1 //===-- AMDGPUKernelCodeT.h - Print AMDGPU assembly code ---------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file AMDKernelCodeT.h
10 //===----------------------------------------------------------------------===//
11 
12 #ifndef AMDKERNELCODET_H
13 #define AMDKERNELCODET_H
14 
15 #include <cstddef>
16 #include <cstdint>
17 
18 //---------------------------------------------------------------------------//
19 // AMD Kernel Code, and its dependencies                                     //
20 //---------------------------------------------------------------------------//
21 
22 typedef uint8_t hsa_powertwo8_t;
23 typedef uint32_t hsa_ext_code_kind_t;
24 typedef uint8_t hsa_ext_brig_profile8_t;
25 typedef uint8_t hsa_ext_brig_machine_model8_t;
26 typedef uint64_t hsa_ext_control_directive_present64_t;
27 typedef uint16_t hsa_ext_exception_kind16_t;
28 typedef uint32_t hsa_ext_code_kind32_t;
29 
30 typedef struct hsa_dim3_s {
31   uint32_t x;
32   uint32_t y;
33   uint32_t z;
34 } hsa_dim3_t;
35 
36 /// The version of the amd_*_code_t struct. Minor versions must be
37 /// backward compatible.
38 typedef uint32_t amd_code_version32_t;
39 enum amd_code_version_t {
40   AMD_CODE_VERSION_MAJOR = 0,
41   AMD_CODE_VERSION_MINOR = 1
42 };
43 
44 /// The values used to define the number of bytes to use for the
45 /// swizzle element size.
46 enum amd_element_byte_size_t {
47   AMD_ELEMENT_2_BYTES = 0,
48   AMD_ELEMENT_4_BYTES = 1,
49   AMD_ELEMENT_8_BYTES = 2,
50   AMD_ELEMENT_16_BYTES = 3
51 };
52 
53 /// Shader program settings for CS. Contains COMPUTE_PGM_RSRC1 and
54 /// COMPUTE_PGM_RSRC2 registers.
55 typedef uint64_t amd_compute_pgm_resource_register64_t;
56 
57 /// Every amd_*_code_t has the following properties, which are composed of
58 /// a number of bit fields. Every bit field has a mask (AMD_CODE_PROPERTY_*),
59 /// bit width (AMD_CODE_PROPERTY_*_WIDTH, and bit shift amount
60 /// (AMD_CODE_PROPERTY_*_SHIFT) for convenient access. Unused bits must be 0.
61 ///
62 /// (Note that bit fields cannot be used as their layout is
63 /// implementation defined in the C standard and so cannot be used to
64 /// specify an ABI)
65 typedef uint32_t amd_code_property32_t;
66 enum amd_code_property_mask_t {
67 
68   /// Enable the setup of the SGPR user data registers
69   /// (AMD_CODE_PROPERTY_ENABLE_SGPR_*), see documentation of amd_kernel_code_t
70   /// for initial register state.
71   ///
72   /// The total number of SGPRuser data registers requested must not
73   /// exceed 16. Any requests beyond 16 will be ignored.
74   ///
75   /// Used to set COMPUTE_PGM_RSRC2.USER_SGPR (set to total count of
76   /// SGPR user data registers enabled up to 16).
77 
78   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_SHIFT = 0,
79   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_WIDTH = 1,
80   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_SHIFT,
81 
82   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_SHIFT = 1,
83   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_WIDTH = 1,
84   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_SHIFT,
85 
86   AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_SHIFT = 2,
87   AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_WIDTH = 1,
88   AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_SHIFT,
89 
90   AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_SHIFT = 3,
91   AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_WIDTH = 1,
92   AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_SHIFT,
93 
94   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_SHIFT = 4,
95   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_WIDTH = 1,
96   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_SHIFT,
97 
98   AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_SHIFT = 5,
99   AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_WIDTH = 1,
100   AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_SHIFT,
101 
102   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_SHIFT = 6,
103   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_WIDTH = 1,
104   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_SHIFT,
105 
106   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_SHIFT = 7,
107   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_WIDTH = 1,
108   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_SHIFT,
109 
110   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_SHIFT = 8,
111   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_WIDTH = 1,
112   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_SHIFT,
113 
114   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_SHIFT = 9,
115   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_WIDTH = 1,
116   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_SHIFT,
117 
118   /// Control wave ID base counter for GDS ordered-append. Used to set
119   /// COMPUTE_DISPATCH_INITIATOR.ORDERED_APPEND_ENBL. (Not sure if
120   /// ORDERED_APPEND_MODE also needs to be settable)
121   AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_SHIFT = 10,
122   AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_WIDTH = 1,
123   AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS = ((1 << AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_SHIFT,
124 
125   /// The interleave (swizzle) element size in bytes required by the
126   /// code for private memory. This must be 2, 4, 8 or 16. This value
127   /// is provided to the finalizer when it is invoked and is recorded
128   /// here. The hardware will interleave the memory requests of each
129   /// lane of a wavefront by this element size to ensure each
130   /// work-item gets a distinct memory memory location. Therefore, the
131   /// finalizer ensures that all load and store operations done to
132   /// private memory do not exceed this size. For example, if the
133   /// element size is 4 (32-bits or dword) and a 64-bit value must be
134   /// loaded, the finalizer will generate two 32-bit loads. This
135   /// ensures that the interleaving will get the the work-item
136   /// specific dword for both halves of the 64-bit value. If it just
137   /// did a 64-bit load then it would get one dword which belonged to
138   /// its own work-item, but the second dword would belong to the
139   /// adjacent lane work-item since the interleaving is in dwords.
