1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the SelectionDAGISel class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/GCStrategy.h"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/GCMetadata.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
33 #include "llvm/CodeGen/SchedulerRegistry.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGISel.h"
36 #include "llvm/CodeGen/WinEHFuncInfo.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfo.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/MC/MCAsmInfo.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/Timer.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetInstrInfo.h"
53 #include "llvm/Target/TargetIntrinsicInfo.h"
54 #include "llvm/Target/TargetLowering.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include "llvm/Target/TargetOptions.h"
57 #include "llvm/Target/TargetRegisterInfo.h"
58 #include "llvm/Target/TargetSubtargetInfo.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include <algorithm>
61 using namespace llvm;
62
63 #define DEBUG_TYPE "isel"
64
65 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
66 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
67 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
68 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
69 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
70 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
71 STATISTIC(NumFastIselFailLowerArguments,
72 "Number of entry blocks where fast isel failed to lower arguments");
73
74 #ifndef NDEBUG
75 static cl::opt<bool>
76 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
77 cl::desc("Enable extra verbose messages in the \"fast\" "
78 "instruction selector"));
79
80 // Terminators
81 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
82 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
83 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
84 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
85 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
86 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
87 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
88
89 // Standard binary operators...
90 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
91 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
92 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
93 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
94 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
95 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
96 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
97 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
98 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
99 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
100 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
101 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
102
103 // Logical operators...
104 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
105 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
106 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
107
108 // Memory instructions...
109 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
110 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
111 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
112 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
113 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
114 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
115 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
116
117 // Convert instructions...
118 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
119 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
120 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
121 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
122 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
123 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
124 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
125 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
126 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
127 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
128 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
129 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
130
131 // Other instructions...
132 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
133 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
134 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
135 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
136 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
137 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
138 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
139 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
140 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
141 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
142 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
143 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
144 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
145 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
146 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
147
148 // Intrinsic instructions...
149 STATISTIC(NumFastIselFailIntrinsicCall, "Fast isel fails on Intrinsic call");
150 STATISTIC(NumFastIselFailSAddWithOverflow,
151 "Fast isel fails on sadd.with.overflow");
152 STATISTIC(NumFastIselFailUAddWithOverflow,
153 "Fast isel fails on uadd.with.overflow");
154 STATISTIC(NumFastIselFailSSubWithOverflow,
155 "Fast isel fails on ssub.with.overflow");
156 STATISTIC(NumFastIselFailUSubWithOverflow,
157 "Fast isel fails on usub.with.overflow");
158 STATISTIC(NumFastIselFailSMulWithOverflow,
159 "Fast isel fails on smul.with.overflow");
160 STATISTIC(NumFastIselFailUMulWithOverflow,
161 "Fast isel fails on umul.with.overflow");
162 STATISTIC(NumFastIselFailFrameaddress, "Fast isel fails on Frameaddress");
163 STATISTIC(NumFastIselFailSqrt, "Fast isel fails on sqrt call");
164 STATISTIC(NumFastIselFailStackMap, "Fast isel fails on StackMap call");
165 STATISTIC(NumFastIselFailPatchPoint, "Fast isel fails on PatchPoint call");
166 #endif
167
168 static cl::opt<bool>
169 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
170 cl::desc("Enable verbose messages in the \"fast\" "
171 "instruction selector"));
172 static cl::opt<int> EnableFastISelAbort(
173 "fast-isel-abort", cl::Hidden,
174 cl::desc("Enable abort calls when \"fast\" instruction selection "
175 "fails to lower an instruction: 0 disable the abort, 1 will "
176 "abort but for args, calls and terminators, 2 will also "
177 "abort for argument lowering, and 3 will never fallback "
178 "to SelectionDAG."));
179
180 static cl::opt<bool>
181 UseMBPI("use-mbpi",
182 cl::desc("use Machine Branch Probability Info"),
183 cl::init(true), cl::Hidden);
184
185 #ifndef NDEBUG
186 static cl::opt<std::string>
187 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
188 cl::desc("Only display the basic block whose name "
189 "matches this for all view-*-dags options"));
190 static cl::opt<bool>
191 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
192 cl::desc("Pop up a window to show dags before the first "
193 "dag combine pass"));
194 static cl::opt<bool>
195 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
196 cl::desc("Pop up a window to show dags before legalize types"));
197 static cl::opt<bool>
198 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
199 cl::desc("Pop up a window to show dags before legalize"));
200 static cl::opt<bool>
201 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
202 cl::desc("Pop up a window to show dags before the second "
203 "dag combine pass"));
204 static cl::opt<bool>
205 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
206 cl::desc("Pop up a window to show dags before the post legalize types"
207 " dag combine pass"));
208 static cl::opt<bool>
209 ViewISelDAGs("view-isel-dags", cl::Hidden,
210 cl::desc("Pop up a window to show isel dags as they are selected"));
211 static cl::opt<bool>
212 ViewSchedDAGs("view-sched-dags", cl::Hidden,
213 cl::desc("Pop up a window to show sched dags as they are processed"));
214 static cl::opt<bool>
215 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
216 cl::desc("Pop up a window to show SUnit dags after they are processed"));
217 #else
218 static const bool ViewDAGCombine1 = false,
219 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
220 ViewDAGCombine2 = false,
221 ViewDAGCombineLT = false,
222 ViewISelDAGs = false, ViewSchedDAGs = false,
223 ViewSUnitDAGs = false;
224 #endif
225
226 //===---------------------------------------------------------------------===//
227 ///
228 /// RegisterScheduler class - Track the registration of instruction schedulers.
229 ///
230 //===---------------------------------------------------------------------===//
231 MachinePassRegistry RegisterScheduler::Registry;
232
233 //===---------------------------------------------------------------------===//
234 ///
235 /// ISHeuristic command line option for instruction schedulers.
236 ///
237 //===---------------------------------------------------------------------===//
238 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
239 RegisterPassParser<RegisterScheduler> >
240 ISHeuristic("pre-RA-sched",
241 cl::init(&createDefaultScheduler), cl::Hidden,
242 cl::desc("Instruction schedulers available (before register"
243 " allocation):"));
244
245 static RegisterScheduler
246 defaultListDAGScheduler("default", "Best scheduler for the target",
247 createDefaultScheduler);
248
249 namespace llvm {
250 //===--------------------------------------------------------------------===//
251 /// \brief This class is used by SelectionDAGISel to temporarily override
252 /// the optimization level on a per-function basis.
253 class OptLevelChanger {
254 SelectionDAGISel &IS;
255 CodeGenOpt::Level SavedOptLevel;
256 bool SavedFastISel;
257
258 public:
OptLevelChanger(SelectionDAGISel & ISel,CodeGenOpt::Level NewOptLevel)259 OptLevelChanger(SelectionDAGISel &ISel,
260 CodeGenOpt::Level NewOptLevel) : IS(ISel) {
261 SavedOptLevel = IS.OptLevel;
262 if (NewOptLevel == SavedOptLevel)
263 return;
264 IS.OptLevel = NewOptLevel;
265 IS.TM.setOptLevel(NewOptLevel);
266 SavedFastISel = IS.TM.Options.EnableFastISel;
267 if (NewOptLevel == CodeGenOpt::None)
268 IS.TM.setFastISel(true);
269 DEBUG(dbgs() << "\nChanging optimization level for Function "
270 << IS.MF->getFunction()->getName() << "\n");
271 DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel
272 << " ; After: -O" << NewOptLevel << "\n");
273 }
274
~OptLevelChanger()275 ~OptLevelChanger() {
276 if (IS.OptLevel == SavedOptLevel)
277 return;
278 DEBUG(dbgs() << "\nRestoring optimization level for Function "
279 << IS.MF->getFunction()->getName() << "\n");
280 DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel
281 << " ; After: -O" << SavedOptLevel << "\n");
282 IS.OptLevel = SavedOptLevel;
283 IS.TM.setOptLevel(SavedOptLevel);
284 IS.TM.setFastISel(SavedFastISel);
285 }
286 };
287
288 //===--------------------------------------------------------------------===//
289 /// createDefaultScheduler - This creates an instruction scheduler appropriate
290 /// for the target.
createDefaultScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)291 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
292 CodeGenOpt::Level OptLevel) {
293 const TargetLowering *TLI = IS->TLI;
294 const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
295
296 if (OptLevel == CodeGenOpt::None ||
297 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
298 TLI->getSchedulingPreference() == Sched::Source)
299 return createSourceListDAGScheduler(IS, OptLevel);
300 if (TLI->getSchedulingPreference() == Sched::RegPressure)
301 return createBURRListDAGScheduler(IS, OptLevel);
302 if (TLI->getSchedulingPreference() == Sched::Hybrid)
303 return createHybridListDAGScheduler(IS, OptLevel);
304 if (TLI->getSchedulingPreference() == Sched::VLIW)
305 return createVLIWDAGScheduler(IS, OptLevel);
306 assert(TLI->getSchedulingPreference() == Sched::ILP &&
307 "Unknown sched type!");
308 return createILPListDAGScheduler(IS, OptLevel);
309 }
310 }
311
312 // EmitInstrWithCustomInserter - This method should be implemented by targets
313 // that mark instructions with the 'usesCustomInserter' flag. These
314 // instructions are special in various ways, which require special support to
315 // insert. The specified MachineInstr is created but not inserted into any
316 // basic blocks, and this method is called to expand it into a sequence of
317 // instructions, potentially also creating new basic blocks and control flow.
318 // When new basic blocks are inserted and the edges from MBB to its successors
319 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
320 // DenseMap.
321 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * MBB) const322 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
323 MachineBasicBlock *MBB) const {
324 #ifndef NDEBUG
325 dbgs() << "If a target marks an instruction with "
326 "'usesCustomInserter', it must implement "
327 "TargetLowering::EmitInstrWithCustomInserter!";
328 #endif
329 llvm_unreachable(nullptr);
330 }
331
AdjustInstrPostInstrSelection(MachineInstr * MI,SDNode * Node) const332 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
333 SDNode *Node) const {
334 assert(!MI->hasPostISelHook() &&
335 "If a target marks an instruction with 'hasPostISelHook', "
336 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
337 }
338
339 //===----------------------------------------------------------------------===//
340 // SelectionDAGISel code
341 //===----------------------------------------------------------------------===//
342
SelectionDAGISel(TargetMachine & tm,CodeGenOpt::Level OL)343 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
344 CodeGenOpt::Level OL) :
345 MachineFunctionPass(ID), TM(tm),
346 FuncInfo(new FunctionLoweringInfo()),
347 CurDAG(new SelectionDAG(tm, OL)),
348 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
349 GFI(),
350 OptLevel(OL),
351 DAGSize(0) {
352 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
353 initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
354 initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
355 initializeTargetLibraryInfoWrapperPassPass(
356 *PassRegistry::getPassRegistry());
357 }
358
~SelectionDAGISel()359 SelectionDAGISel::~SelectionDAGISel() {
360 delete SDB;
361 delete CurDAG;
362 delete FuncInfo;
363 }
364
getAnalysisUsage(AnalysisUsage & AU) const365 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
366 AU.addRequired<AliasAnalysis>();
367 AU.addPreserved<AliasAnalysis>();
368 AU.addRequired<GCModuleInfo>();
369 AU.addPreserved<GCModuleInfo>();
370 AU.addRequired<TargetLibraryInfoWrapperPass>();
371 if (UseMBPI && OptLevel != CodeGenOpt::None)
372 AU.addRequired<BranchProbabilityInfo>();
373 MachineFunctionPass::getAnalysisUsage(AU);
374 }
375
376 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
377 /// may trap on it. In this case we have to split the edge so that the path
378 /// through the predecessor block that doesn't go to the phi block doesn't
379 /// execute the possibly trapping instruction.
380 ///
381 /// This is required for correctness, so it must be done at -O0.
382 ///
SplitCriticalSideEffectEdges(Function & Fn,AliasAnalysis * AA)383 static void SplitCriticalSideEffectEdges(Function &Fn, AliasAnalysis *AA) {
384 // Loop for blocks with phi nodes.
385 for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
386 PHINode *PN = dyn_cast<PHINode>(BB->begin());
387 if (!PN) continue;
388
389 ReprocessBlock:
390 // For each block with a PHI node, check to see if any of the input values
391 // are potentially trapping constant expressions. Constant expressions are
392 // the only potentially trapping value that can occur as the argument to a
393 // PHI.
394 for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
395 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
396 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
397 if (!CE || !CE->canTrap()) continue;
398
399 // The only case we have to worry about is when the edge is critical.
400 // Since this block has a PHI Node, we assume it has multiple input
401 // edges: check to see if the pred has multiple successors.
402 BasicBlock *Pred = PN->getIncomingBlock(i);
403 if (Pred->getTerminator()->getNumSuccessors() == 1)
404 continue;
405
406 // Okay, we have to split this edge.
407 SplitCriticalEdge(
408 Pred->getTerminator(), GetSuccessorNumber(Pred, BB),
409 CriticalEdgeSplittingOptions(AA).setMergeIdenticalEdges());
410 goto ReprocessBlock;
411 }
412 }
413 }
414
runOnMachineFunction(MachineFunction & mf)415 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
416 // Do some sanity-checking on the command-line options.
417 assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
418 "-fast-isel-verbose requires -fast-isel");
419 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
420 "-fast-isel-abort > 0 requires -fast-isel");
421
422 const Function &Fn = *mf.getFunction();
423 MF = &mf;
424
425 // Reset the target options before resetting the optimization
426 // level below.
427 // FIXME: This is a horrible hack and should be processed via
428 // codegen looking at the optimization level explicitly when
429 // it wants to look at it.
430 TM.resetTargetOptions(Fn);
431 // Reset OptLevel to None for optnone functions.
