616 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
617
618 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
619 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
620 void MemoryAccessImpl(ThreadState *thr, uptr addr,
621 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
622 u64 *shadow_mem, Shadow cur);
623 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
624 uptr size, bool is_write);
625 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
626 uptr size, uptr step, bool is_write);
627 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
628 int size, bool kAccessIsWrite, bool kIsAtomic);
629
630 const int kSizeLog1 = 0;
631 const int kSizeLog2 = 1;
632 const int kSizeLog4 = 2;
633 const int kSizeLog8 = 3;
634
MemoryRead(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)635 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
636 uptr addr, int kAccessSizeLog) {
637 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
638 }
639
MemoryWrite(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)640 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
641 uptr addr, int kAccessSizeLog) {
642 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
643 }
644
MemoryReadAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)645 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
646 uptr addr, int kAccessSizeLog) {
647 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
648 }
649
MemoryWriteAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)650 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
651 uptr addr, int kAccessSizeLog) {
652 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
653 }
654
655 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
656 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
657 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
658
659 void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
660 void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
661 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
662 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
663
664 void FuncEntry(ThreadState *thr, uptr pc);
665 void FuncExit(ThreadState *thr);
666
667 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
668 void ThreadStart(ThreadState *thr, int tid, uptr os_id);
669 void ThreadFinish(ThreadState *thr);
670 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
671 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
672 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
673 void ThreadFinalize(ThreadState *thr);
674 void ThreadSetName(ThreadState *thr, const char *name);
675 int ThreadCount(ThreadState *thr);
676 void ProcessPendingSignals(ThreadState *thr);
677
678 void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
679 bool rw, bool recursive, bool linker_init);
680 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
681 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1,
682 bool try_lock = false);
683 int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false);
684 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr, bool try_lock = false);
685 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
686 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
687 void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD
688
689 void Acquire(ThreadState *thr, uptr pc, uptr addr);
690 // AcquireGlobal synchronizes the current thread with all other threads.
691 // In terms of happens-before relation, it draws a HB edge from all threads
692 // (where they happen to execute right now) to the current thread. We use it to
693 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
694 // right before executing finalizers. This provides a coarse, but simple
695 // approximation of the actual required synchronization.
696 void AcquireGlobal(ThreadState *thr, uptr pc);
697 void Release(ThreadState *thr, uptr pc, uptr addr);
698 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
699 void AfterSleep(ThreadState *thr, uptr pc);
700 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
701 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
702 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
703 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
704
705 // The hacky call uses custom calling convention and an assembly thunk.
706 // It is considerably faster that a normal call for the caller
707 // if it is not executed (it is intended for slow paths from hot functions).
708 // The trick is that the call preserves all registers and the compiler
709 // does not treat it as a call.
710 // If it does not work for you, use normal call.
711 #if !SANITIZER_DEBUG && defined(__x86_64__)
712 // The caller may not create the stack frame for itself at all,
713 // so we create a reserve stack frame for it (1024b must be enough).
714 #define HACKY_CALL(f) \
715 __asm__ __volatile__("sub $1024, %%rsp;" \
716 CFI_INL_ADJUST_CFA_OFFSET(1024) \
717 ".hidden " #f "_thunk;" \
718 "call " #f "_thunk;" \
719 "add $1024, %%rsp;" \
720 CFI_INL_ADJUST_CFA_OFFSET(-1024) \
721 ::: "memory", "cc");
722 #else
723 #define HACKY_CALL(f) f()
724 #endif
725
726 void TraceSwitch(ThreadState *thr);
727 uptr TraceTopPC(ThreadState *thr);
728 uptr TraceSize();
729 uptr TraceParts();
730 Trace *ThreadTrace(int tid);
731
732 extern "C" void __tsan_trace_switch();
TraceAddEvent(ThreadState * thr,FastState fs,EventType typ,u64 addr)733 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
734 EventType typ, u64 addr) {
735 if (!kCollectHistory)
736 return;
737 DCHECK_GE((int)typ, 0);
738 DCHECK_LE((int)typ, 7);
739 DCHECK_EQ(GetLsb(addr, 61), addr);
740 StatInc(thr, StatEvents);
741 u64 pos = fs.GetTracePos();
742 if (UNLIKELY((pos % kTracePartSize) == 0)) {
743 #ifndef SANITIZER_GO
744 HACKY_CALL(__tsan_trace_switch);
745 #else
746 TraceSwitch(thr);
747 #endif
748 }
749 Event *trace = (Event*)GetThreadTrace(fs.tid());
750 Event *evp = &trace[pos];
751 Event ev = (u64)addr | ((u64)typ << 61);
752 *evp = ev;
753 }
754
755 #ifndef SANITIZER_GO
HeapEnd()756 uptr ALWAYS_INLINE HeapEnd() {
757 #if SANITIZER_CAN_USE_ALLOCATOR64
758 return kHeapMemEnd + PrimaryAllocator::AdditionalSize();
759 #else
760 return kHeapMemEnd;
761 #endif
762 }
763 #endif
764
765 } // namespace __tsan
766
767 #endif // TSAN_RTL_H
768