140   ///
141   /// The value used must match the value that the runtime configures
142   /// the GPU flat scratch (SH_STATIC_MEM_CONFIG.ELEMENT_SIZE). This
143   /// is generally DWORD.
144   ///
145   /// Use values from the amd_element_byte_size_t enum.
146   AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_SHIFT = 11,
147   AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_WIDTH = 2,
148   AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE = ((1 << AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_WIDTH) - 1) << AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_SHIFT,
149 
150   /// Are global memory addresses 64 bits. Must match
151   /// amd_kernel_code_t.hsail_machine_model ==
152   /// HSA_MACHINE_LARGE. Must also match
153   /// SH_MEM_CONFIG.PTR32 (GFX6 (SI)/GFX7 (CI)),
154   /// SH_MEM_CONFIG.ADDRESS_MODE (GFX8 (VI)+).
155   AMD_CODE_PROPERTY_IS_PTR64_SHIFT = 13,
156   AMD_CODE_PROPERTY_IS_PTR64_WIDTH = 1,
157   AMD_CODE_PROPERTY_IS_PTR64 = ((1 << AMD_CODE_PROPERTY_IS_PTR64_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_PTR64_SHIFT,
158 
159   /// Indicate if the generated ISA is using a dynamically sized call
160   /// stack. This can happen if calls are implemented using a call
161   /// stack and recursion, alloca or calls to indirect functions are
162   /// present. In these cases the Finalizer cannot compute the total
163   /// private segment size at compile time. In this case the
164   /// workitem_private_segment_byte_size only specifies the statically
165   /// know private segment size, and additional space must be added
166   /// for the call stack.
167   AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_SHIFT = 14,
168   AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_WIDTH = 1,
169   AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK = ((1 << AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_SHIFT,
170 
171   /// Indicate if code generated has support for debugging.
172   AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_SHIFT = 15,
173   AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_WIDTH = 1,
174   AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED = ((1 << AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_SHIFT
175 };
176 
177 /// @brief The hsa_ext_control_directives_t specifies the values for the HSAIL
178 /// control directives. These control how the finalizer generates code. This
179 /// struct is used both as an argument to hsaFinalizeKernel to specify values for
180 /// the control directives, and is used in HsaKernelCode to record the values of
181 /// the control directives that the finalize used when generating the code which
182 /// either came from the finalizer argument or explicit HSAIL control
183 /// directives. See the definition of the control directives in HSA Programmer's
184 /// Reference Manual which also defines how the values specified as finalizer
185 /// arguments have to agree with the control directives in the HSAIL code.
186 typedef struct hsa_ext_control_directives_s {
187   /// This is a bit set indicating which control directives have been
188   /// specified. If the value is 0 then there are no control directives specified
189   /// and the rest of the fields can be ignored. The bits are accessed using the
190   /// hsa_ext_control_directives_present_mask_t. Any control directive that is not
191   /// enabled in this bit set must have the value of all 0s.
192   hsa_ext_control_directive_present64_t enabled_control_directives;
193 
194   /// If enableBreakExceptions is not enabled then must be 0, otherwise must be
195   /// non-0 and specifies the set of HSAIL exceptions that must have the BREAK
196   /// policy enabled. If this set is not empty then the generated code may have
197   /// lower performance than if the set is empty. If the kernel being finalized
198   /// has any enablebreakexceptions control directives, then the values specified
199   /// by this argument are unioned with the values in these control
200   /// directives. If any of the functions the kernel calls have an
201   /// enablebreakexceptions control directive, then they must be equal or a
202   /// subset of, this union.
