1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "asn1_decoder.h"
18 #include "common.h"
19 #include "ui.h"
20 #include "verifier.h"
21 
22 #include "mincrypt/dsa_sig.h"
23 #include "mincrypt/p256.h"
24 #include "mincrypt/p256_ecdsa.h"
25 #include "mincrypt/rsa.h"
26 #include "mincrypt/sha.h"
27 #include "mincrypt/sha256.h"
28 
29 #include <errno.h>
30 #include <malloc.h>
31 #include <stdio.h>
32 #include <string.h>
33 
34 extern RecoveryUI* ui;
35 
36 /*
37  * Simple version of PKCS#7 SignedData extraction. This extracts the
38  * signature OCTET STRING to be used for signature verification.
39  *
40  * For full details, see http://www.ietf.org/rfc/rfc3852.txt
41  *
42  * The PKCS#7 structure looks like:
43  *
44  *   SEQUENCE (ContentInfo)
45  *     OID (ContentType)
46  *     [0] (content)
47  *       SEQUENCE (SignedData)
48  *         INTEGER (version CMSVersion)
49  *         SET (DigestAlgorithmIdentifiers)
50  *         SEQUENCE (EncapsulatedContentInfo)
51  *         [0] (CertificateSet OPTIONAL)
52  *         [1] (RevocationInfoChoices OPTIONAL)
53  *         SET (SignerInfos)
54  *           SEQUENCE (SignerInfo)
55  *             INTEGER (CMSVersion)
56  *             SEQUENCE (SignerIdentifier)
57  *             SEQUENCE (DigestAlgorithmIdentifier)
58  *             SEQUENCE (SignatureAlgorithmIdentifier)
59  *             OCTET STRING (SignatureValue)
60  */
read_pkcs7(uint8_t * pkcs7_der,size_t pkcs7_der_len,uint8_t ** sig_der,size_t * sig_der_length)61 static bool read_pkcs7(uint8_t* pkcs7_der, size_t pkcs7_der_len, uint8_t** sig_der,
62         size_t* sig_der_length) {
63     asn1_context_t* ctx = asn1_context_new(pkcs7_der, pkcs7_der_len);
64     if (ctx == NULL) {
65         return false;
66     }
67 
68     asn1_context_t* pkcs7_seq = asn1_sequence_get(ctx);
69     if (pkcs7_seq != NULL && asn1_sequence_next(pkcs7_seq)) {
70         asn1_context_t *signed_data_app = asn1_constructed_get(pkcs7_seq);
71         if (signed_data_app != NULL) {
72             asn1_context_t* signed_data_seq = asn1_sequence_get(signed_data_app);
73             if (signed_data_seq != NULL
74                     && asn1_sequence_next(signed_data_seq)
75                     && asn1_sequence_next(signed_data_seq)
76                     && asn1_sequence_next(signed_data_seq)
77                     && asn1_constructed_skip_all(signed_data_seq)) {
78                 asn1_context_t *sig_set = asn1_set_get(signed_data_seq);
79                 if (sig_set != NULL) {
80                     asn1_context_t* sig_seq = asn1_sequence_get(sig_set);
81                     if (sig_seq != NULL
82                             && asn1_sequence_next(sig_seq)
83                             && asn1_sequence_next(sig_seq)
84                             && asn1_sequence_next(sig_seq)
85                             && asn1_sequence_next(sig_seq)) {
86                         uint8_t* sig_der_ptr;
87                         if (asn1_octet_string_get(sig_seq, &sig_der_ptr, sig_der_length)) {
88                             *sig_der = (uint8_t*) malloc(*sig_der_length);
89                             if (*sig_der != NULL) {
90                                 memcpy(*sig_der, sig_der_ptr, *sig_der_length);
91                             }
92                         }
93                         asn1_context_free(sig_seq);
94                     }
95                     asn1_context_free(sig_set);
96                 }
97                 asn1_context_free(signed_data_seq);
98             }
99             asn1_context_free(signed_data_app);
100         }
101         asn1_context_free(pkcs7_seq);
102     }
103     asn1_context_free(ctx);
104 
105     return *sig_der != NULL;
106 }
107 
108 // Look for an RSA signature embedded in the .ZIP file comment given
109 // the path to the zip.  Verify it matches one of the given public
110 // keys.
111 //
112 // Return VERIFY_SUCCESS, VERIFY_FAILURE (if any error is encountered
113 // or no key matches the signature).