432 CodeGenOpt::Level NewOptLevel = OptLevel;
433 if (Fn.hasFnAttribute(Attribute::OptimizeNone))
434 NewOptLevel = CodeGenOpt::None;
435 OptLevelChanger OLC(*this, NewOptLevel);
436
437 TII = MF->getSubtarget().getInstrInfo();
438 TLI = MF->getSubtarget().getTargetLowering();
439 RegInfo = &MF->getRegInfo();
440 AA = &getAnalysis<AliasAnalysis>();
441 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
442 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
443
444 DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
445
446 SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), AA);
447
448 CurDAG->init(*MF);
449 FuncInfo->set(Fn, *MF, CurDAG);
450
451 if (UseMBPI && OptLevel != CodeGenOpt::None)
452 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
453 else
454 FuncInfo->BPI = nullptr;
455
456 SDB->init(GFI, *AA, LibInfo);
457
458 MF->setHasInlineAsm(false);
459
460 SelectAllBasicBlocks(Fn);
461
462 // If the first basic block in the function has live ins that need to be
463 // copied into vregs, emit the copies into the top of the block before
464 // emitting the code for the block.
465 MachineBasicBlock *EntryMBB = MF->begin();
466 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
467 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
468
469 DenseMap<unsigned, unsigned> LiveInMap;
470 if (!FuncInfo->ArgDbgValues.empty())
471 for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
472 E = RegInfo->livein_end(); LI != E; ++LI)
473 if (LI->second)
474 LiveInMap.insert(std::make_pair(LI->first, LI->second));
475
476 // Insert DBG_VALUE instructions for function arguments to the entry block.
477 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
478 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
479 bool hasFI = MI->getOperand(0).isFI();
480 unsigned Reg =
481 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
482 if (TargetRegisterInfo::isPhysicalRegister(Reg))
483 EntryMBB->insert(EntryMBB->begin(), MI);
484 else {
485 MachineInstr *Def = RegInfo->getVRegDef(Reg);
486 if (Def) {
487 MachineBasicBlock::iterator InsertPos = Def;
488 // FIXME: VR def may not be in entry block.
489 Def->getParent()->insert(std::next(InsertPos), MI);
490 } else
491 DEBUG(dbgs() << "Dropping debug info for dead vreg"
492 << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
493 }
494
495 // If Reg is live-in then update debug info to track its copy in a vreg.
496 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
497 if (LDI != LiveInMap.end()) {
498 assert(!hasFI && "There's no handling of frame pointer updating here yet "
499 "- add if needed");
500 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
501 MachineBasicBlock::iterator InsertPos = Def;
502 const MDNode *Variable = MI->getDebugVariable();
503 const MDNode *Expr = MI->getDebugExpression();
504 DebugLoc DL = MI->getDebugLoc();
505 bool IsIndirect = MI->isIndirectDebugValue();
506 unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
507 assert(cast<MDLocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
508 "Expected inlined-at fields to agree");
509 // Def is never a terminator here, so it is ok to increment InsertPos.
510 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
511 IsIndirect, LDI->second, Offset, Variable, Expr);
512
513 // If this vreg is directly copied into an exported register then
514 // that COPY instructions also need DBG_VALUE, if it is the only
515 // user of LDI->second.
516 MachineInstr *CopyUseMI = nullptr;
517 for (MachineRegisterInfo::use_instr_iterator
518 UI = RegInfo->use_instr_begin(LDI->second),
519 E = RegInfo->use_instr_end(); UI != E; ) {
520 MachineInstr *UseMI = &*(UI++);
521 if (UseMI->isDebugValue()) continue;
522 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
523 CopyUseMI = UseMI; continue;
524 }
525 // Otherwise this is another use or second copy use.
526 CopyUseMI = nullptr; break;
527 }
528 if (CopyUseMI) {
529 // Use MI's debug location, which describes where Variable was
530 // declared, rather than whatever is attached to CopyUseMI.
531 MachineInstr *NewMI =
532 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
533 CopyUseMI->getOperand(0).getReg(), Offset, Variable, Expr);
534 MachineBasicBlock::iterator Pos = CopyUseMI;
535 EntryMBB->insertAfter(Pos, NewMI);
536 }
537 }
538 }
539
540 // Determine if there are any calls in this machine function.
541 MachineFrameInfo *MFI = MF->getFrameInfo();
542 for (const auto &MBB : *MF) {
543 if (MFI->hasCalls() && MF->hasInlineAsm())
544 break;
545
546 for (const auto &MI : MBB) {
547 const MCInstrDesc &MCID = TII->get(MI.getOpcode());
548 if ((MCID.isCall() && !MCID.isReturn()) ||
549 MI.isStackAligningInlineAsm()) {
550 MFI->setHasCalls(true);
551 }
552 if (MI.isInlineAsm()) {
553 MF->setHasInlineAsm(true);
554 }
555 }
556 }
557
558 // Determine if there is a call to setjmp in the machine function.
559 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
560
561 // Replace forward-declared registers with the registers containing
562 // the desired value.
563 MachineRegisterInfo &MRI = MF->getRegInfo();
564 for (DenseMap<unsigned, unsigned>::iterator
565 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
566 I != E; ++I) {
567 unsigned From = I->first;
568 unsigned To = I->second;
569 // If To is also scheduled to be replaced, find what its ultimate
570 // replacement is.
571 for (;;) {
572 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
573 if (J == E) break;
574 To = J->second;
575 }
576 // Make sure the new register has a sufficiently constrained register class.
577 if (TargetRegisterInfo::isVirtualRegister(From) &&
578 TargetRegisterInfo::isVirtualRegister(To))
579 MRI.constrainRegClass(To, MRI.getRegClass(From));
580 // Replace it.
581 MRI.replaceRegWith(From, To);
582 }
583
584 // Freeze the set of reserved registers now that MachineFrameInfo has been
585 // set up. All the information required by getReservedRegs() should be
586 // available now.
587 MRI.freezeReservedRegs(*MF);
588
589 // Release function-specific state. SDB and CurDAG are already cleared
590 // at this point.
591 FuncInfo->clear();
592
593 DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
594 DEBUG(MF->print(dbgs()));
595
596 return true;
597 }
598
SelectBasicBlock(BasicBlock::const_iterator Begin,BasicBlock::const_iterator End,bool & HadTailCall)599 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
600 BasicBlock::const_iterator End,
601 bool &HadTailCall) {
602 // Lower the instructions. If a call is emitted as a tail call, cease emitting
603 // nodes for this block.
604 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
605 SDB->visit(*I);
606
607 // Make sure the root of the DAG is up-to-date.
608 CurDAG->setRoot(SDB->getControlRoot());
609 HadTailCall = SDB->HasTailCall;
610 SDB->clear();
611
612 // Final step, emit the lowered DAG as machine code.
613 CodeGenAndEmitDAG();
614 }
615
ComputeLiveOutVRegInfo()616 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
617 SmallPtrSet<SDNode*, 128> VisitedNodes;
618 SmallVector<SDNode*, 128> Worklist;
619
620 Worklist.push_back(CurDAG->getRoot().getNode());
621
622 APInt KnownZero;
623 APInt KnownOne;
624
625 do {
626 SDNode *N = Worklist.pop_back_val();
627
628 // If we've already seen this node, ignore it.
629 if (!VisitedNodes.insert(N).second)
630 continue;
631
632 // Otherwise, add all chain operands to the worklist.
633 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
634 if (N->getOperand(i).getValueType() == MVT::Other)
635 Worklist.push_back(N->getOperand(i).getNode());
636
637 // If this is a CopyToReg with a vreg dest, process it.
638 if (N->getOpcode() != ISD::CopyToReg)
639 continue;
640
641 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
642 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
643 continue;
644
645 // Ignore non-scalar or non-integer values.
646 SDValue Src = N->getOperand(2);
647 EVT SrcVT = Src.getValueType();
648 if (!SrcVT.isInteger() || SrcVT.isVector())
649 continue;
650
651 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
652 CurDAG->computeKnownBits(Src, KnownZero, KnownOne);
653 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
654 } while (!Worklist.empty());
655 }
656
CodeGenAndEmitDAG()657 void SelectionDAGISel::CodeGenAndEmitDAG() {
658 std::string GroupName;
659 if (TimePassesIsEnabled)
660 GroupName = "Instruction Selection and Scheduling";
661 std::string BlockName;
662 int BlockNumber = -1;
663 (void)BlockNumber;
664 bool MatchFilterBB = false; (void)MatchFilterBB;
665 #ifndef NDEBUG
666 MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
667 FilterDAGBasicBlockName ==
668 FuncInfo->MBB->getBasicBlock()->getName().str());
669 #endif
670 #ifdef NDEBUG
671 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
672 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
673 ViewSUnitDAGs)
674 #endif
675 {
676 BlockNumber = FuncInfo->MBB->getNumber();
677 BlockName =
678 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
679 }
680 DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
681 << " '" << BlockName << "'\n"; CurDAG->dump());
682
683 if (ViewDAGCombine1 && MatchFilterBB)
684 CurDAG->viewGraph("dag-combine1 input for " + BlockName);
685
686 // Run the DAG combiner in pre-legalize mode.
687 {
688 NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
689 CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
690 }
691
692 DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
693 << " '" << BlockName << "'\n"; CurDAG->dump());
694
695 // Second step, hack on the DAG until it only uses operations and types that
696 // the target supports.
697 if (ViewLegalizeTypesDAGs && MatchFilterBB)
698 CurDAG->viewGraph("legalize-types input for " + BlockName);
699
700 bool Changed;
701 {
702 NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
703 Changed = CurDAG->LegalizeTypes();
704 }
705
706 DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
707 << " '" << BlockName << "'\n"; CurDAG->dump());
708
709 CurDAG->NewNodesMustHaveLegalTypes = true;
710
711 if (Changed) {
712 if (ViewDAGCombineLT && MatchFilterBB)
713 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
714
715 // Run the DAG combiner in post-type-legalize mode.
716 {
717 NamedRegionTimer T("DAG Combining after legalize types", GroupName,
718 TimePassesIsEnabled);
719 CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
720 }
721
722 DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
723 << " '" << BlockName << "'\n"; CurDAG->dump());
724
725 }
726
727 {
728 NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
729 Changed = CurDAG->LegalizeVectors();
730 }
731
732 if (Changed) {
733 {
734 NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
735 CurDAG->LegalizeTypes();
736 }
737
738 if (ViewDAGCombineLT && MatchFilterBB)
739 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
740
741 // Run the DAG combiner in post-type-legalize mode.
742 {
743 NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
744 TimePassesIsEnabled);
745 CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
746 }
747
748 DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
749 << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
750 }
751
752 if (ViewLegalizeDAGs && MatchFilterBB)
753 CurDAG->viewGraph("legalize input for " + BlockName);
754
755 {
756 NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
757 CurDAG->Legalize();
758 }
759
760 DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
761 << " '" << BlockName << "'\n"; CurDAG->dump());
762
763 if (ViewDAGCombine2 && MatchFilterBB)
764 CurDAG->viewGraph("dag-combine2 input for " + BlockName);
765
766 // Run the DAG combiner in post-legalize mode.
767 {
768 NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
769 CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
770 }
771
772 DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
773 << " '" << BlockName << "'\n"; CurDAG->dump());
774
775 if (OptLevel != CodeGenOpt::None)
776 ComputeLiveOutVRegInfo();
777
778 if (ViewISelDAGs && MatchFilterBB)
779 CurDAG->viewGraph("isel input for " + BlockName);
780
781 // Third, instruction select all of the operations to machine code, adding the
782 // code to the MachineBasicBlock.
783 {
784 NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
785 DoInstructionSelection();
786 }
787
788 DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
789 << " '" << BlockName << "'\n"; CurDAG->dump());
790
791 if (ViewSchedDAGs && MatchFilterBB)
792 CurDAG->viewGraph("scheduler input for " + BlockName);
793
794 // Schedule machine code.
795 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
796 {
797 NamedRegionTimer T("Instruction Scheduling", GroupName,
798 TimePassesIsEnabled);
799 Scheduler->Run(CurDAG, FuncInfo->MBB);
800 }
801
802 if (ViewSUnitDAGs && MatchFilterBB) Scheduler->viewGraph();
803
804 // Emit machine code to BB. This can change 'BB' to the last block being
805 // inserted into.
806 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
807 {
808 NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
809
810 // FuncInfo->InsertPt is passed by reference and set to the end of the
811 // scheduled instructions.
812 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
813 }
814
815 // If the block was split, make sure we update any references that are used to
816 // update PHI nodes later on.
817 if (FirstMBB != LastMBB)
818 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
819
820 // Free the scheduler state.
821 {
822 NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
823 TimePassesIsEnabled);
824 delete Scheduler;
825 }
826
827 // Free the SelectionDAG state, now that we're finished with it.
828 CurDAG->clear();
829 }
830
831 namespace {
832 /// ISelUpdater - helper class to handle updates of the instruction selection
833 /// graph.
834 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
835 SelectionDAG::allnodes_iterator &ISelPosition;
836 public:
ISelUpdater(SelectionDAG & DAG,SelectionDAG::allnodes_iterator & isp)837 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
838 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
839
840 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
841 /// deleted is the current ISelPosition node, update ISelPosition.
842 ///
NodeDeleted(SDNode * N,SDNode * E)843 void NodeDeleted(SDNode *N, SDNode *E) override {
844 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
845 ++ISelPosition;
846 }
847 };
848 } // end anonymous namespace
849
DoInstructionSelection()850 void SelectionDAGISel::DoInstructionSelection() {
851 DEBUG(dbgs() << "===== Instruction selection begins: BB#"
852 << FuncInfo->MBB->getNumber()
853 << " '" << FuncInfo->MBB->getName() << "'\n");
854
855 PreprocessISelDAG();
856
857 // Select target instructions for the DAG.
858 {
859 // Number all nodes with a topological order and set DAGSize.
860 DAGSize = CurDAG->AssignTopologicalOrder();
861
862 // Create a dummy node (which is not added to allnodes), that adds
863 // a reference to the root node, preventing it from being deleted,
864 // and tracking any changes of the root.
865 HandleSDNode Dummy(CurDAG->getRoot());
866 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
867 ++ISelPosition;
868
869 // Make sure that ISelPosition gets properly updated when nodes are deleted
870 // in calls made from this function.
871 ISelUpdater ISU(*CurDAG, ISelPosition);
872
873 // The AllNodes list is now topological-sorted. Visit the
874 // nodes by starting at the end of the list (the root of the
875 // graph) and preceding back toward the beginning (the entry
876 // node).