203   hsa_ext_exception_kind16_t enable_break_exceptions;
204 
205   /// If enableDetectExceptions is not enabled then must be 0, otherwise must be
206   /// non-0 and specifies the set of HSAIL exceptions that must have the DETECT
207   /// policy enabled. If this set is not empty then the generated code may have
208   /// lower performance than if the set is empty. However, an implementation
209   /// should endeavour to make the performance impact small. If the kernel being
210   /// finalized has any enabledetectexceptions control directives, then the
211   /// values specified by this argument are unioned with the values in these
212   /// control directives. If any of the functions the kernel calls have an
213   /// enabledetectexceptions control directive, then they must be equal or a
214   /// subset of, this union.
215   hsa_ext_exception_kind16_t enable_detect_exceptions;
216 
217   /// If maxDynamicGroupSize is not enabled then must be 0, and any amount of
218   /// dynamic group segment can be allocated for a dispatch, otherwise the value
219   /// specifies the maximum number of bytes of dynamic group segment that can be
220   /// allocated for a dispatch. If the kernel being finalized has any
221   /// maxdynamicsize control directives, then the values must be the same, and
222   /// must be the same as this argument if it is enabled. This value can be used
223   /// by the finalizer to determine the maximum number of bytes of group memory
224   /// used by each work-group by adding this value to the group memory required
225   /// for all group segment variables used by the kernel and all functions it
226   /// calls, and group memory used to implement other HSAIL features such as
227   /// fbarriers and the detect exception operations. This can allow the finalizer
228   /// to determine the expected number of work-groups that can be executed by a
229   /// compute unit and allow more resources to be allocated to the work-items if
230   /// it is known that fewer work-groups can be executed due to group memory
231   /// limitations.
232   uint32_t max_dynamic_group_size;
233 
234   /// If maxFlatGridSize is not enabled then must be 0, otherwise must be greater
235   /// than 0. See HSA Programmer's Reference Manual description of
236   /// maxflatgridsize control directive.
237   uint32_t max_flat_grid_size;
238 
239   /// If maxFlatWorkgroupSize is not enabled then must be 0, otherwise must be
240   /// greater than 0. See HSA Programmer's Reference Manual description of
241   /// maxflatworkgroupsize control directive.
242   uint32_t max_flat_workgroup_size;
243 
244   /// If requestedWorkgroupsPerCu is not enabled then must be 0, and the
245   /// finalizer is free to generate ISA that may result in any number of
246   /// work-groups executing on a single compute unit. Otherwise, the finalizer
247   /// should attempt to generate ISA that will allow the specified number of
248   /// work-groups to execute on a single compute unit. This is only a hint and
249   /// can be ignored by the finalizer. If the kernel being finalized, or any of
250   /// the functions it calls, has a requested control directive, then the values
251   /// must be the same. This can be used to determine the number of resources
252   /// that should be allocated to a single work-group and work-item. For example,
253   /// a low value may allow more resources to be allocated, resulting in higher
254   /// per work-item performance, as it is known there will never be more than the
255   /// specified number of work-groups actually executing on the compute
256   /// unit. Conversely, a high value may allocate fewer resources, resulting in
257   /// lower per work-item performance, which is offset by the fact it allows more
258   /// work-groups to actually execute on the compute unit.
259   uint32_t requested_workgroups_per_cu;
260 
261   /// If not enabled then all elements for Dim3 must be 0, otherwise every
262   /// element must be greater than 0. See HSA Programmer's Reference Manual
263   /// description of requiredgridsize control directive.
264   hsa_dim3_t required_grid_size;
265 
266   /// If requiredWorkgroupSize is not enabled then all elements for Dim3 must be
267   /// 0, and the produced code can be dispatched with any legal work-group range
268   /// consistent with the dispatch dimensions. Otherwise, the code produced must
269   /// always be dispatched with the specified work-group range. No element of the
270   /// specified range must be 0. It must be consistent with required_dimensions
271   /// and max_flat_workgroup_size. If the kernel being finalized, or any of the
272   /// functions it calls, has a requiredworkgroupsize control directive, then the
273   /// values must be the same. Specifying a value can allow the finalizer to
274   /// optimize work-group id operations, and if the number of work-items in the
275   /// work-group is less than the WAVESIZE then barrier operations can be
276   /// optimized to just a memory fence.
