1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for inline asm statements.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/RecordLayout.h"
17 #include "clang/AST/TypeLoc.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "clang/Sema/Initialization.h"
21 #include "clang/Sema/Lookup.h"
22 #include "clang/Sema/Scope.h"
23 #include "clang/Sema/ScopeInfo.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/MC/MCParser/MCAsmParser.h"
27 using namespace clang;
28 using namespace sema;
29
30 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
31 /// ignore "noop" casts in places where an lvalue is required by an inline asm.
32 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but
33 /// provide a strong guidance to not use it.
34 ///
35 /// This method checks to see if the argument is an acceptable l-value and
36 /// returns false if it is a case we can handle.
CheckAsmLValue(const Expr * E,Sema & S)37 static bool CheckAsmLValue(const Expr *E, Sema &S) {
38 // Type dependent expressions will be checked during instantiation.
39 if (E->isTypeDependent())
40 return false;
41
42 if (E->isLValue())
43 return false; // Cool, this is an lvalue.
44
45 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
46 // are supposed to allow.
47 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
48 if (E != E2 && E2->isLValue()) {
49 if (!S.getLangOpts().HeinousExtensions)
50 S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
51 << E->getSourceRange();
52 else
53 S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
54 << E->getSourceRange();
55 // Accept, even if we emitted an error diagnostic.
56 return false;
57 }
58
59 // None of the above, just randomly invalid non-lvalue.
60 return true;
61 }
62
63 /// isOperandMentioned - Return true if the specified operand # is mentioned
64 /// anywhere in the decomposed asm string.
isOperandMentioned(unsigned OpNo,ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces)65 static bool isOperandMentioned(unsigned OpNo,
66 ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
67 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
68 const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
69 if (!Piece.isOperand()) continue;
70
71 // If this is a reference to the input and if the input was the smaller
72 // one, then we have to reject this asm.
73 if (Piece.getOperandNo() == OpNo)
74 return true;
75 }
76 return false;
77 }
78
CheckNakedParmReference(Expr * E,Sema & S)79 static bool CheckNakedParmReference(Expr *E, Sema &S) {
80 FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext);
81 if (!Func)
82 return false;
83 if (!Func->hasAttr<NakedAttr>())
84 return false;
85
86 SmallVector<Expr*, 4> WorkList;
87 WorkList.push_back(E);
88 while (WorkList.size()) {
89 Expr *E = WorkList.pop_back_val();
90 if (isa<CXXThisExpr>(E)) {
91 S.Diag(E->getLocStart(), diag::err_asm_naked_this_ref);
92 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
93 return true;
94 }
95 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
96 if (isa<ParmVarDecl>(DRE->getDecl())) {
97 S.Diag(DRE->getLocStart(), diag::err_asm_naked_parm_ref);
98 S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
99 return true;
100 }
101 }
102 for (Stmt *Child : E->children()) {
103 if (Expr *E = dyn_cast_or_null<Expr>(Child))
104 WorkList.push_back(E);
105 }
106 }
107 return false;
108 }
109
ActOnGCCAsmStmt(SourceLocation AsmLoc,bool IsSimple,bool IsVolatile,unsigned NumOutputs,unsigned NumInputs,IdentifierInfo ** Names,MultiExprArg constraints,MultiExprArg Exprs,Expr * asmString,MultiExprArg clobbers,SourceLocation RParenLoc)110 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
111 bool IsVolatile, unsigned NumOutputs,
112 unsigned NumInputs, IdentifierInfo **Names,
113 MultiExprArg constraints, MultiExprArg Exprs,
114 Expr *asmString, MultiExprArg clobbers,
115 SourceLocation RParenLoc) {
116 unsigned NumClobbers = clobbers.size();
117 StringLiteral **Constraints =
118 reinterpret_cast<StringLiteral**>(constraints.data());
119 StringLiteral *AsmString = cast<StringLiteral>(asmString);
120 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
121
122 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
123
124 // The parser verifies that there is a string literal here.