114 
verify_file(unsigned char * addr,size_t length,const Certificate * pKeys,unsigned int numKeys)115 int verify_file(unsigned char* addr, size_t length,
116                 const Certificate* pKeys, unsigned int numKeys) {
117     ui->SetProgress(0.0);
118 
119     // An archive with a whole-file signature will end in six bytes:
120     //
121     //   (2-byte signature start) $ff $ff (2-byte comment size)
122     //
123     // (As far as the ZIP format is concerned, these are part of the
124     // archive comment.)  We start by reading this footer, this tells
125     // us how far back from the end we have to start reading to find
126     // the whole comment.
127 
128 #define FOOTER_SIZE 6
129 
130     if (length < FOOTER_SIZE) {
131         LOGE("not big enough to contain footer\n");
132         return VERIFY_FAILURE;
133     }
134 
135     unsigned char* footer = addr + length - FOOTER_SIZE;
136 
137     if (footer[2] != 0xff || footer[3] != 0xff) {
138         LOGE("footer is wrong\n");
139         return VERIFY_FAILURE;
140     }
141 
142     size_t comment_size = footer[4] + (footer[5] << 8);
143     size_t signature_start = footer[0] + (footer[1] << 8);
144     LOGI("comment is %zu bytes; signature %zu bytes from end\n",
145          comment_size, signature_start);
146 
147     if (signature_start <= FOOTER_SIZE) {
148         LOGE("Signature start is in the footer");
149         return VERIFY_FAILURE;
150     }
151 
152 #define EOCD_HEADER_SIZE 22
153 
154     // The end-of-central-directory record is 22 bytes plus any
155     // comment length.
156     size_t eocd_size = comment_size + EOCD_HEADER_SIZE;
157 
158     if (length < eocd_size) {
159         LOGE("not big enough to contain EOCD\n");
160         return VERIFY_FAILURE;
161     }
162 
163     // Determine how much of the file is covered by the signature.
164     // This is everything except the signature data and length, which
165     // includes all of the EOCD except for the comment length field (2
166     // bytes) and the comment data.
167     size_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2;
168 
169     unsigned char* eocd = addr + length - eocd_size;
170 
171     // If this is really is the EOCD record, it will begin with the
172     // magic number $50 $4b $05 $06.
173     if (eocd[0] != 0x50 || eocd[1] != 0x4b ||
174         eocd[2] != 0x05 || eocd[3] != 0x06) {
175         LOGE("signature length doesn't match EOCD marker\n");
176         return VERIFY_FAILURE;
177     }
178 
179     size_t i;
180     for (i = 4; i < eocd_size-3; ++i) {
181         if (eocd[i  ] == 0x50 && eocd[i+1] == 0x4b &&
182             eocd[i+2] == 0x05 && eocd[i+3] == 0x06) {
183             // if the sequence $50 $4b $05 $06 appears anywhere after
184             // the real one, minzip will find the later (wrong) one,
185             // which could be exploitable.  Fail verification if
186             // this sequence occurs anywhere after the real one.
187             LOGE("EOCD marker occurs after start of EOCD\n");
188             return VERIFY_FAILURE;
189         }
190     }
191 
192 #define BUFFER_SIZE 4096
193 
194     bool need_sha1 = false;
195     bool need_sha256 = false;
196     for (i = 0; i < numKeys; ++i) {
197         switch (pKeys[i].hash_len) {
198             case SHA_DIGEST_SIZE: need_sha1 = true; break;
199             case SHA256_DIGEST_SIZE: need_sha256 = true; break;
200         }
201     }
202 
203     SHA_CTX sha1_ctx;
204     SHA256_CTX sha256_ctx;
205     SHA_init(&sha1_ctx);
206     SHA256_init(&sha256_ctx);
207 
208     double frac = -1.0;
209     size_t so_far = 0;
210     while (so_far < signed_len) {
211         size_t size = signed_len - so_far;
212         if (size > BUFFER_SIZE) size = BUFFER_SIZE;
213 
214         if (need_sha1) SHA_update(&sha1_ctx, addr + so_far, size);
215         if (need_sha256) SHA256_update(&sha256_ctx, addr + so_far, size);
216         so_far += size;
217 
218         double f = so_far / (double)signed_len;
219         if (f > frac + 0.02 || size == so_far) {
220             ui->SetProgress(f);
221             frac = f;
222         }
223     }
224 
225     const uint8_t* sha1 = SHA_final(&sha1_ctx);
226     const uint8_t* sha256 = SHA256_final(&sha256_ctx);
227 
228     uint8_t* sig_der = NULL;
229     size_t sig_der_length = 0;
230 
231     size_t signature_size = signature_start - FOOTER_SIZE;
232     if (!read_pkcs7(eocd + eocd_size - signature_start, signature_size, &sig_der,
233             &sig_der_length)) {
234         LOGE("Could not find signature DER block\n");
235         return VERIFY_FAILURE;
236     }
237 
238     /*
239      * Check to make sure at least one of the keys matches the signature. Since
240      * any key can match, we need to try each before determining a verification
241      * failure has happened.