277   hsa_dim3_t required_workgroup_size;
278 
279   /// If requiredDim is not enabled then must be 0 and the produced kernel code
280   /// can be dispatched with 1, 2 or 3 dimensions. If enabled then the value is
281   /// 1..3 and the code produced must only be dispatched with a dimension that
282   /// matches. Other values are illegal. If the kernel being finalized, or any of
283   /// the functions it calls, has a requireddimsize control directive, then the
284   /// values must be the same. This can be used to optimize the code generated to
285   /// compute the absolute and flat work-group and work-item id, and the dim
286   /// HSAIL operations.
287   uint8_t required_dim;
288 
289   /// Reserved. Must be 0.
290   uint8_t reserved[75];
291 } hsa_ext_control_directives_t;
292 
293 /// AMD Kernel Code Object (amd_kernel_code_t). GPU CP uses the AMD Kernel
294 /// Code Object to set up the hardware to execute the kernel dispatch.
295 ///
296 /// Initial Kernel Register State.
297 ///
298 /// Initial kernel register state will be set up by CP/SPI prior to the start
299 /// of execution of every wavefront. This is limited by the constraints of the
300 /// current hardware.
301 ///
302 /// The order of the SGPR registers is defined, but the Finalizer can specify
303 /// which ones are actually setup in the amd_kernel_code_t object using the
304 /// enable_sgpr_* bit fields. The register numbers used for enabled registers
305 /// are dense starting at SGPR0: the first enabled register is SGPR0, the next
306 /// enabled register is SGPR1 etc.; disabled registers do not have an SGPR
307 /// number.
308 ///
309 /// The initial SGPRs comprise up to 16 User SRGPs that are set up by CP and
310 /// apply to all waves of the grid. It is possible to specify more than 16 User
311 /// SGPRs using the enable_sgpr_* bit fields, in which case only the first 16
312 /// are actually initialized. These are then immediately followed by the System
313 /// SGPRs that are set up by ADC/SPI and can have different values for each wave
314 /// of the grid dispatch.
315 ///
316 /// SGPR register initial state is defined as follows:
317 ///
318 /// Private Segment Buffer (enable_sgpr_private_segment_buffer):
319 ///   Number of User SGPR registers: 4. V# that can be used, together with
320 ///   Scratch Wave Offset as an offset, to access the Private/Spill/Arg
321 ///   segments using a segment address. It must be set as follows:
322 ///     - Base address: of the scratch memory area used by the dispatch. It
323 ///       does not include the scratch wave offset. It will be the per process
324 ///       SH_HIDDEN_PRIVATE_BASE_VMID plus any offset from this dispatch (for
325 ///       example there may be a per pipe offset, or per AQL Queue offset).
326 ///     - Stride + data_format: Element Size * Index Stride (???)
327 ///     - Cache swizzle: ???
328 ///     - Swizzle enable: SH_STATIC_MEM_CONFIG.SWIZZLE_ENABLE (must be 1 for
329 ///       scratch)
330 ///     - Num records: Flat Scratch Work Item Size / Element Size (???)
331 ///     - Dst_sel_*: ???
332 ///     - Num_format: ???
333 ///     - Element_size: SH_STATIC_MEM_CONFIG.ELEMENT_SIZE (will be DWORD, must
334 ///       agree with amd_kernel_code_t.privateElementSize)
335 ///     - Index_stride: SH_STATIC_MEM_CONFIG.INDEX_STRIDE (will be 64 as must
336 ///       be number of wavefront lanes for scratch, must agree with
337 ///       amd_kernel_code_t.wavefrontSize)
338 ///     - Add tid enable: 1
339 ///     - ATC: from SH_MEM_CONFIG.PRIVATE_ATC,
340 ///     - Hash_enable: ???
341 ///     - Heap: ???
342 ///     - Mtype: from SH_STATIC_MEM_CONFIG.PRIVATE_MTYPE
343 ///     - Type: 0 (a buffer) (???)
344 ///
345 /// Dispatch Ptr (enable_sgpr_dispatch_ptr):
346 ///   Number of User SGPR registers: 2. 64 bit address of AQL dispatch packet
347 ///   for kernel actually executing.
348 ///
349 /// Queue Ptr (enable_sgpr_queue_ptr):
350 ///   Number of User SGPR registers: 2. 64 bit address of AmdQueue object for
351 ///   AQL queue on which the dispatch packet was queued.