125 assert(AsmString->isAscii());
126
127 bool ValidateConstraints = true;
128 if (getLangOpts().CUDA) {
129 // In CUDA mode don't verify asm constraints in device functions during host
130 // compilation and vice versa.
131 bool InDeviceMode = getLangOpts().CUDAIsDevice;
132 FunctionDecl *FD = getCurFunctionDecl();
133 bool IsDeviceFunction =
134 FD && (FD->hasAttr<CUDADeviceAttr>() || FD->hasAttr<CUDAGlobalAttr>());
135 ValidateConstraints = IsDeviceFunction == InDeviceMode;
136 }
137
138 for (unsigned i = 0; i != NumOutputs; i++) {
139 StringLiteral *Literal = Constraints[i];
140 assert(Literal->isAscii());
141
142 StringRef OutputName;
143 if (Names[i])
144 OutputName = Names[i]->getName();
145
146 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
147 if (ValidateConstraints &&
148 !Context.getTargetInfo().validateOutputConstraint(Info))
149 return StmtError(Diag(Literal->getLocStart(),
150 diag::err_asm_invalid_output_constraint)
151 << Info.getConstraintStr());
152
153 ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
154 if (ER.isInvalid())
155 return StmtError();
156 Exprs[i] = ER.get();
157
158 // Check that the output exprs are valid lvalues.
159 Expr *OutputExpr = Exprs[i];
160
161 // Referring to parameters is not allowed in naked functions.
162 if (CheckNakedParmReference(OutputExpr, *this))
163 return StmtError();
164
165 OutputConstraintInfos.push_back(Info);
166
167 // If this is dependent, just continue.
168 if (OutputExpr->isTypeDependent())
169 continue;
170
171 Expr::isModifiableLvalueResult IsLV =
172 OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
173 switch (IsLV) {
174 case Expr::MLV_Valid:
175 // Cool, this is an lvalue.
176 break;
177 case Expr::MLV_ArrayType:
178 // This is OK too.
179 break;
180 case Expr::MLV_LValueCast: {
181 const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
182 if (!getLangOpts().HeinousExtensions) {
183 Diag(LVal->getLocStart(), diag::err_invalid_asm_cast_lvalue)
184 << OutputExpr->getSourceRange();
185 } else {
186 Diag(LVal->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
187 << OutputExpr->getSourceRange();
188 }
189 // Accept, even if we emitted an error diagnostic.
190 break;
191 }
192 case Expr::MLV_IncompleteType:
193 case Expr::MLV_IncompleteVoidType:
194 if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(),
195 diag::err_dereference_incomplete_type))
196 return StmtError();
197 default:
198 return StmtError(Diag(OutputExpr->getLocStart(),
199 diag::err_asm_invalid_lvalue_in_output)
200 << OutputExpr->getSourceRange());
201 }
202
203 unsigned Size = Context.getTypeSize(OutputExpr->getType());
204 if (!Context.getTargetInfo().validateOutputSize(Literal->getString(),
205 Size))
206 return StmtError(Diag(OutputExpr->getLocStart(),
207 diag::err_asm_invalid_output_size)
208 << Info.getConstraintStr());
209 }
210
211 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
212
213 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
214 StringLiteral *Literal = Constraints[i];
215 assert(Literal->isAscii());
216
217 StringRef InputName;
218 if (Names[i])
219 InputName = Names[i]->getName();
220
221 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
222 if (ValidateConstraints &&
223 !Context.getTargetInfo().validateInputConstraint(
224 OutputConstraintInfos.data(), NumOutputs, Info)) {
225 return StmtError(Diag(Literal->getLocStart(),
226 diag::err_asm_invalid_input_constraint)
227 << Info.getConstraintStr());
228 }
229
230 ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
231 if (ER.isInvalid())
232 return StmtError();
233 Exprs[i] = ER.get();
234
235 Expr *InputExpr = Exprs[i];
236
237 // Referring to parameters is not allowed in naked functions.