242      */
243     for (i = 0; i < numKeys; ++i) {
244         const uint8_t* hash;
245         switch (pKeys[i].hash_len) {
246             case SHA_DIGEST_SIZE: hash = sha1; break;
247             case SHA256_DIGEST_SIZE: hash = sha256; break;
248             default: continue;
249         }
250 
251         // The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that
252         // the signing tool appends after the signature itself.
253         if (pKeys[i].key_type == Certificate::RSA) {
254             if (sig_der_length < RSANUMBYTES) {
255                 // "signature" block isn't big enough to contain an RSA block.
256                 LOGI("signature is too short for RSA key %zu\n", i);
257                 continue;
258             }
259 
260             if (!RSA_verify(pKeys[i].rsa, sig_der, RSANUMBYTES,
261                             hash, pKeys[i].hash_len)) {
262                 LOGI("failed to verify against RSA key %zu\n", i);
263                 continue;
264             }
265 
266             LOGI("whole-file signature verified against RSA key %zu\n", i);
267             free(sig_der);
268             return VERIFY_SUCCESS;
269         } else if (pKeys[i].key_type == Certificate::EC
270                 && pKeys[i].hash_len == SHA256_DIGEST_SIZE) {
271             p256_int r, s;
272             if (!dsa_sig_unpack(sig_der, sig_der_length, &r, &s)) {
273                 LOGI("Not a DSA signature block for EC key %zu\n", i);
274                 continue;
275             }
276 
277             p256_int p256_hash;
278             p256_from_bin(hash, &p256_hash);
279             if (!p256_ecdsa_verify(&(pKeys[i].ec->x), &(pKeys[i].ec->y),
280                                    &p256_hash, &r, &s)) {
281                 LOGI("failed to verify against EC key %zu\n", i);
282                 continue;
283             }
284 
285             LOGI("whole-file signature verified against EC key %zu\n", i);
286             free(sig_der);
287             return VERIFY_SUCCESS;
288         } else {
289             LOGI("Unknown key type %d\n", pKeys[i].key_type);
290         }
291     }
292     free(sig_der);
293     LOGE("failed to verify whole-file signature\n");
294     return VERIFY_FAILURE;
295 }
296 
297 // Reads a file containing one or more public keys as produced by
298 // DumpPublicKey:  this is an RSAPublicKey struct as it would appear
299 // as a C source literal, eg:
300 //
301 //  "{64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
302 //
303 // For key versions newer than the original 2048-bit e=3 keys
304 // supported by Android, the string is preceded by a version
305 // identifier, eg:
306 //
307 //  "v2 {64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}"
308 //
309 // (Note that the braces and commas in this example are actual
310 // characters the parser expects to find in the file; the ellipses
311 // indicate more numbers omitted from this example.)
312 //
313 // The file may contain multiple keys in this format, separated by
314 // commas.  The last key must not be followed by a comma.
315 //
316 // A Certificate is a pair of an RSAPublicKey and a particular hash
317 // (we support SHA-1 and SHA-256; we store the hash length to signify
318 // which is being used).  The hash used is implied by the version number.
319 //
320 //       1: 2048-bit RSA key with e=3 and SHA-1 hash
321 //       2: 2048-bit RSA key with e=65537 and SHA-1 hash
322 //       3: 2048-bit RSA key with e=3 and SHA-256 hash
323 //       4: 2048-bit RSA key with e=65537 and SHA-256 hash
324 //       5: 256-bit EC key using the NIST P-256 curve parameters and SHA-256 hash
325 //
326 // Returns NULL if the file failed to parse, or if it contain zero keys.
327 Certificate*
load_keys(const char * filename,int * numKeys)328 load_keys(const char* filename, int* numKeys) {
329     Certificate* out = NULL;
330     *numKeys = 0;
331 
332     FILE* f = fopen(filename, "r");
333     if (f == NULL) {
334         LOGE("opening %s: %s\n", filename, strerror(errno));
335         goto exit;
336     }
337 
338     {
339         int i;
340         bool done = false;
341         while (!done) {
342             ++*numKeys;
343             out = (Certificate*)realloc(out, *numKeys * sizeof(Certificate));
344             Certificate* cert = out + (*numKeys - 1);
345             memset(cert, '\0', sizeof(Certificate));
346 
347             char start_char;
348             if (fscanf(f, " %c", &start_char) != 1) goto exit;
349             if (start_char == '{') {
350                 // a version 1 key has no version specifier.