352 ///
353 /// Kernarg Segment Ptr (enable_sgpr_kernarg_segment_ptr):
354 ///   Number of User SGPR registers: 2. 64 bit address of Kernarg segment. This
355 ///   is directly copied from the kernargPtr in the dispatch packet. Having CP
356 ///   load it once avoids loading it at the beginning of every wavefront.
357 ///
358 /// Dispatch Id (enable_sgpr_dispatch_id):
359 ///   Number of User SGPR registers: 2. 64 bit Dispatch ID of the dispatch
360 ///   packet being executed.
361 ///
362 /// Flat Scratch Init (enable_sgpr_flat_scratch_init):
363 ///   Number of User SGPR registers: 2. This is 2 SGPRs.
364 ///
365 ///   For CI/VI:
366 ///     The first SGPR is a 32 bit byte offset from SH_MEM_HIDDEN_PRIVATE_BASE
367 ///     to base of memory for scratch for this dispatch. This is the same offset
368 ///     used in computing the Scratch Segment Buffer base address. The value of
369 ///     Scratch Wave Offset must be added by the kernel code and moved to
370 ///     SGPRn-4 for use as the FLAT SCRATCH BASE in flat memory instructions.
371 ///
372 ///     The second SGPR is 32 bit byte size of a single work-item�s scratch
373 ///     memory usage. This is directly loaded from the dispatch packet Private
374 ///     Segment Byte Size and rounded up to a multiple of DWORD.
375 ///
376 ///     \todo [Does CP need to round this to >4 byte alignment?]
377 ///
378 ///     The kernel code must move to SGPRn-3 for use as the FLAT SCRATCH SIZE in
379 ///     flat memory instructions. Having CP load it once avoids loading it at
380 ///     the beginning of every wavefront.
381 ///
382 ///   For PI:
383 ///     This is the 64 bit base address of the scratch backing memory for
384 ///     allocated by CP for this dispatch.
385 ///
386 /// Private Segment Size (enable_sgpr_private_segment_size):
387 ///   Number of User SGPR registers: 1. The 32 bit byte size of a single
388 ///   work-item�s scratch memory allocation. This is the value from the dispatch
389 ///   packet. Private Segment Byte Size rounded up by CP to a multiple of DWORD.
390 ///
391 ///   \todo [Does CP need to round this to >4 byte alignment?]
392 ///
393 ///   Having CP load it once avoids loading it at the beginning of every
394 ///   wavefront.
395 ///
396 ///   \todo [This will not be used for CI/VI since it is the same value as
397 ///   the second SGPR of Flat Scratch Init. However, it is need for PI which
398 ///   changes meaning of Flat Scratchg Init..]
399 ///
400 /// Grid Work-Group Count X (enable_sgpr_grid_workgroup_count_x):
401 ///   Number of User SGPR registers: 1. 32 bit count of the number of
402 ///   work-groups in the X dimension for the grid being executed. Computed from
403 ///   the fields in the HsaDispatchPacket as
404 ///   ((gridSize.x+workgroupSize.x-1)/workgroupSize.x).
405 ///
406 /// Grid Work-Group Count Y (enable_sgpr_grid_workgroup_count_y):
407 ///   Number of User SGPR registers: 1. 32 bit count of the number of
408 ///   work-groups in the Y dimension for the grid being executed. Computed from
409 ///   the fields in the HsaDispatchPacket as
410 ///   ((gridSize.y+workgroupSize.y-1)/workgroupSize.y).
411 ///
412 ///   Only initialized if <16 previous SGPRs initialized.
413 ///
414 /// Grid Work-Group Count Z (enable_sgpr_grid_workgroup_count_z):
415 ///   Number of User SGPR registers: 1. 32 bit count of the number of
416 ///   work-groups in the Z dimension for the grid being executed. Computed
417 ///   from the fields in the HsaDispatchPacket as
418 ///   ((gridSize.z+workgroupSize.z-1)/workgroupSize.z).
419 ///
420 ///   Only initialized if <16 previous SGPRs initialized.
421 ///
422 /// Work-Group Id X (enable_sgpr_workgroup_id_x):
423 ///   Number of System SGPR registers: 1. 32 bit work group id in X dimension
424 ///   of grid for wavefront. Always present.
425 ///
426 /// Work-Group Id Y (enable_sgpr_workgroup_id_y):
427 ///   Number of System SGPR registers: 1. 32 bit work group id in Y dimension
428 ///   of grid for wavefront.