238 if (CheckNakedParmReference(InputExpr, *this))
239 return StmtError();
240
241 // Only allow void types for memory constraints.
242 if (Info.allowsMemory() && !Info.allowsRegister()) {
243 if (CheckAsmLValue(InputExpr, *this))
244 return StmtError(Diag(InputExpr->getLocStart(),
245 diag::err_asm_invalid_lvalue_in_input)
246 << Info.getConstraintStr()
247 << InputExpr->getSourceRange());
248 } else if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
249 llvm::APSInt Result;
250 if (!InputExpr->EvaluateAsInt(Result, Context))
251 return StmtError(
252 Diag(InputExpr->getLocStart(), diag::err_asm_immediate_expected)
253 << Info.getConstraintStr() << InputExpr->getSourceRange());
254 if (Result.slt(Info.getImmConstantMin()) ||
255 Result.sgt(Info.getImmConstantMax()))
256 return StmtError(Diag(InputExpr->getLocStart(),
257 diag::err_invalid_asm_value_for_constraint)
258 << Result.toString(10) << Info.getConstraintStr()
259 << InputExpr->getSourceRange());
260
261 } else {
262 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
263 if (Result.isInvalid())
264 return StmtError();
265
266 Exprs[i] = Result.get();
267 }
268
269 if (Info.allowsRegister()) {
270 if (InputExpr->getType()->isVoidType()) {
271 return StmtError(Diag(InputExpr->getLocStart(),
272 diag::err_asm_invalid_type_in_input)
273 << InputExpr->getType() << Info.getConstraintStr()
274 << InputExpr->getSourceRange());
275 }
276 }
277
278 InputConstraintInfos.push_back(Info);
279
280 const Type *Ty = Exprs[i]->getType().getTypePtr();
281 if (Ty->isDependentType())
282 continue;
283
284 if (!Ty->isVoidType() || !Info.allowsMemory())
285 if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(),
286 diag::err_dereference_incomplete_type))
287 return StmtError();
288
289 unsigned Size = Context.getTypeSize(Ty);
290 if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
291 Size))
292 return StmtError(Diag(InputExpr->getLocStart(),
293 diag::err_asm_invalid_input_size)
294 << Info.getConstraintStr());
295 }
296
297 // Check that the clobbers are valid.
298 for (unsigned i = 0; i != NumClobbers; i++) {
299 StringLiteral *Literal = Clobbers[i];
300 assert(Literal->isAscii());
301
302 StringRef Clobber = Literal->getString();
303
304 if (!Context.getTargetInfo().isValidClobber(Clobber))
305 return StmtError(Diag(Literal->getLocStart(),
306 diag::err_asm_unknown_register_name) << Clobber);
307 }
308
309 GCCAsmStmt *NS =
310 new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
311 NumInputs, Names, Constraints, Exprs.data(),
312 AsmString, NumClobbers, Clobbers, RParenLoc);
313 // Validate the asm string, ensuring it makes sense given the operands we
314 // have.
315 SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
316 unsigned DiagOffs;
317 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
318 Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
319 << AsmString->getSourceRange();
320 return StmtError();
321 }
322
323 // Validate constraints and modifiers.
324 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
325 GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
326 if (!Piece.isOperand()) continue;
327
328 // Look for the correct constraint index.
329 unsigned ConstraintIdx = Piece.getOperandNo();
330 unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();
331
332 // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
333 // modifier '+'.
334 if (ConstraintIdx >= NumOperands) {
335 unsigned I = 0, E = NS->getNumOutputs();
336
337 for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
338 if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
339 ConstraintIdx = I;
340 break;
341 }
342
343 assert(I != E && "Invalid operand number should have been caught in "
344 " AnalyzeAsmString");
345 }
346
347 // Now that we have the right indexes go ahead and check.