877 while (ISelPosition != CurDAG->allnodes_begin()) {
878 SDNode *Node = --ISelPosition;
879 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
880 // but there are currently some corner cases that it misses. Also, this
881 // makes it theoretically possible to disable the DAGCombiner.
882 if (Node->use_empty())
883 continue;
884
885 SDNode *ResNode = Select(Node);
886
887 // FIXME: This is pretty gross. 'Select' should be changed to not return
888 // anything at all and this code should be nuked with a tactical strike.
889
890 // If node should not be replaced, continue with the next one.
891 if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
892 continue;
893 // Replace node.
894 if (ResNode) {
895 ReplaceUses(Node, ResNode);
896 }
897
898 // If after the replacement this node is not used any more,
899 // remove this dead node.
900 if (Node->use_empty()) // Don't delete EntryToken, etc.
901 CurDAG->RemoveDeadNode(Node);
902 }
903
904 CurDAG->setRoot(Dummy.getValue());
905 }
906
907 DEBUG(dbgs() << "===== Instruction selection ends:\n");
908
909 PostprocessISelDAG();
910 }
911
912 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
913 /// do other setup for EH landing-pad blocks.
PrepareEHLandingPad()914 void SelectionDAGISel::PrepareEHLandingPad() {
915 MachineBasicBlock *MBB = FuncInfo->MBB;
916
917 const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy());
918
919 // Add a label to mark the beginning of the landing pad. Deletion of the
920 // landing pad can thus be detected via the MachineModuleInfo.
921 MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
922
923 // Assign the call site to the landing pad's begin label.
924 MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
925
926 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
927 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
928 .addSym(Label);
929
930 // If this is an MSVC-style personality function, we need to split the landing
931 // pad into several BBs.
932 const BasicBlock *LLVMBB = MBB->getBasicBlock();
933 const LandingPadInst *LPadInst = LLVMBB->getLandingPadInst();
934 MF->getMMI().addPersonality(
935 MBB, cast<Function>(LPadInst->getPersonalityFn()->stripPointerCasts()));
936 EHPersonality Personality = MF->getMMI().getPersonalityType();
937
938 if (isMSVCEHPersonality(Personality)) {
939 SmallVector<MachineBasicBlock *, 4> ClauseBBs;
940 const IntrinsicInst *Actions =
941 dyn_cast<IntrinsicInst>(LLVMBB->getFirstInsertionPt());
942 // Get all invoke BBs that unwind to this landingpad.
943 SmallVector<MachineBasicBlock *, 4> InvokeBBs(MBB->pred_begin(),
944 MBB->pred_end());
945 if (Actions && Actions->getIntrinsicID() == Intrinsic::eh_actions) {
946 // If this is a call to llvm.eh.actions followed by indirectbr, then we've
947 // run WinEHPrepare, and we should remove this block from the machine CFG.
948 // Mark the targets of the indirectbr as landingpads instead.
949 for (const BasicBlock *LLVMSucc : successors(LLVMBB)) {
950 MachineBasicBlock *ClauseBB = FuncInfo->MBBMap[LLVMSucc];
951 // Add the edge from the invoke to the clause.
952 for (MachineBasicBlock *InvokeBB : InvokeBBs)
953 InvokeBB->addSuccessor(ClauseBB);
954 }
955 } else {
956 // Otherwise, we haven't done the preparation, and we need to invent some
957 // clause basic blocks that branch into the landingpad.
958 // FIXME: Remove this code once SEH preparation works.
959
960 // Make virtual registers and a series of labels that fill in values for
961 // the clauses.
962 auto &RI = MF->getRegInfo();
963 FuncInfo->ExceptionSelectorVirtReg = RI.createVirtualRegister(PtrRC);
964
965 // Emit separate machine basic blocks with separate labels for each clause
966 // before the main landing pad block.
967 MachineInstrBuilder SelectorPHI = BuildMI(
968 *MBB, MBB->begin(), SDB->getCurDebugLoc(),
969 TII->get(TargetOpcode::PHI), FuncInfo->ExceptionSelectorVirtReg);
970 for (unsigned I = 0, E = LPadInst->getNumClauses(); I != E; ++I) {
971 // Skip filter clauses, we can't implement them.
972 if (LPadInst->isFilter(I))
973 continue;
974
975 MachineBasicBlock *ClauseBB = MF->CreateMachineBasicBlock(LLVMBB);
976 MF->insert(MBB, ClauseBB);
977
978 // Add the edge from the invoke to the clause.
979 for (MachineBasicBlock *InvokeBB : InvokeBBs)
980 InvokeBB->addSuccessor(ClauseBB);
981
982 // Mark the clause as a landing pad or MI passes will delete it.
983 ClauseBB->setIsLandingPad();
984
985 GlobalValue *ClauseGV = ExtractTypeInfo(LPadInst->getClause(I));
986
987 // Start the BB with a label.
988 MCSymbol *ClauseLabel = MF->getMMI().addClauseForLandingPad(MBB);
989 BuildMI(*ClauseBB, ClauseBB->begin(), SDB->getCurDebugLoc(), II)
990 .addSym(ClauseLabel);
991
992 // Construct a simple BB that defines a register with the typeid
993 // constant.
994 FuncInfo->MBB = ClauseBB;
995 FuncInfo->InsertPt = ClauseBB->end();
996 unsigned VReg = SDB->visitLandingPadClauseBB(ClauseGV, MBB);
997 CurDAG->setRoot(SDB->getRoot());
998 SDB->clear();
999 CodeGenAndEmitDAG();
1000
1001 // Add the typeid virtual register to the phi in the main landing pad.
1002 SelectorPHI.addReg(VReg).addMBB(ClauseBB);
1003 }
1004 }
1005
1006 // Remove the edge from the invoke to the lpad.
1007 for (MachineBasicBlock *InvokeBB : InvokeBBs)
1008 InvokeBB->removeSuccessor(MBB);
1009
1010 // Restore FuncInfo back to its previous state and select the main landing
1011 // pad block.
1012 FuncInfo->MBB = MBB;
1013 FuncInfo->InsertPt = MBB->end();
1014
1015 // Transfer EH state number assigned to the IR block to the MBB.
1016 if (Personality == EHPersonality::MSVC_CXX) {
1017 WinEHFuncInfo &FI = MF->getMMI().getWinEHFuncInfo(MF->getFunction());
1018 MF->getMMI().addWinEHState(MBB, FI.LandingPadStateMap[LPadInst]);
1019 }
1020 return;
1021 }
1022
1023 // Mark exception register as live in.
1024 if (unsigned Reg = TLI->getExceptionPointerRegister())
1025 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1026
1027 // Mark exception selector register as live in.
1028 if (unsigned Reg = TLI->getExceptionSelectorRegister())
1029 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1030 }
1031
1032 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
1033 /// side-effect free and is either dead or folded into a generated instruction.
1034 /// Return false if it needs to be emitted.
isFoldedOrDeadInstruction(const Instruction * I,FunctionLoweringInfo * FuncInfo)1035 static bool isFoldedOrDeadInstruction(const Instruction *I,
1036 FunctionLoweringInfo *FuncInfo) {
1037 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1038 !isa<TerminatorInst>(I) && // Terminators aren't folded.
1039 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1040 !isa<LandingPadInst>(I) && // Landingpad instructions aren't folded.
1041 !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
1042 }
1043
1044 #ifndef NDEBUG
1045 // Collect per Instruction statistics for fast-isel misses. Only those
1046 // instructions that cause the bail are accounted for. It does not account for
1047 // instructions higher in the block. Thus, summing the per instructions stats
1048 // will not add up to what is reported by NumFastIselFailures.
collectFailStats(const Instruction * I)1049 static void collectFailStats(const Instruction *I) {
1050 switch (I->getOpcode()) {
1051 default: assert (0 && "<Invalid operator> ");
1052
1053 // Terminators
1054 case Instruction::Ret: NumFastIselFailRet++; return;
1055 case Instruction::Br: NumFastIselFailBr++; return;
1056 case Instruction::Switch: NumFastIselFailSwitch++; return;
1057 case Instruction::IndirectBr: NumFastIselFailIndirectBr++; return;
1058 case Instruction::Invoke: NumFastIselFailInvoke++; return;
1059 case Instruction::Resume: NumFastIselFailResume++; return;
1060 case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
1061
1062 // Standard binary operators...
1063 case Instruction::Add: NumFastIselFailAdd++; return;
1064 case Instruction::FAdd: NumFastIselFailFAdd++; return;
1065 case Instruction::Sub: NumFastIselFailSub++; return;
1066 case Instruction::FSub: NumFastIselFailFSub++; return;
1067 case Instruction::Mul: NumFastIselFailMul++; return;
1068 case Instruction::FMul: NumFastIselFailFMul++; return;
1069 case Instruction::UDiv: NumFastIselFailUDiv++; return;
1070 case Instruction::SDiv: NumFastIselFailSDiv++; return;
1071 case Instruction::FDiv: NumFastIselFailFDiv++; return;
1072 case Instruction::URem: NumFastIselFailURem++; return;
1073 case Instruction::SRem: NumFastIselFailSRem++; return;
1074 case Instruction::FRem: NumFastIselFailFRem++; return;
1075
1076 // Logical operators...
1077 case Instruction::And: NumFastIselFailAnd++; return;
1078 case Instruction::Or: NumFastIselFailOr++; return;
1079 case Instruction::Xor: NumFastIselFailXor++; return;
1080
1081 // Memory instructions...
1082 case Instruction::Alloca: NumFastIselFailAlloca++; return;
1083 case Instruction::Load: NumFastIselFailLoad++; return;
1084 case Instruction::Store: NumFastIselFailStore++; return;
1085 case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
1086 case Instruction::AtomicRMW: NumFastIselFailAtomicRMW++; return;
1087 case Instruction::Fence: NumFastIselFailFence++; return;
1088 case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
1089
1090 // Convert instructions...
1091 case Instruction::Trunc: NumFastIselFailTrunc++; return;
1092 case Instruction::ZExt: NumFastIselFailZExt++; return;
1093 case Instruction::SExt: NumFastIselFailSExt++; return;
1094 case Instruction::FPTrunc: NumFastIselFailFPTrunc++; return;
1095 case Instruction::FPExt: NumFastIselFailFPExt++; return;
1096 case Instruction::FPToUI: NumFastIselFailFPToUI++; return;
1097 case Instruction::FPToSI: NumFastIselFailFPToSI++; return;
1098 case Instruction::UIToFP: NumFastIselFailUIToFP++; return;
1099 case Instruction::SIToFP: NumFastIselFailSIToFP++; return;
1100 case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
1101 case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
1102 case Instruction::BitCast: NumFastIselFailBitCast++; return;
1103
1104 // Other instructions...
1105 case Instruction::ICmp: NumFastIselFailICmp++; return;
1106 case Instruction::FCmp: NumFastIselFailFCmp++; return;
1107 case Instruction::PHI: NumFastIselFailPHI++; return;
1108 case Instruction::Select: NumFastIselFailSelect++; return;
1109 case Instruction::Call: {
1110 if (auto const *Intrinsic = dyn_cast<IntrinsicInst>(I)) {
1111 switch (Intrinsic->getIntrinsicID()) {
1112 default:
1113 NumFastIselFailIntrinsicCall++; return;
1114 case Intrinsic::sadd_with_overflow:
1115 NumFastIselFailSAddWithOverflow++; return;
1116 case Intrinsic::uadd_with_overflow:
1117 NumFastIselFailUAddWithOverflow++; return;
1118 case Intrinsic::ssub_with_overflow:
1119 NumFastIselFailSSubWithOverflow++; return;
1120 case Intrinsic::usub_with_overflow:
1121 NumFastIselFailUSubWithOverflow++; return;
1122 case Intrinsic::smul_with_overflow:
1123 NumFastIselFailSMulWithOverflow++; return;
1124 case Intrinsic::umul_with_overflow:
1125 NumFastIselFailUMulWithOverflow++; return;
1126 case Intrinsic::frameaddress:
1127 NumFastIselFailFrameaddress++; return;
1128 case Intrinsic::sqrt:
1129 NumFastIselFailSqrt++; return;
1130 case Intrinsic::experimental_stackmap:
1131 NumFastIselFailStackMap++; return;
1132 case Intrinsic::experimental_patchpoint_void: // fall-through
1133 case Intrinsic::experimental_patchpoint_i64:
1134 NumFastIselFailPatchPoint++; return;
1135 }
1136 }
1137 NumFastIselFailCall++;
1138 return;
1139 }
1140 case Instruction::Shl: NumFastIselFailShl++; return;
1141 case Instruction::LShr: NumFastIselFailLShr++; return;
1142 case Instruction::AShr: NumFastIselFailAShr++; return;
1143 case Instruction::VAArg: NumFastIselFailVAArg++; return;
1144 case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
1145 case Instruction::InsertElement: NumFastIselFailInsertElement++; return;
1146 case Instruction::ShuffleVector: NumFastIselFailShuffleVector++; return;
1147 case Instruction::ExtractValue: NumFastIselFailExtractValue++; return;
1148 case Instruction::InsertValue: NumFastIselFailInsertValue++; return;
1149 case Instruction::LandingPad: NumFastIselFailLandingPad++; return;
1150 }
1151 }
1152 #endif
1153
SelectAllBasicBlocks(const Function & Fn)1154 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1155 // Initialize the Fast-ISel state, if needed.
1156 FastISel *FastIS = nullptr;
1157 if (TM.Options.EnableFastISel)
1158 FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1159
1160 // Iterate over all basic blocks in the function.