429 ///
430 /// Work-Group Id Z (enable_sgpr_workgroup_id_z):
431 ///   Number of System SGPR registers: 1. 32 bit work group id in Z dimension
432 ///   of grid for wavefront. If present then Work-group Id Y will also be
433 ///   present
434 ///
435 /// Work-Group Info (enable_sgpr_workgroup_info):
436 ///   Number of System SGPR registers: 1. {first_wave, 14�b0000,
437 ///   ordered_append_term[10:0], threadgroup_size_in_waves[5:0]}
438 ///
439 /// Private Segment Wave Byte Offset
440 /// (enable_sgpr_private_segment_wave_byte_offset):
441 ///   Number of System SGPR registers: 1. 32 bit byte offset from base of
442 ///   dispatch scratch base. Must be used as an offset with Private/Spill/Arg
443 ///   segment address when using Scratch Segment Buffer. It must be added to
444 ///   Flat Scratch Offset if setting up FLAT SCRATCH for flat addressing.
445 ///
446 ///
447 /// The order of the VGPR registers is defined, but the Finalizer can specify
448 /// which ones are actually setup in the amd_kernel_code_t object using the
449 /// enableVgpr*  bit fields. The register numbers used for enabled registers
450 /// are dense starting at VGPR0: the first enabled register is VGPR0, the next
451 /// enabled register is VGPR1 etc.; disabled registers do not have an VGPR
452 /// number.
453 ///
454 /// VGPR register initial state is defined as follows:
455 ///
456 /// Work-Item Id X (always initialized):
457 ///   Number of registers: 1. 32 bit work item id in X dimension of work-group
458 ///   for wavefront lane.
459 ///
460 /// Work-Item Id X (enable_vgpr_workitem_id > 0):
461 ///   Number of registers: 1. 32 bit work item id in Y dimension of work-group
462 ///   for wavefront lane.
463 ///
464 /// Work-Item Id X (enable_vgpr_workitem_id > 0):
465 ///   Number of registers: 1. 32 bit work item id in Z dimension of work-group
466 ///   for wavefront lane.
467 ///
468 ///
469 /// The setting of registers is being done by existing GPU hardware as follows:
470 ///   1) SGPRs before the Work-Group Ids are set by CP using the 16 User Data
471 ///      registers.
472 ///   2) Work-group Id registers X, Y, Z are set by SPI which supports any
473 ///      combination including none.
474 ///   3) Scratch Wave Offset is also set by SPI which is why its value cannot
475 ///      be added into the value Flat Scratch Offset which would avoid the
476 ///      Finalizer generated prolog having to do the add.
477 ///   4) The VGPRs are set by SPI which only supports specifying either (X),
478 ///      (X, Y) or (X, Y, Z).
479 ///
480 /// Flat Scratch Dispatch Offset and Flat Scratch Size are adjacent SGRRs so
481 /// they can be moved as a 64 bit value to the hardware required SGPRn-3 and
482 /// SGPRn-4 respectively using the Finalizer ?FLAT_SCRATCH? Register.
483 ///
484 /// The global segment can be accessed either using flat operations or buffer
485 /// operations. If buffer operations are used then the Global Buffer used to
486 /// access HSAIL Global/Readonly/Kernarg (which are combine) segments using a
487 /// segment address is not passed into the kernel code by CP since its base
488 /// address is always 0. Instead the Finalizer generates prolog code to
489 /// initialize 4 SGPRs with a V# that has the following properties, and then
490 /// uses that in the buffer instructions:
491 ///   - base address of 0
492 ///   - no swizzle
493 ///   - ATC=1
494 ///   - MTYPE set to support memory coherence specified in
495 ///     amd_kernel_code_t.globalMemoryCoherence
496 ///
497 /// When the Global Buffer is used to access the Kernarg segment, must add the
498 /// dispatch packet kernArgPtr to a kernarg segment address before using this V#.
499 /// Alternatively scalar loads can be used if the kernarg offset is uniform, as
500 /// the kernarg segment is constant for the duration of the kernel execution.
501 ///
502 typedef struct amd_kernel_code_s {
503   /// The AMD major version of the Code Object. Must be the value
504   /// AMD_CODE_VERSION_MAJOR.
505   amd_code_version32_t amd_code_version_major;
506 
507   /// The AMD minor version of the Code Object. Minor versions must be
508   /// backward compatible. Must be the value
509   /// AMD_CODE_VERSION_MINOR.
510   amd_code_version32_t amd_code_version_minor;
511 
512   /// The byte size of this struct. Must be set to
513   /// sizeof(amd_kernel_code_t). Used for backward
514   /// compatibility.