348 StringLiteral *Literal = Constraints[ConstraintIdx];
349 const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
350 if (Ty->isDependentType() || Ty->isIncompleteType())
351 continue;
352
353 unsigned Size = Context.getTypeSize(Ty);
354 std::string SuggestedModifier;
355 if (!Context.getTargetInfo().validateConstraintModifier(
356 Literal->getString(), Piece.getModifier(), Size,
357 SuggestedModifier)) {
358 Diag(Exprs[ConstraintIdx]->getLocStart(),
359 diag::warn_asm_mismatched_size_modifier);
360
361 if (!SuggestedModifier.empty()) {
362 auto B = Diag(Piece.getRange().getBegin(),
363 diag::note_asm_missing_constraint_modifier)
364 << SuggestedModifier;
365 SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
366 B.AddFixItHint(FixItHint::CreateReplacement(Piece.getRange(),
367 SuggestedModifier));
368 }
369 }
370 }
371
372 // Validate tied input operands for type mismatches.
373 unsigned NumAlternatives = ~0U;
374 for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
375 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
376 StringRef ConstraintStr = Info.getConstraintStr();
377 unsigned AltCount = ConstraintStr.count(',') + 1;
378 if (NumAlternatives == ~0U)
379 NumAlternatives = AltCount;
380 else if (NumAlternatives != AltCount)
381 return StmtError(Diag(NS->getOutputExpr(i)->getLocStart(),
382 diag::err_asm_unexpected_constraint_alternatives)
383 << NumAlternatives << AltCount);
384 }
385 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
386 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
387 StringRef ConstraintStr = Info.getConstraintStr();
388 unsigned AltCount = ConstraintStr.count(',') + 1;
389 if (NumAlternatives == ~0U)
390 NumAlternatives = AltCount;
391 else if (NumAlternatives != AltCount)
392 return StmtError(Diag(NS->getInputExpr(i)->getLocStart(),
393 diag::err_asm_unexpected_constraint_alternatives)
394 << NumAlternatives << AltCount);
395
396 // If this is a tied constraint, verify that the output and input have
397 // either exactly the same type, or that they are int/ptr operands with the
398 // same size (int/long, int*/long, are ok etc).
399 if (!Info.hasTiedOperand()) continue;
400
401 unsigned TiedTo = Info.getTiedOperand();
402 unsigned InputOpNo = i+NumOutputs;
403 Expr *OutputExpr = Exprs[TiedTo];
404 Expr *InputExpr = Exprs[InputOpNo];
405
406 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
407 continue;
408
409 QualType InTy = InputExpr->getType();
410 QualType OutTy = OutputExpr->getType();
411 if (Context.hasSameType(InTy, OutTy))
412 continue; // All types can be tied to themselves.
413
414 // Decide if the input and output are in the same domain (integer/ptr or
415 // floating point.
416 enum AsmDomain {
417 AD_Int, AD_FP, AD_Other
418 } InputDomain, OutputDomain;
419
420 if (InTy->isIntegerType() || InTy->isPointerType())
421 InputDomain = AD_Int;
422 else if (InTy->isRealFloatingType())
423 InputDomain = AD_FP;
424 else
425 InputDomain = AD_Other;
426
427 if (OutTy->isIntegerType() || OutTy->isPointerType())
428 OutputDomain = AD_Int;
429 else if (OutTy->isRealFloatingType())
430 OutputDomain = AD_FP;
431 else
432 OutputDomain = AD_Other;
433
434 // They are ok if they are the same size and in the same domain. This
435 // allows tying things like:
436 // void* to int*
437 // void* to int if they are the same size.
438 // double to long double if they are the same size.
439 //
440 uint64_t OutSize = Context.getTypeSize(OutTy);
441 uint64_t InSize = Context.getTypeSize(InTy);
442 if (OutSize == InSize && InputDomain == OutputDomain &&
443 InputDomain != AD_Other)
444 continue;
445
446 // If the smaller input/output operand is not mentioned in the asm string,
447 // then we can promote the smaller one to a larger input and the asm string
448 // won't notice.