1161 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1162 for (ReversePostOrderTraversal<const Function*>::rpo_iterator
1163 I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
1164 const BasicBlock *LLVMBB = *I;
1165
1166 if (OptLevel != CodeGenOpt::None) {
1167 bool AllPredsVisited = true;
1168 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1169 PI != PE; ++PI) {
1170 if (!FuncInfo->VisitedBBs.count(*PI)) {
1171 AllPredsVisited = false;
1172 break;
1173 }
1174 }
1175
1176 if (AllPredsVisited) {
1177 for (BasicBlock::const_iterator I = LLVMBB->begin();
1178 const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1179 FuncInfo->ComputePHILiveOutRegInfo(PN);
1180 } else {
1181 for (BasicBlock::const_iterator I = LLVMBB->begin();
1182 const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1183 FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1184 }
1185
1186 FuncInfo->VisitedBBs.insert(LLVMBB);
1187 }
1188
1189 BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1190 BasicBlock::const_iterator const End = LLVMBB->end();
1191 BasicBlock::const_iterator BI = End;
1192
1193 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1194 FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1195
1196 // Setup an EH landing-pad block.
1197 FuncInfo->ExceptionPointerVirtReg = 0;
1198 FuncInfo->ExceptionSelectorVirtReg = 0;
1199 if (LLVMBB->isLandingPad())
1200 PrepareEHLandingPad();
1201
1202 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1203 if (FastIS) {
1204 FastIS->startNewBlock();
1205
1206 // Emit code for any incoming arguments. This must happen before
1207 // beginning FastISel on the entry block.
1208 if (LLVMBB == &Fn.getEntryBlock()) {
1209 ++NumEntryBlocks;
1210
1211 // Lower any arguments needed in this block if this is the entry block.
1212 if (!FastIS->lowerArguments()) {
1213 // Fast isel failed to lower these arguments
1214 ++NumFastIselFailLowerArguments;
1215 if (EnableFastISelAbort > 1)
1216 report_fatal_error("FastISel didn't lower all arguments");
1217
1218 // Use SelectionDAG argument lowering
1219 LowerArguments(Fn);
1220 CurDAG->setRoot(SDB->getControlRoot());
1221 SDB->clear();
1222 CodeGenAndEmitDAG();
1223 }
1224
1225 // If we inserted any instructions at the beginning, make a note of
1226 // where they are, so we can be sure to emit subsequent instructions
1227 // after them.
1228 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1229 FastIS->setLastLocalValue(std::prev(FuncInfo->InsertPt));
1230 else
1231 FastIS->setLastLocalValue(nullptr);
1232 }
1233
1234 unsigned NumFastIselRemaining = std::distance(Begin, End);
1235 // Do FastISel on as many instructions as possible.
1236 for (; BI != Begin; --BI) {
1237 const Instruction *Inst = std::prev(BI);
1238
1239 // If we no longer require this instruction, skip it.
1240 if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1241 --NumFastIselRemaining;
1242 continue;
1243 }
1244
1245 // Bottom-up: reset the insert pos at the top, after any local-value
1246 // instructions.
1247 FastIS->recomputeInsertPt();
1248
1249 // Try to select the instruction with FastISel.
1250 if (FastIS->selectInstruction(Inst)) {
1251 --NumFastIselRemaining;
1252 ++NumFastIselSuccess;
1253 // If fast isel succeeded, skip over all the folded instructions, and
1254 // then see if there is a load right before the selected instructions.
1255 // Try to fold the load if so.
1256 const Instruction *BeforeInst = Inst;
1257 while (BeforeInst != Begin) {
1258 BeforeInst = std::prev(BasicBlock::const_iterator(BeforeInst));
1259 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1260 break;
1261 }
1262 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1263 BeforeInst->hasOneUse() &&
1264 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1265 // If we succeeded, don't re-select the load.
1266 BI = std::next(BasicBlock::const_iterator(BeforeInst));
1267 --NumFastIselRemaining;
1268 ++NumFastIselSuccess;
1269 }
1270 continue;
1271 }
1272
1273 #ifndef NDEBUG
1274 if (EnableFastISelVerbose2)
1275 collectFailStats(Inst);
1276 #endif
1277
1278 // Then handle certain instructions as single-LLVM-Instruction blocks.
1279 if (isa<CallInst>(Inst)) {
1280
1281 if (EnableFastISelVerbose || EnableFastISelAbort) {
1282 dbgs() << "FastISel missed call: ";
1283 Inst->dump();
1284 }
1285 if (EnableFastISelAbort > 2)
1286 // FastISel selector couldn't handle something and bailed.
1287 // For the purpose of debugging, just abort.
1288 report_fatal_error("FastISel didn't select the entire block");
1289
1290 if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1291 unsigned &R = FuncInfo->ValueMap[Inst];
1292 if (!R)
1293 R = FuncInfo->CreateRegs(Inst->getType());
1294 }
1295
1296 bool HadTailCall = false;
1297 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1298 SelectBasicBlock(Inst, BI, HadTailCall);
1299
1300 // If the call was emitted as a tail call, we're done with the block.
1301 // We also need to delete any previously emitted instructions.
1302 if (HadTailCall) {
1303 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1304 --BI;
1305 break;
1306 }
1307
1308 // Recompute NumFastIselRemaining as Selection DAG instruction
1309 // selection may have handled the call, input args, etc.
1310 unsigned RemainingNow = std::distance(Begin, BI);
1311 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1312 NumFastIselRemaining = RemainingNow;
1313 continue;
1314 }
1315
1316 bool ShouldAbort = EnableFastISelAbort;
1317 if (EnableFastISelVerbose || EnableFastISelAbort) {
1318 if (isa<TerminatorInst>(Inst)) {
1319 // Use a different message for terminator misses.
1320 dbgs() << "FastISel missed terminator: ";
1321 // Don't abort unless for terminator unless the level is really high
1322 ShouldAbort = (EnableFastISelAbort > 2);
1323 } else {
1324 dbgs() << "FastISel miss: ";
1325 }
1326 Inst->dump();
1327 }
1328 if (ShouldAbort)
1329 // FastISel selector couldn't handle something and bailed.
1330 // For the purpose of debugging, just abort.
1331 report_fatal_error("FastISel didn't select the entire block");
1332
1333 NumFastIselFailures += NumFastIselRemaining;
1334 break;
1335 }
1336
1337 FastIS->recomputeInsertPt();
1338 } else {
1339 // Lower any arguments needed in this block if this is the entry block.
1340 if (LLVMBB == &Fn.getEntryBlock()) {
1341 ++NumEntryBlocks;
1342 LowerArguments(Fn);
1343 }
1344 }
1345
1346 if (Begin != BI)
1347 ++NumDAGBlocks;
1348 else
1349 ++NumFastIselBlocks;
1350
1351 if (Begin != BI) {
1352 // Run SelectionDAG instruction selection on the remainder of the block
1353 // not handled by FastISel. If FastISel is not run, this is the entire
1354 // block.
1355 bool HadTailCall;
1356 SelectBasicBlock(Begin, BI, HadTailCall);
1357 }
1358
1359 FinishBasicBlock();
1360 FuncInfo->PHINodesToUpdate.clear();
1361 }
1362
1363 delete FastIS;
1364 SDB->clearDanglingDebugInfo();
1365 SDB->SPDescriptor.resetPerFunctionState();
1366 }
1367
1368 /// Given that the input MI is before a partial terminator sequence TSeq, return
1369 /// true if M + TSeq also a partial terminator sequence.
1370 ///
1371 /// A Terminator sequence is a sequence of MachineInstrs which at this point in
1372 /// lowering copy vregs into physical registers, which are then passed into
1373 /// terminator instructors so we can satisfy ABI constraints. A partial
1374 /// terminator sequence is an improper subset of a terminator sequence (i.e. it
1375 /// may be the whole terminator sequence).
MIIsInTerminatorSequence(const MachineInstr * MI)1376 static bool MIIsInTerminatorSequence(const MachineInstr *MI) {
1377 // If we do not have a copy or an implicit def, we return true if and only if
1378 // MI is a debug value.
1379 if (!MI->isCopy() && !MI->isImplicitDef())
1380 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1381 // physical registers if there is debug info associated with the terminator
1382 // of our mbb. We want to include said debug info in our terminator
1383 // sequence, so we return true in that case.
1384 return MI->isDebugValue();
1385
1386 // We have left the terminator sequence if we are not doing one of the
1387 // following:
1388 //
1389 // 1. Copying a vreg into a physical register.
1390 // 2. Copying a vreg into a vreg.
1391 // 3. Defining a register via an implicit def.
1392
1393 // OPI should always be a register definition...
1394 MachineInstr::const_mop_iterator OPI = MI->operands_begin();
1395 if (!OPI->isReg() || !OPI->isDef())
1396 return false;
1397
1398 // Defining any register via an implicit def is always ok.
1399 if (MI->isImplicitDef())
1400 return true;
1401
1402 // Grab the copy source...
1403 MachineInstr::const_mop_iterator OPI2 = OPI;
1404 ++OPI2;
1405 assert(OPI2 != MI->operands_end()
1406 && "Should have a copy implying we should have 2 arguments.");
1407
1408 // Make sure that the copy dest is not a vreg when the copy source is a
1409 // physical register.
1410 if (!OPI2->isReg() ||
1411 (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
1412 TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
1413 return false;
1414
1415 return true;
1416 }
1417
1418 /// Find the split point at which to splice the end of BB into its success stack
1419 /// protector check machine basic block.
1420 ///
1421 /// On many platforms, due to ABI constraints, terminators, even before register
1422 /// allocation, use physical registers. This creates an issue for us since
1423 /// physical registers at this point can not travel across basic
1424 /// blocks. Luckily, selectiondag always moves physical registers into vregs
1425 /// when they enter functions and moves them through a sequence of copies back
1426 /// into the physical registers right before the terminator creating a
1427 /// ``Terminator Sequence''. This function is searching for the beginning of the
1428 /// terminator sequence so that we can ensure that we splice off not just the
1429 /// terminator, but additionally the copies that move the vregs into the
1430 /// physical registers.
1431 static MachineBasicBlock::iterator
FindSplitPointForStackProtector(MachineBasicBlock * BB,DebugLoc DL)1432 FindSplitPointForStackProtector(MachineBasicBlock *BB, DebugLoc DL) {
1433 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1434 //
1435 if (SplitPoint == BB->begin())
1436 return SplitPoint;
1437
1438 MachineBasicBlock::iterator Start = BB->begin();
1439 MachineBasicBlock::iterator Previous = SplitPoint;
1440 --Previous;
1441
1442 while (MIIsInTerminatorSequence(Previous)) {
1443 SplitPoint = Previous;
1444 if (Previous == Start)
1445 break;
1446 --Previous;
1447 }
1448
1449 return SplitPoint;
1450 }
1451
1452 void
FinishBasicBlock()1453 SelectionDAGISel::FinishBasicBlock() {
1454
1455 DEBUG(dbgs() << "Total amount of phi nodes to update: "
1456 << FuncInfo->PHINodesToUpdate.size() << "\n";
1457 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1458 dbgs() << "Node " << i << " : ("
1459 << FuncInfo->PHINodesToUpdate[i].first
1460 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1461
1462 const bool MustUpdatePHINodes = SDB->SwitchCases.empty() &&
1463 SDB->JTCases.empty() &&
1464 SDB->BitTestCases.empty();
1465
1466 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1467 // PHI nodes in successors.
1468 if (MustUpdatePHINodes) {
1469 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1470 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1471 assert(PHI->isPHI() &&
1472 "This is not a machine PHI node that we are updating!");
1473 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1474 continue;
1475 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1476 }
1477 }
1478
1479 // Handle stack protector.
1480 if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1481 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1482 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1483
1484 // Find the split point to split the parent mbb. At the same time copy all
1485 // physical registers used in the tail of parent mbb into virtual registers
1486 // before the split point and back into physical registers after the split
1487 // point. This prevents us needing to deal with Live-ins and many other
1488 // register allocation issues caused by us splitting the parent mbb. The
1489 // register allocator will clean up said virtual copies later on.
1490 MachineBasicBlock::iterator SplitPoint =
1491 FindSplitPointForStackProtector(ParentMBB, SDB->getCurDebugLoc());
1492
1493 // Splice the terminator of ParentMBB into SuccessMBB.
1494 SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1495 SplitPoint,
1496 ParentMBB->end());
1497
1498 // Add compare/jump on neq/jump to the parent BB.
1499 FuncInfo->MBB = ParentMBB;
1500 FuncInfo->InsertPt = ParentMBB->end();
1501 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1502 CurDAG->setRoot(SDB->getRoot());
1503 SDB->clear();
1504 CodeGenAndEmitDAG();
1505
1506 // CodeGen Failure MBB if we have not codegened it yet.
1507 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1508 if (!FailureMBB->size()) {
1509 FuncInfo->MBB = FailureMBB;
1510 FuncInfo->InsertPt = FailureMBB->end();
1511 SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1512 CurDAG->setRoot(SDB->getRoot());
1513 SDB->clear();
1514 CodeGenAndEmitDAG();
1515 }
1516
1517 // Clear the Per-BB State.
1518 SDB->SPDescriptor.resetPerBBState();
1519 }
1520
1521 // If we updated PHI Nodes, return early.
1522 if (MustUpdatePHINodes)
1523 return;
1524
1525 for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1526 // Lower header first, if it wasn't already lowered
1527 if (!SDB->BitTestCases[i].Emitted) {
1528 // Set the current basic block to the mbb we wish to insert the code into
1529 FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1530 FuncInfo->InsertPt = FuncInfo->MBB->end();
1531 // Emit the code
1532 SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1533 CurDAG->setRoot(SDB->getRoot());
1534 SDB->clear();
1535 CodeGenAndEmitDAG();
1536 }
1537
1538 uint32_t UnhandledWeight = 0;
1539 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1540 UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1541
1542 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1543 UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1544 // Set the current basic block to the mbb we wish to insert the code into
1545 FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1546 FuncInfo->InsertPt = FuncInfo->MBB->end();
1547 // Emit the code
1548 if (j+1 != ej)
1549 SDB->visitBitTestCase(SDB->BitTestCases[i],
1550 SDB->BitTestCases[i].Cases[j+1].ThisBB,
1551 UnhandledWeight,
1552 SDB->BitTestCases[i].Reg,
1553 SDB->BitTestCases[i].Cases[j],
1554 FuncInfo->MBB);
1555 else
1556 SDB->visitBitTestCase(SDB->BitTestCases[i],
1557 SDB->BitTestCases[i].Default,
1558 UnhandledWeight,
1559 SDB->BitTestCases[i].Reg,
1560 SDB->BitTestCases[i].Cases[j],
1561 FuncInfo->MBB);
1562
1563
1564 CurDAG->setRoot(SDB->getRoot());
1565 SDB->clear();
1566 CodeGenAndEmitDAG();
1567 }
1568
1569 // Update PHI Nodes
1570 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1571 pi != pe; ++pi) {
1572 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1573 MachineBasicBlock *PHIBB = PHI->getParent();
1574 assert(PHI->isPHI() &&
1575 "This is not a machine PHI node that we are updating!");
1576 // This is "default" BB. We have two jumps to it. From "header" BB and
1577 // from last "case" BB.