515   uint32_t struct_byte_size;
516 
517   /// The target chip instruction set for which code has been
518   /// generated. Values are from the E_SC_INSTRUCTION_SET enumeration
519   /// in sc/Interface/SCCommon.h.
520   uint32_t target_chip;
521 
522   /// Byte offset (possibly negative) from start of amd_kernel_code_t
523   /// object to kernel's entry point instruction. The actual code for
524   /// the kernel is required to be 256 byte aligned to match hardware
525   /// requirements (SQ cache line is 16). The code must be position
526   /// independent code (PIC) for AMD devices to give runtime the
527   /// option of copying code to discrete GPU memory or APU L2
528   /// cache. The Finalizer should endeavour to allocate all kernel
529   /// machine code in contiguous memory pages so that a device
530   /// pre-fetcher will tend to only pre-fetch Kernel Code objects,
531   /// improving cache performance.
532   int64_t kernel_code_entry_byte_offset;
533 
534   /// Range of bytes to consider prefetching expressed as an offset
535   /// and size. The offset is from the start (possibly negative) of
536   /// amd_kernel_code_t object. Set both to 0 if no prefetch
537   /// information is available.
538   ///
539   /// \todo ttye 11/15/2013 Is the prefetch definition we want? Did
540   /// not make the size a uint64_t as prefetching more than 4GiB seems
541   /// excessive.
542   int64_t kernel_code_prefetch_byte_offset;
543   uint64_t kernel_code_prefetch_byte_size;
544 
545   /// Number of bytes of scratch backing memory required for full
546   /// occupancy of target chip. This takes into account the number of
547   /// bytes of scratch per work-item, the wavefront size, the maximum
548   /// number of wavefronts per CU, and the number of CUs. This is an
549   /// upper limit on scratch. If the grid being dispatched is small it
550   /// may only need less than this. If the kernel uses no scratch, or
551   /// the Finalizer has not computed this value, it must be 0.
552   uint64_t max_scratch_backing_memory_byte_size;
553 
554   /// Shader program settings for CS. Contains COMPUTE_PGM_RSRC1 and
555   /// COMPUTE_PGM_RSRC2 registers.
556   amd_compute_pgm_resource_register64_t compute_pgm_resource_registers;
557 
558   /// Code properties. See amd_code_property_mask_t for a full list of
559   /// properties.
560   amd_code_property32_t code_properties;
561 
562   /// The amount of memory required for the combined private, spill
563   /// and arg segments for a work-item in bytes. If
564   /// is_dynamic_callstack is 1 then additional space must be added to
565   /// this value for the call stack.
566   uint32_t workitem_private_segment_byte_size;
567 
568   /// The amount of group segment memory required by a work-group in
569   /// bytes. This does not include any dynamically allocated group
570   /// segment memory that may be added when the kernel is
571   /// dispatched.
572   uint32_t workgroup_group_segment_byte_size;
573 
574   /// Number of byte of GDS required by kernel dispatch. Must be 0 if
575   /// not using GDS.
576   uint32_t gds_segment_byte_size;
577 
578   /// The size in bytes of the kernarg segment that holds the values
579   /// of the arguments to the kernel. This could be used by CP to
580   /// prefetch the kernarg segment pointed to by the dispatch packet.
581   uint64_t kernarg_segment_byte_size;
582 
583   /// Number of fbarrier's used in the kernel and all functions it
584   /// calls. If the implementation uses group memory to allocate the
585   /// fbarriers then that amount must already be included in the
586   /// workgroup_group_segment_byte_size total.
587   uint32_t workgroup_fbarrier_count;
588 
589   /// Number of scalar registers used by a wavefront. This includes
590   /// the special SGPRs for VCC, Flat Scratch Base, Flat Scratch Size
591   /// and XNACK (for GFX8 (VI)). It does not include the 16 SGPR added if a
592   /// trap handler is enabled. Used to set COMPUTE_PGM_RSRC1.SGPRS.
593   uint16_t wavefront_sgpr_count;
594 
595   /// Number of vector registers used by each work-item. Used to set
596   /// COMPUTE_PGM_RSRC1.VGPRS.
597   uint16_t workitem_vgpr_count;
598 
599   /// If reserved_vgpr_count is 0 then must be 0. Otherwise, this is the
600   /// first fixed VGPR number reserved.