351                 cert->key_type = Certificate::RSA;
352                 cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
353                 cert->rsa->exponent = 3;
354                 cert->hash_len = SHA_DIGEST_SIZE;
355             } else if (start_char == 'v') {
356                 int version;
357                 if (fscanf(f, "%d {", &version) != 1) goto exit;
358                 switch (version) {
359                     case 2:
360                         cert->key_type = Certificate::RSA;
361                         cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
362                         cert->rsa->exponent = 65537;
363                         cert->hash_len = SHA_DIGEST_SIZE;
364                         break;
365                     case 3:
366                         cert->key_type = Certificate::RSA;
367                         cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
368                         cert->rsa->exponent = 3;
369                         cert->hash_len = SHA256_DIGEST_SIZE;
370                         break;
371                     case 4:
372                         cert->key_type = Certificate::RSA;
373                         cert->rsa = (RSAPublicKey*)malloc(sizeof(RSAPublicKey));
374                         cert->rsa->exponent = 65537;
375                         cert->hash_len = SHA256_DIGEST_SIZE;
376                         break;
377                     case 5:
378                         cert->key_type = Certificate::EC;
379                         cert->ec = (ECPublicKey*)calloc(1, sizeof(ECPublicKey));
380                         cert->hash_len = SHA256_DIGEST_SIZE;
381                         break;
382                     default:
383                         goto exit;
384                 }
385             }
386 
387             if (cert->key_type == Certificate::RSA) {
388                 RSAPublicKey* key = cert->rsa;
389                 if (fscanf(f, " %i , 0x%x , { %u",
390                            &(key->len), &(key->n0inv), &(key->n[0])) != 3) {
391                     goto exit;
392                 }
393                 if (key->len != RSANUMWORDS) {
394                     LOGE("key length (%d) does not match expected size\n", key->len);
395                     goto exit;
396                 }
397                 for (i = 1; i < key->len; ++i) {
398                     if (fscanf(f, " , %u", &(key->n[i])) != 1) goto exit;
399                 }
400                 if (fscanf(f, " } , { %u", &(key->rr[0])) != 1) goto exit;
401                 for (i = 1; i < key->len; ++i) {
402                     if (fscanf(f, " , %u", &(key->rr[i])) != 1) goto exit;
403                 }
404                 fscanf(f, " } } ");
405 
406                 LOGI("read key e=%d hash=%d\n", key->exponent, cert->hash_len);
407             } else if (cert->key_type == Certificate::EC) {
408                 ECPublicKey* key = cert->ec;
409                 int key_len;
410                 unsigned int byte;
411                 uint8_t x_bytes[P256_NBYTES];
412                 uint8_t y_bytes[P256_NBYTES];
413                 if (fscanf(f, " %i , { %u", &key_len, &byte) != 2) goto exit;
414                 if (key_len != P256_NBYTES) {
415                     LOGE("Key length (%d) does not match expected size %d\n", key_len, P256_NBYTES);
416                     goto exit;
417                 }
418                 x_bytes[P256_NBYTES - 1] = byte;
419                 for (i = P256_NBYTES - 2; i >= 0; --i) {
420                     if (fscanf(f, " , %u", &byte) != 1) goto exit;
421                     x_bytes[i] = byte;
422                 }
423                 if (fscanf(f, " } , { %u", &byte) != 1) goto exit;
424                 y_bytes[P256_NBYTES - 1] = byte;
425                 for (i = P256_NBYTES - 2; i >= 0; --i) {
426                     if (fscanf(f, " , %u", &byte) != 1) goto exit;
427                     y_bytes[i] = byte;
428                 }
429                 fscanf(f, " } } ");
430                 p256_from_bin(x_bytes, &key->x);
431                 p256_from_bin(y_bytes, &key->y);
432             } else {
433                 LOGE("Unknown key type %d\n", cert->key_type);
434                 goto exit;
435             }
436 
437             // if the line ends in a comma, this file has more keys.
438             switch (fgetc(f)) {
439             case ',':
440                 // more keys to come.
441                 break;
442 
443             case EOF:
444                 done = true;
445                 break;
446 
447             default:
448                 LOGE("unexpected character between keys\n");
449                 goto exit;
450             }
451         }
452     }
453 
454     fclose(f);
455     return out;
456 
457 exit:
458     if (f) fclose(f);
459     free(out);
460     *numKeys = 0;
461     return NULL;
462 }
463