1578 if (PHIBB == SDB->BitTestCases[i].Default)
1579 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1580 .addMBB(SDB->BitTestCases[i].Parent)
1581 .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1582 .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1583 // One of "cases" BB.
1584 for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1585 j != ej; ++j) {
1586 MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1587 if (cBB->isSuccessor(PHIBB))
1588 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1589 }
1590 }
1591 }
1592 SDB->BitTestCases.clear();
1593
1594 // If the JumpTable record is filled in, then we need to emit a jump table.
1595 // Updating the PHI nodes is tricky in this case, since we need to determine
1596 // whether the PHI is a successor of the range check MBB or the jump table MBB
1597 for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1598 // Lower header first, if it wasn't already lowered
1599 if (!SDB->JTCases[i].first.Emitted) {
1600 // Set the current basic block to the mbb we wish to insert the code into
1601 FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1602 FuncInfo->InsertPt = FuncInfo->MBB->end();
1603 // Emit the code
1604 SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1605 FuncInfo->MBB);
1606 CurDAG->setRoot(SDB->getRoot());
1607 SDB->clear();
1608 CodeGenAndEmitDAG();
1609 }
1610
1611 // Set the current basic block to the mbb we wish to insert the code into
1612 FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1613 FuncInfo->InsertPt = FuncInfo->MBB->end();
1614 // Emit the code
1615 SDB->visitJumpTable(SDB->JTCases[i].second);
1616 CurDAG->setRoot(SDB->getRoot());
1617 SDB->clear();
1618 CodeGenAndEmitDAG();
1619
1620 // Update PHI Nodes
1621 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1622 pi != pe; ++pi) {
1623 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1624 MachineBasicBlock *PHIBB = PHI->getParent();
1625 assert(PHI->isPHI() &&
1626 "This is not a machine PHI node that we are updating!");
1627 // "default" BB. We can go there only from header BB.
1628 if (PHIBB == SDB->JTCases[i].second.Default)
1629 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1630 .addMBB(SDB->JTCases[i].first.HeaderBB);
1631 // JT BB. Just iterate over successors here
1632 if (FuncInfo->MBB->isSuccessor(PHIBB))
1633 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1634 }
1635 }
1636 SDB->JTCases.clear();
1637
1638 // If the switch block involved a branch to one of the actual successors, we
1639 // need to update PHI nodes in that block.
1640 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1641 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1642 assert(PHI->isPHI() &&
1643 "This is not a machine PHI node that we are updating!");
1644 if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1645 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1646 }
1647
1648 // If we generated any switch lowering information, build and codegen any
1649 // additional DAGs necessary.
1650 for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1651 // Set the current basic block to the mbb we wish to insert the code into
1652 FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1653 FuncInfo->InsertPt = FuncInfo->MBB->end();
1654
1655 // Determine the unique successors.
1656 SmallVector<MachineBasicBlock *, 2> Succs;
1657 Succs.push_back(SDB->SwitchCases[i].TrueBB);
1658 if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1659 Succs.push_back(SDB->SwitchCases[i].FalseBB);
1660
1661 // Emit the code. Note that this could result in FuncInfo->MBB being split.
1662 SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1663 CurDAG->setRoot(SDB->getRoot());
1664 SDB->clear();
1665 CodeGenAndEmitDAG();
1666
1667 // Remember the last block, now that any splitting is done, for use in
1668 // populating PHI nodes in successors.
1669 MachineBasicBlock *ThisBB = FuncInfo->MBB;
1670
1671 // Handle any PHI nodes in successors of this chunk, as if we were coming
1672 // from the original BB before switch expansion. Note that PHI nodes can
1673 // occur multiple times in PHINodesToUpdate. We have to be very careful to
1674 // handle them the right number of times.
1675 for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1676 FuncInfo->MBB = Succs[i];
1677 FuncInfo->InsertPt = FuncInfo->MBB->end();
1678 // FuncInfo->MBB may have been removed from the CFG if a branch was
1679 // constant folded.
1680 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1681 for (MachineBasicBlock::iterator
1682 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1683 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1684 MachineInstrBuilder PHI(*MF, MBBI);
1685 // This value for this PHI node is recorded in PHINodesToUpdate.
1686 for (unsigned pn = 0; ; ++pn) {
1687 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1688 "Didn't find PHI entry!");
1689 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1690 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1691 break;
1692 }
1693 }
1694 }
1695 }
1696 }
1697 }
1698 SDB->SwitchCases.clear();
1699 }
1700
1701
1702 /// Create the scheduler. If a specific scheduler was specified
1703 /// via the SchedulerRegistry, use it, otherwise select the
1704 /// one preferred by the target.
1705 ///
CreateScheduler()1706 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1707 RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1708
1709 if (!Ctor) {
1710 Ctor = ISHeuristic;
1711 RegisterScheduler::setDefault(Ctor);
1712 }
1713
1714 return Ctor(this, OptLevel);
1715 }
1716
1717 //===----------------------------------------------------------------------===//
1718 // Helper functions used by the generated instruction selector.
1719 //===----------------------------------------------------------------------===//
1720 // Calls to these methods are generated by tblgen.
1721
1722 /// CheckAndMask - The isel is trying to match something like (and X, 255). If
1723 /// the dag combiner simplified the 255, we still want to match. RHS is the
1724 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1725 /// specified in the .td file (e.g. 255).
CheckAndMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const1726 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1727 int64_t DesiredMaskS) const {
1728 const APInt &ActualMask = RHS->getAPIntValue();
1729 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1730
1731 // If the actual mask exactly matches, success!
1732 if (ActualMask == DesiredMask)
1733 return true;
1734
1735 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1736 if (ActualMask.intersects(~DesiredMask))
1737 return false;
1738
1739 // Otherwise, the DAG Combiner may have proven that the value coming in is
1740 // either already zero or is not demanded. Check for known zero input bits.
1741 APInt NeededMask = DesiredMask & ~ActualMask;
1742 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1743 return true;
1744
1745 // TODO: check to see if missing bits are just not demanded.
1746
1747 // Otherwise, this pattern doesn't match.
1748 return false;
1749 }
1750
1751 /// CheckOrMask - The isel is trying to match something like (or X, 255). If
1752 /// the dag combiner simplified the 255, we still want to match. RHS is the
1753 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1754 /// specified in the .td file (e.g. 255).
CheckOrMask(SDValue LHS,ConstantSDNode * RHS,int64_t DesiredMaskS) const1755 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1756 int64_t DesiredMaskS) const {
1757 const APInt &ActualMask = RHS->getAPIntValue();
1758 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1759
1760 // If the actual mask exactly matches, success!
1761 if (ActualMask == DesiredMask)
1762 return true;
1763
1764 // If the actual AND mask is allowing unallowed bits, this doesn't match.
1765 if (ActualMask.intersects(~DesiredMask))
1766 return false;
1767
1768 // Otherwise, the DAG Combiner may have proven that the value coming in is
1769 // either already zero or is not demanded. Check for known zero input bits.
1770 APInt NeededMask = DesiredMask & ~ActualMask;
1771
1772 APInt KnownZero, KnownOne;
1773 CurDAG->computeKnownBits(LHS, KnownZero, KnownOne);
1774
1775 // If all the missing bits in the or are already known to be set, match!
1776 if ((NeededMask & KnownOne) == NeededMask)
1777 return true;
1778
1779 // TODO: check to see if missing bits are just not demanded.
1780
1781 // Otherwise, this pattern doesn't match.
1782 return false;
1783 }
1784
1785
1786 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1787 /// by tblgen. Others should not call it.
1788 void SelectionDAGISel::
SelectInlineAsmMemoryOperands(std::vector<SDValue> & Ops)1789 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1790 std::vector<SDValue> InOps;
1791 std::swap(InOps, Ops);
1792
1793 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1794 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
1795 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
1796 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
1797
1798 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1799 if (InOps[e-1].getValueType() == MVT::Glue)
1800 --e; // Don't process a glue operand if it is here.
1801
1802 while (i != e) {
1803 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1804 if (!InlineAsm::isMemKind(Flags)) {
1805 // Just skip over this operand, copying the operands verbatim.
1806 Ops.insert(Ops.end(), InOps.begin()+i,
1807 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1808 i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1809 } else {
1810 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1811 "Memory operand with multiple values?");
1812
1813 unsigned TiedToOperand;
1814 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
1815 // We need the constraint ID from the operand this is tied to.
1816 unsigned CurOp = InlineAsm::Op_FirstOperand;
1817 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
1818 for (; TiedToOperand; --TiedToOperand) {
1819 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
1820 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
1821 }
1822 }
1823
1824 // Otherwise, this is a memory operand. Ask the target to select it.
1825 std::vector<SDValue> SelOps;
1826 if (SelectInlineAsmMemoryOperand(InOps[i+1],
1827 InlineAsm::getMemoryConstraintID(Flags),
1828 SelOps))
1829 report_fatal_error("Could not match memory address. Inline asm"
1830 " failure!");
1831
1832 // Add this to the output node.
1833 unsigned NewFlags =
1834 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1835 Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1836 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1837 i += 2;
1838 }
1839 }
1840
1841 // Add the glue input back if present.
1842 if (e != InOps.size())
1843 Ops.push_back(InOps.back());
1844 }
1845
1846 /// findGlueUse - Return use of MVT::Glue value produced by the specified
1847 /// SDNode.
1848 ///
findGlueUse(SDNode * N)1849 static SDNode *findGlueUse(SDNode *N) {
1850 unsigned FlagResNo = N->getNumValues()-1;
1851 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1852 SDUse &Use = I.getUse();
1853 if (Use.getResNo() == FlagResNo)
1854 return Use.getUser();
1855 }
1856 return nullptr;
1857 }
1858
1859 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1860 /// This function recursively traverses up the operand chain, ignoring
1861 /// certain nodes.
findNonImmUse(SDNode * Use,SDNode * Def,SDNode * ImmedUse,SDNode * Root,SmallPtrSetImpl<SDNode * > & Visited,bool IgnoreChains)1862 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1863 SDNode *Root, SmallPtrSetImpl<SDNode*> &Visited,
1864 bool IgnoreChains) {
1865 // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1866 // greater than all of its (recursive) operands. If we scan to a point where
1867 // 'use' is smaller than the node we're scanning for, then we know we will
1868 // never find it.
1869 //
1870 // The Use may be -1 (unassigned) if it is a newly allocated node. This can
1871 // happen because we scan down to newly selected nodes in the case of glue
1872 // uses.
1873 if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1874 return false;
1875
1876 // Don't revisit nodes if we already scanned it and didn't fail, we know we
1877 // won't fail if we scan it again.
1878 if (!Visited.insert(Use).second)
1879 return false;
1880
1881 for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1882 // Ignore chain uses, they are validated by HandleMergeInputChains.
1883 if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1884 continue;
1885
1886 SDNode *N = Use->getOperand(i).getNode();
1887 if (N == Def) {
1888 if (Use == ImmedUse || Use == Root)
1889 continue; // We are not looking for immediate use.
1890 assert(N != Root);
1891 return true;
1892 }
1893
1894 // Traverse up the operand chain.
1895 if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1896 return true;
1897 }
1898 return false;
1899 }
1900
1901 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
1902 /// operand node N of U during instruction selection that starts at Root.
IsProfitableToFold(SDValue N,SDNode * U,SDNode * Root) const1903 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1904 SDNode *Root) const {
1905 if (OptLevel == CodeGenOpt::None) return false;
1906 return N.hasOneUse();
1907 }
1908
1909 /// IsLegalToFold - Returns true if the specific operand node N of
1910 /// U can be folded during instruction selection that starts at Root.
IsLegalToFold(SDValue N,SDNode * U,SDNode * Root,CodeGenOpt::Level OptLevel,bool IgnoreChains)1911 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1912 CodeGenOpt::Level OptLevel,
1913 bool IgnoreChains) {
1914 if (OptLevel == CodeGenOpt::None) return false;
1915
1916 // If Root use can somehow reach N through a path that that doesn't contain
1917 // U then folding N would create a cycle. e.g. In the following
1918 // diagram, Root can reach N through X. If N is folded into into Root, then
1919 // X is both a predecessor and a successor of U.
1920 //
1921 // [N*] //
1922 // ^ ^ //
1923 // / \ //
1924 // [U*] [X]? //
1925 // ^ ^ //
1926 // \ / //
1927 // \ / //
1928 // [Root*] //
1929 //
1930 // * indicates nodes to be folded together.
1931 //
1932 // If Root produces glue, then it gets (even more) interesting. Since it
1933 // will be "glued" together with its glue use in the scheduler, we need to
1934 // check if it might reach N.
1935 //
1936 // [N*] //
1937 // ^ ^ //
1938 // / \ //
1939 // [U*] [X]? //
1940 // ^ ^ //
1941 // \ \ //
1942 // \ | //
1943 // [Root*] | //
1944 // ^ | //
1945 // f | //
1946 // | / //
1947 // [Y] / //
1948 // ^ / //
1949 // f / //
1950 // | / //
1951 // [GU] //
1952 //
1953 // If GU (glue use) indirectly reaches N (the load), and Root folds N
1954 // (call it Fold), then X is a predecessor of GU and a successor of
1955 // Fold. But since Fold and GU are glued together, this will create
1956 // a cycle in the scheduling graph.
1957
1958 // If the node has glue, walk down the graph to the "lowest" node in the
1959 // glueged set.