601   uint16_t reserved_vgpr_first;
602 
603   /// The number of consecutive VGPRs reserved by the client. If
604   /// is_debug_supported then this count includes VGPRs reserved
605   /// for debugger use.
606   uint16_t reserved_vgpr_count;
607 
608   /// If reserved_sgpr_count is 0 then must be 0. Otherwise, this is the
609   /// first fixed SGPR number reserved.
610   uint16_t reserved_sgpr_first;
611 
612   /// The number of consecutive SGPRs reserved by the client. If
613   /// is_debug_supported then this count includes SGPRs reserved
614   /// for debugger use.
615   uint16_t reserved_sgpr_count;
616 
617   /// If is_debug_supported is 0 then must be 0. Otherwise, this is the
618   /// fixed SGPR number used to hold the wave scratch offset for the
619   /// entire kernel execution, or uint16_t(-1) if the register is not
620   /// used or not known.
621   uint16_t debug_wavefront_private_segment_offset_sgpr;
622 
623   /// If is_debug_supported is 0 then must be 0. Otherwise, this is the
624   /// fixed SGPR number of the first of 4 SGPRs used to hold the
625   /// scratch V# used for the entire kernel execution, or uint16_t(-1)
626   /// if the registers are not used or not known.
627   uint16_t debug_private_segment_buffer_sgpr;
628 
629   /// The maximum byte alignment of variables used by the kernel in
630   /// the specified memory segment. Expressed as a power of two. Must
631   /// be at least HSA_POWERTWO_16.
632   hsa_powertwo8_t kernarg_segment_alignment;
633   hsa_powertwo8_t group_segment_alignment;
634   hsa_powertwo8_t private_segment_alignment;
635 
636   uint8_t reserved3;
637 
638   /// Type of code object.
639   hsa_ext_code_kind32_t code_type;
640 
641   /// Reserved for code properties if any are defined in the future.
642   /// There are currently no code properties so this field must be 0.
643   uint32_t reserved4;
644 
645   /// Wavefront size expressed as a power of two. Must be a power of 2
646   /// in range 1..64 inclusive. Used to support runtime query that
647   /// obtains wavefront size, which may be used by application to
648   /// allocated dynamic group memory and set the dispatch work-group
649   /// size.
650   hsa_powertwo8_t wavefront_size;
651 
652   /// The optimization level specified when the kernel was
653   /// finalized.
654   uint8_t optimization_level;
655 
656   /// The HSAIL profile defines which features are used. This
657   /// information is from the HSAIL version directive. If this
658   /// amd_kernel_code_t is not generated from an HSAIL compilation
659   /// unit then must be 0.
660   hsa_ext_brig_profile8_t hsail_profile;
661 
662   /// The HSAIL machine model gives the address sizes used by the
663   /// code. This information is from the HSAIL version directive. If
664   /// not generated from an HSAIL compilation unit then must still
665   /// indicate for what machine mode the code is generated.
666   hsa_ext_brig_machine_model8_t hsail_machine_model;
667 
668   /// The HSAIL major version. This information is from the HSAIL
669   /// version directive. If this amd_kernel_code_t is not
670   /// generated from an HSAIL compilation unit then must be 0.
671   uint32_t hsail_version_major;
672 
673   /// The HSAIL minor version. This information is from the HSAIL
674   /// version directive. If this amd_kernel_code_t is not
675   /// generated from an HSAIL compilation unit then must be 0.
676   uint32_t hsail_version_minor;
677 
678   /// Reserved for HSAIL target options if any are defined in the
679   /// future. There are currently no target options so this field
680   /// must be 0.
681   uint16_t reserved5;
682 
683   /// Reserved. Must be 0.
684   uint16_t reserved6;
685 
686   /// The values should be the actually values used by the finalizer
687   /// in generating the code. This may be the union of values
688   /// specified as finalizer arguments and explicit HSAIL control
689   /// directives. If the finalizer chooses to ignore a control
690   /// directive, and not generate constrained code, then the control
691   /// directive should not be marked as enabled even though it was
692   /// present in the HSAIL or finalizer argument. The values are
693   /// intended to reflect the constraints that the code actually
694   /// requires to correctly execute, not the values that were
695   /// actually specified at finalize time.
696   hsa_ext_control_directives_t control_directive;
697 
698   /// The code can immediately follow the amd_kernel_code_t, or can
699   /// come after subsequent amd_kernel_code_t structs when there are
700   /// multiple kernels in the compilation unit.
701 
702 } amd_kernel_code_t;
703 
704 #endif // AMDKERNELCODET_H
705