449 bool SmallerValueMentioned = false;
450
451 // If this is a reference to the input and if the input was the smaller
452 // one, then we have to reject this asm.
453 if (isOperandMentioned(InputOpNo, Pieces)) {
454 // This is a use in the asm string of the smaller operand. Since we
455 // codegen this by promoting to a wider value, the asm will get printed
456 // "wrong".
457 SmallerValueMentioned |= InSize < OutSize;
458 }
459 if (isOperandMentioned(TiedTo, Pieces)) {
460 // If this is a reference to the output, and if the output is the larger
461 // value, then it's ok because we'll promote the input to the larger type.
462 SmallerValueMentioned |= OutSize < InSize;
463 }
464
465 // If the smaller value wasn't mentioned in the asm string, and if the
466 // output was a register, just extend the shorter one to the size of the
467 // larger one.
468 if (!SmallerValueMentioned && InputDomain != AD_Other &&
469 OutputConstraintInfos[TiedTo].allowsRegister())
470 continue;
471
472 // Either both of the operands were mentioned or the smaller one was
473 // mentioned. One more special case that we'll allow: if the tied input is
474 // integer, unmentioned, and is a constant, then we'll allow truncating it
475 // down to the size of the destination.
476 if (InputDomain == AD_Int && OutputDomain == AD_Int &&
477 !isOperandMentioned(InputOpNo, Pieces) &&
478 InputExpr->isEvaluatable(Context)) {
479 CastKind castKind =
480 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
481 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
482 Exprs[InputOpNo] = InputExpr;
483 NS->setInputExpr(i, InputExpr);
484 continue;
485 }
486
487 Diag(InputExpr->getLocStart(),
488 diag::err_asm_tying_incompatible_types)
489 << InTy << OutTy << OutputExpr->getSourceRange()
490 << InputExpr->getSourceRange();
491 return StmtError();
492 }
493
494 return NS;
495 }
496
LookupInlineAsmIdentifier(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,llvm::InlineAsmIdentifierInfo & Info,bool IsUnevaluatedContext)497 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
498 SourceLocation TemplateKWLoc,
499 UnqualifiedId &Id,
500 llvm::InlineAsmIdentifierInfo &Info,
501 bool IsUnevaluatedContext) {
502 Info.clear();
503
504 if (IsUnevaluatedContext)
505 PushExpressionEvaluationContext(UnevaluatedAbstract,
506 ReuseLambdaContextDecl);
507
508 ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
509 /*trailing lparen*/ false,
510 /*is & operand*/ false,
511 /*CorrectionCandidateCallback=*/nullptr,
512 /*IsInlineAsmIdentifier=*/ true);
513
514 if (IsUnevaluatedContext)
515 PopExpressionEvaluationContext();
516
517 if (!Result.isUsable()) return Result;
518
519 Result = CheckPlaceholderExpr(Result.get());
520 if (!Result.isUsable()) return Result;
521
522 // Referring to parameters is not allowed in naked functions.
523 if (CheckNakedParmReference(Result.get(), *this))
524 return ExprError();
525
526 QualType T = Result.get()->getType();
527
528 // For now, reject dependent types.
529 if (T->isDependentType()) {
530 Diag(Id.getLocStart(), diag::err_asm_incomplete_type) << T;
531 return ExprError();
532 }
533
534 // Any sort of function type is fine.
535 if (T->isFunctionType()) {
536 return Result;
537 }
538
539 // Otherwise, it needs to be a complete type.
540 if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
541 return ExprError();
542 }
543
544 // Compute the type size (and array length if applicable?).
545 Info.Type = Info.Size = Context.getTypeSizeInChars(T).getQuantity();
546 if (T->isArrayType()) {
547 const ArrayType *ATy = Context.getAsArrayType(T);
548 Info.Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
549 Info.Length = Info.Size / Info.Type;
550 }
551
552 // We can work with the expression as long as it's not an r-value.