1960 EVT VT = Root->getValueType(Root->getNumValues()-1);
1961 while (VT == MVT::Glue) {
1962 SDNode *GU = findGlueUse(Root);
1963 if (!GU)
1964 break;
1965 Root = GU;
1966 VT = Root->getValueType(Root->getNumValues()-1);
1967
1968 // If our query node has a glue result with a use, we've walked up it. If
1969 // the user (which has already been selected) has a chain or indirectly uses
1970 // the chain, our WalkChainUsers predicate will not consider it. Because of
1971 // this, we cannot ignore chains in this predicate.
1972 IgnoreChains = false;
1973 }
1974
1975
1976 SmallPtrSet<SDNode*, 16> Visited;
1977 return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1978 }
1979
Select_INLINEASM(SDNode * N)1980 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1981 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1982 SelectInlineAsmMemoryOperands(Ops);
1983
1984 const EVT VTs[] = {MVT::Other, MVT::Glue};
1985 SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N), VTs, Ops);
1986 New->setNodeId(-1);
1987 return New.getNode();
1988 }
1989
1990 SDNode
Select_READ_REGISTER(SDNode * Op)1991 *SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
1992 SDLoc dl(Op);
1993 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(0));
1994 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
1995 unsigned Reg =
1996 TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0));
1997 SDValue New = CurDAG->getCopyFromReg(
1998 CurDAG->getEntryNode(), dl, Reg, Op->getValueType(0));
1999 New->setNodeId(-1);
2000 return New.getNode();
2001 }
2002
2003 SDNode
Select_WRITE_REGISTER(SDNode * Op)2004 *SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2005 SDLoc dl(Op);
2006 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
2007 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
2008 unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
2009 Op->getOperand(2).getValueType());
2010 SDValue New = CurDAG->getCopyToReg(
2011 CurDAG->getEntryNode(), dl, Reg, Op->getOperand(2));
2012 New->setNodeId(-1);
2013 return New.getNode();
2014 }
2015
2016
2017
Select_UNDEF(SDNode * N)2018 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
2019 return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
2020 }
2021
2022 /// GetVBR - decode a vbr encoding whose top bit is set.
2023 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
GetVBR(uint64_t Val,const unsigned char * MatcherTable,unsigned & Idx)2024 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2025 assert(Val >= 128 && "Not a VBR");
2026 Val &= 127; // Remove first vbr bit.
2027
2028 unsigned Shift = 7;
2029 uint64_t NextBits;
2030 do {
2031 NextBits = MatcherTable[Idx++];
2032 Val |= (NextBits&127) << Shift;
2033 Shift += 7;
2034 } while (NextBits & 128);
2035
2036 return Val;
2037 }
2038
2039
2040 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
2041 /// interior glue and chain results to use the new glue and chain results.
2042 void SelectionDAGISel::
UpdateChainsAndGlue(SDNode * NodeToMatch,SDValue InputChain,const SmallVectorImpl<SDNode * > & ChainNodesMatched,SDValue InputGlue,const SmallVectorImpl<SDNode * > & GlueResultNodesMatched,bool isMorphNodeTo)2043 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
2044 const SmallVectorImpl<SDNode*> &ChainNodesMatched,
2045 SDValue InputGlue,
2046 const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
2047 bool isMorphNodeTo) {
2048 SmallVector<SDNode*, 4> NowDeadNodes;
2049
2050 // Now that all the normal results are replaced, we replace the chain and
2051 // glue results if present.
2052 if (!ChainNodesMatched.empty()) {
2053 assert(InputChain.getNode() &&
2054 "Matched input chains but didn't produce a chain");
2055 // Loop over all of the nodes we matched that produced a chain result.
2056 // Replace all the chain results with the final chain we ended up with.
2057 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2058 SDNode *ChainNode = ChainNodesMatched[i];
2059
2060 // If this node was already deleted, don't look at it.
2061 if (ChainNode->getOpcode() == ISD::DELETED_NODE)
2062 continue;
2063
2064 // Don't replace the results of the root node if we're doing a
2065 // MorphNodeTo.
2066 if (ChainNode == NodeToMatch && isMorphNodeTo)
2067 continue;
2068
2069 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2070 if (ChainVal.getValueType() == MVT::Glue)
2071 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2072 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2073 CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
2074
2075 // If the node became dead and we haven't already seen it, delete it.
2076 if (ChainNode->use_empty() &&
2077 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2078 NowDeadNodes.push_back(ChainNode);
2079 }
2080 }
2081
2082 // If the result produces glue, update any glue results in the matched
2083 // pattern with the glue result.
2084 if (InputGlue.getNode()) {
2085 // Handle any interior nodes explicitly marked.
2086 for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
2087 SDNode *FRN = GlueResultNodesMatched[i];
2088
2089 // If this node was already deleted, don't look at it.
2090 if (FRN->getOpcode() == ISD::DELETED_NODE)
2091 continue;
2092
2093 assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
2094 "Doesn't have a glue result");
2095 CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
2096 InputGlue);
2097
2098 // If the node became dead and we haven't already seen it, delete it.
2099 if (FRN->use_empty() &&
2100 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
2101 NowDeadNodes.push_back(FRN);
2102 }
2103 }
2104
2105 if (!NowDeadNodes.empty())
2106 CurDAG->RemoveDeadNodes(NowDeadNodes);
2107
2108 DEBUG(dbgs() << "ISEL: Match complete!\n");
2109 }
2110
2111 enum ChainResult {
2112 CR_Simple,
2113 CR_InducesCycle,
2114 CR_LeadsToInteriorNode
2115 };
2116
2117 /// WalkChainUsers - Walk down the users of the specified chained node that is
2118 /// part of the pattern we're matching, looking at all of the users we find.
2119 /// This determines whether something is an interior node, whether we have a
2120 /// non-pattern node in between two pattern nodes (which prevent folding because
2121 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
2122 /// between pattern nodes (in which case the TF becomes part of the pattern).
2123 ///
2124 /// The walk we do here is guaranteed to be small because we quickly get down to
2125 /// already selected nodes "below" us.
2126 static ChainResult
WalkChainUsers(const SDNode * ChainedNode,SmallVectorImpl<SDNode * > & ChainedNodesInPattern,SmallVectorImpl<SDNode * > & InteriorChainedNodes)2127 WalkChainUsers(const SDNode *ChainedNode,
2128 SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
2129 SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
2130 ChainResult Result = CR_Simple;
2131
2132 for (SDNode::use_iterator UI = ChainedNode->use_begin(),
2133 E = ChainedNode->use_end(); UI != E; ++UI) {
2134 // Make sure the use is of the chain, not some other value we produce.
2135 if (UI.getUse().getValueType() != MVT::Other) continue;
2136
2137 SDNode *User = *UI;
2138
2139 if (User->getOpcode() == ISD::HANDLENODE) // Root of the graph.
2140 continue;
2141
2142 // If we see an already-selected machine node, then we've gone beyond the
2143 // pattern that we're selecting down into the already selected chunk of the
2144 // DAG.
2145 unsigned UserOpcode = User->getOpcode();
2146 if (User->isMachineOpcode() ||
2147 UserOpcode == ISD::CopyToReg ||
2148 UserOpcode == ISD::CopyFromReg ||
2149 UserOpcode == ISD::INLINEASM ||
2150 UserOpcode == ISD::EH_LABEL ||
2151 UserOpcode == ISD::LIFETIME_START ||
2152 UserOpcode == ISD::LIFETIME_END) {
2153 // If their node ID got reset to -1 then they've already been selected.
2154 // Treat them like a MachineOpcode.
2155 if (User->getNodeId() == -1)
2156 continue;
2157 }
2158
2159 // If we have a TokenFactor, we handle it specially.
2160 if (User->getOpcode() != ISD::TokenFactor) {
2161 // If the node isn't a token factor and isn't part of our pattern, then it
2162 // must be a random chained node in between two nodes we're selecting.
2163 // This happens when we have something like:
2164 // x = load ptr
2165 // call
2166 // y = x+4
2167 // store y -> ptr
2168 // Because we structurally match the load/store as a read/modify/write,
2169 // but the call is chained between them. We cannot fold in this case
2170 // because it would induce a cycle in the graph.
2171 if (!std::count(ChainedNodesInPattern.begin(),
2172 ChainedNodesInPattern.end(), User))
2173 return CR_InducesCycle;
2174
2175 // Otherwise we found a node that is part of our pattern. For example in:
2176 // x = load ptr
2177 // y = x+4
2178 // store y -> ptr
2179 // This would happen when we're scanning down from the load and see the
2180 // store as a user. Record that there is a use of ChainedNode that is
2181 // part of the pattern and keep scanning uses.
2182 Result = CR_LeadsToInteriorNode;
2183 InteriorChainedNodes.push_back(User);
2184 continue;
2185 }
2186
2187 // If we found a TokenFactor, there are two cases to consider: first if the
2188 // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
2189 // uses of the TF are in our pattern) we just want to ignore it. Second,
2190 // the TokenFactor can be sandwiched in between two chained nodes, like so:
2191 // [Load chain]
2192 // ^
2193 // |
2194 // [Load]
2195 // ^ ^
2196 // | \ DAG's like cheese
2197 // / \ do you?
2198 // / |
2199 // [TokenFactor] [Op]
2200 // ^ ^
2201 // | |
2202 // \ /
2203 // \ /
2204 // [Store]
2205 //
2206 // In this case, the TokenFactor becomes part of our match and we rewrite it
2207 // as a new TokenFactor.
2208 //
2209 // To distinguish these two cases, do a recursive walk down the uses.
2210 switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
2211 case CR_Simple:
2212 // If the uses of the TokenFactor are just already-selected nodes, ignore
2213 // it, it is "below" our pattern.
2214 continue;
2215 case CR_InducesCycle:
2216 // If the uses of the TokenFactor lead to nodes that are not part of our
2217 // pattern that are not selected, folding would turn this into a cycle,
2218 // bail out now.
2219 return CR_InducesCycle;
2220 case CR_LeadsToInteriorNode:
2221 break; // Otherwise, keep processing.
2222 }
2223
2224 // Okay, we know we're in the interesting interior case. The TokenFactor
2225 // is now going to be considered part of the pattern so that we rewrite its
2226 // uses (it may have uses that are not part of the pattern) with the
2227 // ultimate chain result of the generated code. We will also add its chain
2228 // inputs as inputs to the ultimate TokenFactor we create.
2229 Result = CR_LeadsToInteriorNode;
2230 ChainedNodesInPattern.push_back(User);
2231 InteriorChainedNodes.push_back(User);
2232 continue;
2233 }
2234
2235 return Result;
2236 }
2237
2238 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2239 /// operation for when the pattern matched at least one node with a chains. The
2240 /// input vector contains a list of all of the chained nodes that we match. We
2241 /// must determine if this is a valid thing to cover (i.e. matching it won't
2242 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2243 /// be used as the input node chain for the generated nodes.
2244 static SDValue
HandleMergeInputChains(SmallVectorImpl<SDNode * > & ChainNodesMatched,SelectionDAG * CurDAG)2245 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2246 SelectionDAG *CurDAG) {
2247 // Walk all of the chained nodes we've matched, recursively scanning down the
2248 // users of the chain result. This adds any TokenFactor nodes that are caught
2249 // in between chained nodes to the chained and interior nodes list.
2250 SmallVector<SDNode*, 3> InteriorChainedNodes;
2251 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2252 if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
2253 InteriorChainedNodes) == CR_InducesCycle)
2254 return SDValue(); // Would induce a cycle.
2255 }
2256
2257 // Okay, we have walked all the matched nodes and collected TokenFactor nodes
2258 // that we are interested in. Form our input TokenFactor node.
2259 SmallVector<SDValue, 3> InputChains;
2260 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2261 // Add the input chain of this node to the InputChains list (which will be
2262 // the operands of the generated TokenFactor) if it's not an interior node.
2263 SDNode *N = ChainNodesMatched[i];
2264 if (N->getOpcode() != ISD::TokenFactor) {
2265 if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
2266 continue;
2267
2268 // Otherwise, add the input chain.
2269 SDValue InChain = ChainNodesMatched[i]->getOperand(0);
2270 assert(InChain.getValueType() == MVT::Other && "Not a chain");
2271 InputChains.push_back(InChain);
2272 continue;
2273 }
2274
2275 // If we have a token factor, we want to add all inputs of the token factor
2276 // that are not part of the pattern we're matching.
2277 for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
2278 if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
2279 N->getOperand(op).getNode()))
2280 InputChains.push_back(N->getOperand(op));
2281 }
2282 }
2283
2284 if (InputChains.size() == 1)
2285 return InputChains[0];
2286 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2287 MVT::Other, InputChains);
2288 }
2289
2290 /// MorphNode - Handle morphing a node in place for the selector.
2291 SDNode *SelectionDAGISel::
MorphNode(SDNode * Node,unsigned TargetOpc,SDVTList VTList,ArrayRef<SDValue> Ops,unsigned EmitNodeInfo)2292 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2293 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2294 // It is possible we're using MorphNodeTo to replace a node with no
2295 // normal results with one that has a normal result (or we could be
2296 // adding a chain) and the input could have glue and chains as well.
2297 // In this case we need to shift the operands down.
2298 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2299 // than the old isel though.
2300 int OldGlueResultNo = -1, OldChainResultNo = -1;
2301
2302 unsigned NTMNumResults = Node->getNumValues();
2303 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2304 OldGlueResultNo = NTMNumResults-1;
2305 if (NTMNumResults != 1 &&
2306 Node->getValueType(NTMNumResults-2) == MVT::Other)
2307 OldChainResultNo = NTMNumResults-2;
2308 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2309 OldChainResultNo = NTMNumResults-1;
2310
2311 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2312 // that this deletes operands of the old node that become dead.
2313 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2314
2315 // MorphNodeTo can operate in two ways: if an existing node with the
2316 // specified operands exists, it can just return it. Otherwise, it
2317 // updates the node in place to have the requested operands.
2318 if (Res == Node) {
2319 // If we updated the node in place, reset the node ID. To the isel,
2320 // this should be just like a newly allocated machine node.
2321 Res->setNodeId(-1);
2322 }
2323
2324 unsigned ResNumResults = Res->getNumValues();
2325 // Move the glue if needed.
