1 // Copyright 2006 The RE2 Authors.  All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4 
5 // DESCRIPTION
6 //
7 // SparseSet<T>(m) is a set of integers in [0, m).
8 // It requires sizeof(int)*m memory, but it provides
9 // fast iteration through the elements in the set and fast clearing
10 // of the set.
11 //
12 // Insertion and deletion are constant time operations.
13 //
14 // Allocating the set is a constant time operation
15 // when memory allocation is a constant time operation.
16 //
17 // Clearing the set is a constant time operation (unusual!).
18 //
19 // Iterating through the set is an O(n) operation, where n
20 // is the number of items in the set (not O(m)).
21 //
22 // The set iterator visits entries in the order they were first
23 // inserted into the array.  It is safe to add items to the set while
24 // using an iterator: the iterator will visit indices added to the set
25 // during the iteration, but will not re-visit indices whose values
26 // change after visiting.  Thus SparseSet can be a convenient
27 // implementation of a work queue.
28 //
29 // The SparseSet implementation is NOT thread-safe.  It is up to the
30 // caller to make sure only one thread is accessing the set.  (Typically
31 // these sets are temporary values and used in situations where speed is
32 // important.)
33 //
34 // The SparseSet interface does not present all the usual STL bells and
35 // whistles.
36 //
37 // Implemented with reference to Briggs & Torczon, An Efficient
38 // Representation for Sparse Sets, ACM Letters on Programming Languages
39 // and Systems, Volume 2, Issue 1-4 (March-Dec.  1993), pp.  59-69.
40 //
41 // For a generalization to sparse array, see sparse_array.h.
42 
43 // IMPLEMENTATION
44 //
45 // See sparse_array.h for implementation details
46 
47 #ifndef RE2_UTIL_SPARSE_SET_H__
48 #define RE2_UTIL_SPARSE_SET_H__
49 
50 #include "util/util.h"
51 
52 namespace re2 {
53 
54 class SparseSet {
55  public:
SparseSet()56   SparseSet()
57     : size_(0), max_size_(0), sparse_to_dense_(NULL), dense_(NULL), valgrind_(RunningOnValgrind()) {}
58 
SparseSet(int max_size)59   SparseSet(int max_size) {
60     max_size_ = max_size;
61     sparse_to_dense_ = new int[max_size];
62     dense_ = new int[max_size];
63     valgrind_ = RunningOnValgrind();
64     // Don't need to zero the memory, but do so anyway
65     // to appease Valgrind.
66     if (valgrind_) {
67       for (int i = 0; i < max_size; i++) {
68         dense_[i] = 0xababababU;
69         sparse_to_dense_[i] = 0xababababU;
70       }
71     }
72     size_ = 0;
73   }
74 
~SparseSet()75   ~SparseSet() {
76     delete[] sparse_to_dense_;
77     delete[] dense_;
78   }
79 
80   typedef int* iterator;
81   typedef const int* const_iterator;
82 
size()83   int size() const { return size_; }
begin()84   iterator begin() { return dense_; }
end()85   iterator end() { return dense_ + size_; }
begin()86   const_iterator begin() const { return dense_; }
end()87   const_iterator end() const { return dense_ + size_; }
88 
89   // Change the maximum size of the array.
90   // Invalidates all iterators.
resize(int new_max_size)91   void resize(int new_max_size) {
92     if (size_ > new_max_size)
93       size_ = new_max_size;
94     if (new_max_size > max_size_) {
95       int* a = new int[new_max_size];
96       if (sparse_to_dense_) {
97         memmove(a, sparse_to_dense_, max_size_*sizeof a[0]);
98         if (valgrind_) {
99           for (int i = max_size_; i < new_max_size; i++)
100             a[i] = 0xababababU;
101         }
102         delete[] sparse_to_dense_;
103       }
104       sparse_to_dense_ = a;
105 
106       a = new int[new_max_size];
107       if (dense_) {
108         memmove(a, dense_, size_*sizeof a[0]);
109         if (valgrind_) {
110           for (int i = size_; i < new_max_size; i++)
111             a[i] = 0xababababU;
112         }
113         delete[] dense_;
114       }
115       dense_ = a;
116     }
117     max_size_ = new_max_size;
118   }
119 
120   // Return the maximum size of the array.
121   // Indices can be in the range [0, max_size).
max_size()122   int max_size() const { return max_size_; }
123 
124   // Clear the array.
clear()125   void clear() { size_ = 0; }
126 
127   // Check whether i is in the array.
contains(int i)128   bool contains(int i) const {
129     DCHECK_GE(i, 0);
130     DCHECK_LT(i, max_size_);
131     if (static_cast<uint>(i) >= max_size_) {
132       return false;
133     }
134     // Unsigned comparison avoids checking sparse_to_dense_[i] < 0.
135     return (uint)sparse_to_dense_[i] < (uint)size_ &&
136       dense_[sparse_to_dense_[i]] == i;
137   }
138 
139   // Adds i to the set.
insert(int i)140   void insert(int i) {
141     if (!contains(i))
142       insert_new(i);
143   }
144 
145   // Set the value at the new index i to v.
146   // Fast but unsafe: only use if contains(i) is false.
insert_new(int i)147   void insert_new(int i) {
148     if (static_cast<uint>(i) >= max_size_) {
149       // Semantically, end() would be better here, but we already know
150       // the user did something stupid, so begin() insulates them from
151       // dereferencing an invalid pointer.
152       return;
153     }
154     DCHECK(!contains(i));
155     DCHECK_LT(size_, max_size_);
156     sparse_to_dense_[i] = size_;
157     dense_[size_] = i;
158     size_++;
159   }
160 
161   // Comparison function for sorting.
162   // Can sort the sparse array so that future iterations
163   // will visit indices in increasing order using
164   // sort(arr.begin(), arr.end(), arr.less);
less(int a,int b)165   static bool less(int a, int b) { return a < b; }
166 
167  private:
168   int size_;
169   int max_size_;
170   int* sparse_to_dense_;
171   int* dense_;
172   bool valgrind_;
173 
174   DISALLOW_EVIL_CONSTRUCTORS(SparseSet);
175 };
176 
177 }  // namespace re2
178 
179 #endif  // RE2_UTIL_SPARSE_SET_H__
180