553 if (!Result.get()->isRValue())
554 Info.IsVarDecl = true;
555
556 return Result;
557 }
558
LookupInlineAsmField(StringRef Base,StringRef Member,unsigned & Offset,SourceLocation AsmLoc)559 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
560 unsigned &Offset, SourceLocation AsmLoc) {
561 Offset = 0;
562 LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
563 LookupOrdinaryName);
564
565 if (!LookupName(BaseResult, getCurScope()))
566 return true;
567
568 if (!BaseResult.isSingleResult())
569 return true;
570
571 const RecordType *RT = nullptr;
572 NamedDecl *FoundDecl = BaseResult.getFoundDecl();
573 if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
574 RT = VD->getType()->getAs<RecordType>();
575 else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) {
576 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
577 RT = TD->getUnderlyingType()->getAs<RecordType>();
578 } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl))
579 RT = TD->getTypeForDecl()->getAs<RecordType>();
580 if (!RT)
581 return true;
582
583 if (RequireCompleteType(AsmLoc, QualType(RT, 0), 0))
584 return true;
585
586 LookupResult FieldResult(*this, &Context.Idents.get(Member), SourceLocation(),
587 LookupMemberName);
588
589 if (!LookupQualifiedName(FieldResult, RT->getDecl()))
590 return true;
591
592 // FIXME: Handle IndirectFieldDecl?
593 FieldDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
594 if (!FD)
595 return true;
596
597 const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
598 unsigned i = FD->getFieldIndex();
599 CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
600 Offset = (unsigned)Result.getQuantity();
601
602 return false;
603 }
604
ActOnMSAsmStmt(SourceLocation AsmLoc,SourceLocation LBraceLoc,ArrayRef<Token> AsmToks,StringRef AsmString,unsigned NumOutputs,unsigned NumInputs,ArrayRef<StringRef> Constraints,ArrayRef<StringRef> Clobbers,ArrayRef<Expr * > Exprs,SourceLocation EndLoc)605 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
606 ArrayRef<Token> AsmToks,
607 StringRef AsmString,
608 unsigned NumOutputs, unsigned NumInputs,
609 ArrayRef<StringRef> Constraints,
610 ArrayRef<StringRef> Clobbers,
611 ArrayRef<Expr*> Exprs,
612 SourceLocation EndLoc) {
613 bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
614 getCurFunction()->setHasBranchProtectedScope();
615 MSAsmStmt *NS =
616 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
617 /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
618 Constraints, Exprs, AsmString,
619 Clobbers, EndLoc);
620 return NS;
621 }
622
GetOrCreateMSAsmLabel(StringRef ExternalLabelName,SourceLocation Location,bool AlwaysCreate)623 LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
624 SourceLocation Location,
625 bool AlwaysCreate) {
626 LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName),
627 Location);
628
629 if (Label->isMSAsmLabel()) {
630 // If we have previously created this label implicitly, mark it as used.
631 Label->markUsed(Context);
632 } else {
633 // Otherwise, insert it, but only resolve it if we have seen the label itself.
634 std::string InternalName;
635 llvm::raw_string_ostream OS(InternalName);
636 // Create an internal name for the label. The name should not be a valid mangled
637 // name, and should be unique. We use a dot to make the name an invalid mangled
638 // name.
639 OS << "__MSASMLABEL_." << MSAsmLabelNameCounter++ << "__" << ExternalLabelName;
640 Label->setMSAsmLabel(OS.str());
641 }
642 if (AlwaysCreate) {
643 // The label might have been created implicitly from a previously encountered
644 // goto statement. So, for both newly created and looked up labels, we mark
645 // them as resolved.
646 Label->setMSAsmLabelResolved();
647 }
648 // Adjust their location for being able to generate accurate diagnostics.
649 Label->setLocation(Location);
650
651 return Label;
652 }
653