2326 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2327 (unsigned)OldGlueResultNo != ResNumResults-1)
2328 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
2329 SDValue(Res, ResNumResults-1));
2330
2331 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2332 --ResNumResults;
2333
2334 // Move the chain reference if needed.
2335 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2336 (unsigned)OldChainResultNo != ResNumResults-1)
2337 CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
2338 SDValue(Res, ResNumResults-1));
2339
2340 // Otherwise, no replacement happened because the node already exists. Replace
2341 // Uses of the old node with the new one.
2342 if (Res != Node)
2343 CurDAG->ReplaceAllUsesWith(Node, Res);
2344
2345 return Res;
2346 }
2347
2348 /// CheckSame - Implements OP_CheckSame.
2349 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2350 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2351 SDValue N,
2352 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2353 // Accept if it is exactly the same as a previously recorded node.
2354 unsigned RecNo = MatcherTable[MatcherIndex++];
2355 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2356 return N == RecordedNodes[RecNo].first;
2357 }
2358
2359 /// CheckChildSame - Implements OP_CheckChildXSame.
2360 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckChildSame(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes,unsigned ChildNo)2361 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2362 SDValue N,
2363 const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes,
2364 unsigned ChildNo) {
2365 if (ChildNo >= N.getNumOperands())
2366 return false; // Match fails if out of range child #.
2367 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2368 RecordedNodes);
2369 }
2370
2371 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2372 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckPatternPredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel)2373 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2374 const SelectionDAGISel &SDISel) {
2375 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2376 }
2377
2378 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
2379 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckNodePredicate(const unsigned char * MatcherTable,unsigned & MatcherIndex,const SelectionDAGISel & SDISel,SDNode * N)2380 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2381 const SelectionDAGISel &SDISel, SDNode *N) {
2382 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2383 }
2384
2385 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckOpcode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDNode * N)2386 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2387 SDNode *N) {
2388 uint16_t Opc = MatcherTable[MatcherIndex++];
2389 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2390 return N->getOpcode() == Opc;
2391 }
2392
2393 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI)2394 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2395 SDValue N, const TargetLowering *TLI) {
2396 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2397 if (N.getValueType() == VT) return true;
2398
2399 // Handle the case when VT is iPTR.
2400 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy();
2401 }
2402
2403 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckChildType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI,unsigned ChildNo)2404 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2405 SDValue N, const TargetLowering *TLI, unsigned ChildNo) {
2406 if (ChildNo >= N.getNumOperands())
2407 return false; // Match fails if out of range child #.
2408 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2409 }
2410
2411 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckCondCode(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2412 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2413 SDValue N) {
2414 return cast<CondCodeSDNode>(N)->get() ==
2415 (ISD::CondCode)MatcherTable[MatcherIndex++];
2416 }
2417
2418 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckValueType(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const TargetLowering * TLI)2419 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2420 SDValue N, const TargetLowering *TLI) {
2421 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2422 if (cast<VTSDNode>(N)->getVT() == VT)
2423 return true;
2424
2425 // Handle the case when VT is iPTR.
2426 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy();
2427 }
2428
2429 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N)2430 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2431 SDValue N) {
2432 int64_t Val = MatcherTable[MatcherIndex++];
2433 if (Val & 128)
2434 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2435
2436 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2437 return C && C->getSExtValue() == Val;
2438 }
2439
2440 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckChildInteger(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,unsigned ChildNo)2441 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2442 SDValue N, unsigned ChildNo) {
2443 if (ChildNo >= N.getNumOperands())
2444 return false; // Match fails if out of range child #.
2445 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2446 }
2447
2448 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckAndImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2449 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2450 SDValue N, const SelectionDAGISel &SDISel) {
2451 int64_t Val = MatcherTable[MatcherIndex++];
2452 if (Val & 128)
2453 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2454
2455 if (N->getOpcode() != ISD::AND) return false;
2456
2457 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2458 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2459 }
2460
2461 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
CheckOrImm(const unsigned char * MatcherTable,unsigned & MatcherIndex,SDValue N,const SelectionDAGISel & SDISel)2462 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2463 SDValue N, const SelectionDAGISel &SDISel) {
2464 int64_t Val = MatcherTable[MatcherIndex++];
2465 if (Val & 128)
2466 Val = GetVBR(Val, MatcherTable, MatcherIndex);
2467
2468 if (N->getOpcode() != ISD::OR) return false;
2469
2470 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2471 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2472 }
2473
2474 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
2475 /// scope, evaluate the current node. If the current predicate is known to
2476 /// fail, set Result=true and return anything. If the current predicate is
2477 /// known to pass, set Result=false and return the MatcherIndex to continue
2478 /// with. If the current predicate is unknown, set Result=false and return the
2479 /// MatcherIndex to continue with.
IsPredicateKnownToFail(const unsigned char * Table,unsigned Index,SDValue N,bool & Result,const SelectionDAGISel & SDISel,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RecordedNodes)2480 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2481 unsigned Index, SDValue N,
2482 bool &Result,
2483 const SelectionDAGISel &SDISel,
2484 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2485 switch (Table[Index++]) {
2486 default:
2487 Result = false;
2488 return Index-1; // Could not evaluate this predicate.
2489 case SelectionDAGISel::OPC_CheckSame:
2490 Result = !::CheckSame(Table, Index, N, RecordedNodes);
2491 return Index;
2492 case SelectionDAGISel::OPC_CheckChild0Same:
2493 case SelectionDAGISel::OPC_CheckChild1Same:
2494 case SelectionDAGISel::OPC_CheckChild2Same:
2495 case SelectionDAGISel::OPC_CheckChild3Same:
2496 Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2497 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2498 return Index;
2499 case SelectionDAGISel::OPC_CheckPatternPredicate:
2500 Result = !::CheckPatternPredicate(Table, Index, SDISel);
2501 return Index;
2502 case SelectionDAGISel::OPC_CheckPredicate:
2503 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2504 return Index;
2505 case SelectionDAGISel::OPC_CheckOpcode:
2506 Result = !::CheckOpcode(Table, Index, N.getNode());
2507 return Index;
2508 case SelectionDAGISel::OPC_CheckType:
2509 Result = !::CheckType(Table, Index, N, SDISel.TLI);
2510 return Index;
2511 case SelectionDAGISel::OPC_CheckChild0Type:
2512 case SelectionDAGISel::OPC_CheckChild1Type:
2513 case SelectionDAGISel::OPC_CheckChild2Type:
2514 case SelectionDAGISel::OPC_CheckChild3Type:
2515 case SelectionDAGISel::OPC_CheckChild4Type:
2516 case SelectionDAGISel::OPC_CheckChild5Type:
2517 case SelectionDAGISel::OPC_CheckChild6Type:
2518 case SelectionDAGISel::OPC_CheckChild7Type:
2519 Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2520 Table[Index - 1] -
2521 SelectionDAGISel::OPC_CheckChild0Type);
2522 return Index;
2523 case SelectionDAGISel::OPC_CheckCondCode:
2524 Result = !::CheckCondCode(Table, Index, N);
2525 return Index;
2526 case SelectionDAGISel::OPC_CheckValueType:
2527 Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2528 return Index;
2529 case SelectionDAGISel::OPC_CheckInteger:
2530 Result = !::CheckInteger(Table, Index, N);
2531 return Index;
2532 case SelectionDAGISel::OPC_CheckChild0Integer:
2533 case SelectionDAGISel::OPC_CheckChild1Integer:
2534 case SelectionDAGISel::OPC_CheckChild2Integer:
2535 case SelectionDAGISel::OPC_CheckChild3Integer:
2536 case SelectionDAGISel::OPC_CheckChild4Integer:
2537 Result = !::CheckChildInteger(Table, Index, N,
2538 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2539 return Index;
2540 case SelectionDAGISel::OPC_CheckAndImm:
2541 Result = !::CheckAndImm(Table, Index, N, SDISel);
2542 return Index;
2543 case SelectionDAGISel::OPC_CheckOrImm:
2544 Result = !::CheckOrImm(Table, Index, N, SDISel);
2545 return Index;
2546 }
2547 }
2548
2549 namespace {
2550
2551 struct MatchScope {
2552 /// FailIndex - If this match fails, this is the index to continue with.
2553 unsigned FailIndex;
2554
2555 /// NodeStack - The node stack when the scope was formed.
2556 SmallVector<SDValue, 4> NodeStack;
2557
2558 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2559 unsigned NumRecordedNodes;
2560
2561 /// NumMatchedMemRefs - The number of matched memref entries.
2562 unsigned NumMatchedMemRefs;
2563
2564 /// InputChain/InputGlue - The current chain/glue
2565 SDValue InputChain, InputGlue;
2566
2567 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2568 bool HasChainNodesMatched, HasGlueResultNodesMatched;
2569 };
2570
2571 /// \\brief A DAG update listener to keep the matching state
2572 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2573 /// change the DAG while matching. X86 addressing mode matcher is an example
2574 /// for this.
2575 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2576 {
2577 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes;
2578 SmallVectorImpl<MatchScope> &MatchScopes;
2579 public:
MatchStateUpdater(SelectionDAG & DAG,SmallVectorImpl<std::pair<SDValue,SDNode * >> & RN,SmallVectorImpl<MatchScope> & MS)2580 MatchStateUpdater(SelectionDAG &DAG,
2581 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RN,
2582 SmallVectorImpl<MatchScope> &MS) :
2583 SelectionDAG::DAGUpdateListener(DAG),
2584 RecordedNodes(RN), MatchScopes(MS) { }
2585
NodeDeleted(SDNode * N,SDNode * E)2586 void NodeDeleted(SDNode *N, SDNode *E) override {
2587 // Some early-returns here to avoid the search if we deleted the node or
2588 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2589 // do, so it's unnecessary to update matching state at that point).
2590 // Neither of these can occur currently because we only install this
2591 // update listener during matching a complex patterns.
2592 if (!E || E->isMachineOpcode())
2593 return;
2594 // Performing linear search here does not matter because we almost never
2595 // run this code. You'd have to have a CSE during complex pattern
2596 // matching.
2597 for (auto &I : RecordedNodes)
2598 if (I.first.getNode() == N)
2599 I.first.setNode(E);
2600
2601 for (auto &I : MatchScopes)
2602 for (auto &J : I.NodeStack)
2603 if (J.getNode() == N)
2604 J.setNode(E);
2605 }
2606 };
2607 }
2608
2609 SDNode *SelectionDAGISel::
SelectCodeCommon(SDNode * NodeToMatch,const unsigned char * MatcherTable,unsigned TableSize)2610 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2611 unsigned TableSize) {
2612 // FIXME: Should these even be selected? Handle these cases in the caller?
2613 switch (NodeToMatch->getOpcode()) {
2614 default:
2615 break;
2616 case ISD::EntryToken: // These nodes remain the same.
2617 case ISD::BasicBlock:
2618 case ISD::Register:
2619 case ISD::RegisterMask:
2620 case ISD::HANDLENODE:
2621 case ISD::MDNODE_SDNODE:
2622 case ISD::TargetConstant:
2623 case ISD::TargetConstantFP:
2624 case ISD::TargetConstantPool:
2625 case ISD::TargetFrameIndex:
2626 case ISD::TargetExternalSymbol:
2627 case ISD::TargetBlockAddress:
2628 case ISD::TargetJumpTable:
2629 case ISD::TargetGlobalTLSAddress:
2630 case ISD::TargetGlobalAddress:
2631 case ISD::TokenFactor:
2632 case ISD::CopyFromReg:
2633 case ISD::CopyToReg:
2634 case ISD::EH_LABEL:
2635 case ISD::LIFETIME_START:
2636 case ISD::LIFETIME_END:
2637 NodeToMatch->setNodeId(-1); // Mark selected.
2638 return nullptr;
2639 case ISD::AssertSext:
2640 case ISD::AssertZext:
2641 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2642 NodeToMatch->getOperand(0));
2643 return nullptr;
2644 case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2645 case ISD::READ_REGISTER: return Select_READ_REGISTER(NodeToMatch);
2646 case ISD::WRITE_REGISTER: return Select_WRITE_REGISTER(NodeToMatch);
2647 case ISD::UNDEF: return Select_UNDEF(NodeToMatch);
2648 }
2649
2650 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2651
2652 // Set up the node stack with NodeToMatch as the only node on the stack.
2653 SmallVector<SDValue, 8> NodeStack;
2654 SDValue N = SDValue(NodeToMatch, 0);
2655 NodeStack.push_back(N);
2656
2657 // MatchScopes - Scopes used when matching, if a match failure happens, this
2658 // indicates where to continue checking.
2659 SmallVector<MatchScope, 8> MatchScopes;
2660
2661 // RecordedNodes - This is the set of nodes that have been recorded by the
2662 // state machine. The second value is the parent of the node, or null if the
2663 // root is recorded.
2664 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2665
2666 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2667 // pattern.
2668 SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2669
2670 // These are the current input chain and glue for use when generating nodes.
2671 // Various Emit operations change these. For example, emitting a copytoreg
2672 // uses and updates these.
2673 SDValue InputChain, InputGlue;
2674
2675 // ChainNodesMatched - If a pattern matches nodes that have input/output
2676 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2677 // which ones they are. The result is captured into this list so that we can
2678 // update the chain results when the pattern is complete.
2679 SmallVector<SDNode*, 3> ChainNodesMatched;
2680 SmallVector<SDNode*, 3> GlueResultNodesMatched;
2681
2682 DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2683 NodeToMatch->dump(CurDAG);
2684 dbgs() << '\n');
2685
2686 // Determine where to start the interpreter. Normally we start at opcode #0,
2687 // but if the state machine starts with an OPC_SwitchOpcode, then we
2688 // accelerate the first lookup (which is guaranteed to be hot) with the
2689 // OpcodeOffset table.
2690 unsigned MatcherIndex = 0;
2691
2692 if (!OpcodeOffset.empty()) {
2693 // Already computed the OpcodeOffset table, just index into it.
2694 if (N.getOpcode() < OpcodeOffset.size())
2695 MatcherIndex = OpcodeOffset[N.getOpcode()];
2696 DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
2697
2698 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2699 // Otherwise, the table isn't computed, but the state machine does start
2700 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
2701 // is the first time we're selecting an instruction.
2702 unsigned Idx = 1;
2703 while (1) {
2704 // Get the size of this case.
2705 unsigned CaseSize = MatcherTable[Idx++];
2706 if (CaseSize & 128)
2707 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2708 if (CaseSize == 0) break;
2709
2710 // Get the opcode, add the index to the table.
2711 uint16_t Opc = MatcherTable[Idx++];
2712 Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2713 if (Opc >= OpcodeOffset.size())
2714 OpcodeOffset.resize((Opc+1)*2);
2715 OpcodeOffset[Opc] = Idx;
2716 Idx += CaseSize;
2717 }
2718
2719 // Okay, do the lookup for the first opcode.
2720 if (N.getOpcode() < OpcodeOffset.size())
2721 MatcherIndex = OpcodeOffset[N.getOpcode()];
2722 }
2723
2724 while (1) {
2725 assert(MatcherIndex < TableSize && "Invalid index");
2726 #ifndef NDEBUG
2727 unsigned CurrentOpcodeIndex = MatcherIndex;
2728 #endif
2729 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2730 switch (Opcode) {
2731 case OPC_Scope: {
2732 // Okay, the semantics of this operation are that we should push a scope
2733 // then evaluate the first child. However, pushing a scope only to have
2734 // the first check fail (which then pops it) is inefficient. If we can
2735 // determine immediately that the first check (or first several) will
2736 // immediately fail, don't even bother pushing a scope for them.
2737 unsigned FailIndex;
2738
2739 while (1) {
2740 unsigned NumToSkip = MatcherTable[MatcherIndex++];
2741 if (NumToSkip & 128)
2742 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2743 // Found the end of the scope with no match.
2744 if (NumToSkip == 0) {
2745 FailIndex = 0;
2746 break;
2747 }
2748
2749 FailIndex = MatcherIndex+NumToSkip;
2750
2751 unsigned MatcherIndexOfPredicate = MatcherIndex;
2752 (void)MatcherIndexOfPredicate; // silence warning.
2753
2754 // If we can't evaluate this predicate without pushing a scope (e.g. if
2755 // it is a 'MoveParent') or if the predicate succeeds on this node, we
2756 // push the scope and evaluate the full predicate chain.
2757 bool Result;
2758 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2759 Result, *this, RecordedNodes);
2760 if (!Result)
2761 break;
2762
2763 DEBUG(dbgs() << " Skipped scope entry (due to false predicate) at "
2764 << "index " << MatcherIndexOfPredicate
2765 << ", continuing at " << FailIndex << "\n");
2766 ++NumDAGIselRetries;
2767
2768 // Otherwise, we know that this case of the Scope is guaranteed to fail,
2769 // move to the next case.
2770 MatcherIndex = FailIndex;
2771 }
2772
2773 // If the whole scope failed to match, bail.
2774 if (FailIndex == 0) break;
2775
2776 // Push a MatchScope which indicates where to go if the first child fails
2777 // to match.
2778 MatchScope NewEntry;
2779 NewEntry.FailIndex = FailIndex;
2780 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2781 NewEntry.NumRecordedNodes = RecordedNodes.size();
2782 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2783 NewEntry.InputChain = InputChain;
2784 NewEntry.InputGlue = InputGlue;
2785 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2786 NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2787 MatchScopes.push_back(NewEntry);
2788 continue;
2789 }
2790 case OPC_RecordNode: {
2791 // Remember this node, it may end up being an operand in the pattern.
2792 SDNode *Parent = nullptr;
2793 if (NodeStack.size() > 1)
2794 Parent = NodeStack[NodeStack.size()-2].getNode();
2795 RecordedNodes.push_back(std::make_pair(N, Parent));
2796 continue;
2797 }
2798
2799 case OPC_RecordChild0: case OPC_RecordChild1:
2800 case OPC_RecordChild2: case OPC_RecordChild3:
2801 case OPC_RecordChild4: case OPC_RecordChild5:
2802 case OPC_RecordChild6: case OPC_RecordChild7: {
2803 unsigned ChildNo = Opcode-OPC_RecordChild0;
2804 if (ChildNo >= N.getNumOperands())
2805 break; // Match fails if out of range child #.
2806
2807 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2808 N.getNode()));
2809 continue;
2810 }
2811 case OPC_RecordMemRef:
2812 MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2813 continue;
2814
2815 case OPC_CaptureGlueInput:
2816 // If the current node has an input glue, capture it in InputGlue.
2817 if (N->getNumOperands() != 0 &&
2818 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2819 InputGlue = N->getOperand(N->getNumOperands()-1);
2820 continue;
2821
2822 case OPC_MoveChild: {
2823 unsigned ChildNo = MatcherTable[MatcherIndex++];
2824 if (ChildNo >= N.getNumOperands())
2825 break; // Match fails if out of range child #.
2826 N = N.getOperand(ChildNo);
2827 NodeStack.push_back(N);
2828 continue;
2829 }
2830
2831 case OPC_MoveParent:
2832 // Pop the current node off the NodeStack.
2833 NodeStack.pop_back();
2834 assert(!NodeStack.empty() && "Node stack imbalance!");
2835 N = NodeStack.back();
2836 continue;
2837
2838 case OPC_CheckSame:
2839 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2840 continue;
2841
2842 case OPC_CheckChild0Same: case OPC_CheckChild1Same:
2843 case OPC_CheckChild2Same: case OPC_CheckChild3Same:
2844 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
2845 Opcode-OPC_CheckChild0Same))
2846 break;
2847 continue;
2848
2849 case OPC_CheckPatternPredicate:
2850 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2851 continue;
2852 case OPC_CheckPredicate:
2853 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2854 N.getNode()))
2855 break;
2856 continue;
2857 case OPC_CheckComplexPat: {
2858 unsigned CPNum = MatcherTable[MatcherIndex++];
2859 unsigned RecNo = MatcherTable[MatcherIndex++];
2860 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2861
2862 // If target can modify DAG during matching, keep the matching state
2863 // consistent.
2864 std::unique_ptr<MatchStateUpdater> MSU;
2865 if (ComplexPatternFuncMutatesDAG())
2866 MSU.reset(new MatchStateUpdater(*CurDAG, RecordedNodes,
2867 MatchScopes));
2868
2869 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2870 RecordedNodes[RecNo].first, CPNum,
2871 RecordedNodes))
2872 break;
2873 continue;
2874 }
2875 case OPC_CheckOpcode:
2876 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2877 continue;
2878
2879 case OPC_CheckType:
2880 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI))
2881 break;
2882 continue;
2883
2884 case OPC_SwitchOpcode: {
2885 unsigned CurNodeOpcode = N.getOpcode();
2886 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2887 unsigned CaseSize;
2888 while (1) {
2889 // Get the size of this case.
2890 CaseSize = MatcherTable[MatcherIndex++];
2891 if (CaseSize & 128)
2892 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2893 if (CaseSize == 0) break;
2894
2895 uint16_t Opc = MatcherTable[MatcherIndex++];
2896 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2897
2898 // If the opcode matches, then we will execute this case.
2899 if (CurNodeOpcode == Opc)
2900 break;
2901
2902 // Otherwise, skip over this case.
2903 MatcherIndex += CaseSize;
2904 }
2905
2906 // If no cases matched, bail out.
2907 if (CaseSize == 0) break;
2908
2909 // Otherwise, execute the case we found.
2910 DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart
2911 << " to " << MatcherIndex << "\n");
2912 continue;
2913 }
2914
2915 case OPC_SwitchType: {
2916 MVT CurNodeVT = N.getSimpleValueType();
2917 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2918 unsigned CaseSize;
2919 while (1) {
2920 // Get the size of this case.
2921 CaseSize = MatcherTable[MatcherIndex++];
2922 if (CaseSize & 128)
2923 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2924 if (CaseSize == 0) break;
2925
2926 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2927 if (CaseVT == MVT::iPTR)
2928 CaseVT = TLI->getPointerTy();
2929
2930 // If the VT matches, then we will execute this case.
2931 if (CurNodeVT == CaseVT)
2932 break;
2933
2934 // Otherwise, skip over this case.
2935 MatcherIndex += CaseSize;
2936 }
2937
2938 // If no cases matched, bail out.
2939 if (CaseSize == 0) break;
2940
2941 // Otherwise, execute the case we found.
2942 DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2943 << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2944 continue;
2945 }
2946 case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2947 case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2948 case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2949 case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2950 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2951 Opcode-OPC_CheckChild0Type))
2952 break;
2953 continue;
2954 case OPC_CheckCondCode:
2955 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2956 continue;
2957 case OPC_CheckValueType:
2958 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI))
2959 break;
2960 continue;
2961 case OPC_CheckInteger:
2962 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2963 continue;
2964 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
2965 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
2966 case OPC_CheckChild4Integer:
2967 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
2968 Opcode-OPC_CheckChild0Integer)) break;
2969 continue;
2970 case OPC_CheckAndImm:
2971 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2972 continue;
2973 case OPC_CheckOrImm:
2974 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2975 continue;
2976
2977 case OPC_CheckFoldableChainNode: {
2978 assert(NodeStack.size() != 1 && "No parent node");
2979 // Verify that all intermediate nodes between the root and this one have
2980 // a single use.
2981 bool HasMultipleUses = false;
2982 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2983 if (!NodeStack[i].hasOneUse()) {
2984 HasMultipleUses = true;
2985 break;
2986 }
2987 if (HasMultipleUses) break;
2988
2989 // Check to see that the target thinks this is profitable to fold and that
2990 // we can fold it without inducing cycles in the graph.
2991 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2992 NodeToMatch) ||
2993 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2994 NodeToMatch, OptLevel,
2995 true/*We validate our own chains*/))
2996 break;
2997
2998 continue;
2999 }
3000 case OPC_EmitInteger: {
3001 MVT::SimpleValueType VT =
3002 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3003 int64_t Val = MatcherTable[MatcherIndex++];
3004 if (Val & 128)
3005 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3006 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3007 CurDAG->getTargetConstant(Val, VT), nullptr));
3008 continue;
3009 }
3010 case OPC_EmitRegister: {
3011 MVT::SimpleValueType VT =
3012 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3013 unsigned RegNo = MatcherTable[MatcherIndex++];
3014 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3015 CurDAG->getRegister(RegNo, VT), nullptr));
3016 continue;
3017 }
3018 case OPC_EmitRegister2: {
3019 // For targets w/ more than 256 register names, the register enum
3020 // values are stored in two bytes in the matcher table (just like
3021 // opcodes).
3022 MVT::SimpleValueType VT =
3023 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3024 unsigned RegNo = MatcherTable[MatcherIndex++];
3025 RegNo |= MatcherTable[MatcherIndex++] << 8;
3026 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3027 CurDAG->getRegister(RegNo, VT), nullptr));
3028 continue;
3029 }
3030
3031 case OPC_EmitConvertToTarget: {
3032 // Convert from IMM/FPIMM to target version.
3033 unsigned RecNo = MatcherTable[MatcherIndex++];
3034 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3035 SDValue Imm = RecordedNodes[RecNo].first;
3036
3037 if (Imm->getOpcode() == ISD::Constant) {
3038 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3039 Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
3040 } else if (Imm->getOpcode() == ISD::ConstantFP) {
3041 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3042 Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
3043 }
3044
3045 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3046 continue;
3047 }
3048
3049 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
3050 case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1
3051 // These are space-optimized forms of OPC_EmitMergeInputChains.
3052 assert(!InputChain.getNode() &&
3053 "EmitMergeInputChains should be the first chain producing node");
3054 assert(ChainNodesMatched.empty() &&
3055 "Should only have one EmitMergeInputChains per match");
3056
3057 // Read all of the chained nodes.
3058 unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
3059 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3060 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3061
3062 // FIXME: What if other value results of the node have uses not matched
3063 // by this pattern?
3064 if (ChainNodesMatched.back() != NodeToMatch &&
3065 !RecordedNodes[RecNo].first.hasOneUse()) {
3066 ChainNodesMatched.clear();
3067 break;
3068 }
3069
3070 // Merge the input chains if they are not intra-pattern references.
3071 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3072
3073 if (!InputChain.getNode())
3074 break; // Failed to merge.
3075 continue;
3076 }
3077
3078 case OPC_EmitMergeInputChains: {
3079 assert(!InputChain.getNode() &&
3080 "EmitMergeInputChains should be the first chain producing node");
3081 // This node gets a list of nodes we matched in the input that have
3082 // chains. We want to token factor all of the input chains to these nodes
3083 // together. However, if any of the input chains is actually one of the
3084 // nodes matched in this pattern, then we have an intra-match reference.
3085 // Ignore these because the newly token factored chain should not refer to
3086 // the old nodes.
3087 unsigned NumChains = MatcherTable[MatcherIndex++];
3088 assert(NumChains != 0 && "Can't TF zero chains");
3089
3090 assert(ChainNodesMatched.empty() &&
3091 "Should only have one EmitMergeInputChains per match");
3092
3093 // Read all of the chained nodes.
3094 for (unsigned i = 0; i != NumChains; ++i) {
3095 unsigned RecNo = MatcherTable[MatcherIndex++];
3096 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3097 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3098
3099 // FIXME: What if other value results of the node have uses not matched
3100 // by this pattern?
3101 if (ChainNodesMatched.back() != NodeToMatch &&
3102 !RecordedNodes[RecNo].first.hasOneUse()) {
3103 ChainNodesMatched.clear();
3104 break;
3105 }
3106 }
3107
3108 // If the inner loop broke out, the match fails.
3109 if (ChainNodesMatched.empty())
3110 break;
3111
3112 // Merge the input chains if they are not intra-pattern references.
3113 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3114
3115 if (!InputChain.getNode())
3116 break; // Failed to merge.
3117
3118 continue;
3119 }
3120
3121 case OPC_EmitCopyToReg: {
3122 unsigned RecNo = MatcherTable[MatcherIndex++];
3123 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3124 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3125
3126 if (!InputChain.getNode())
3127 InputChain = CurDAG->getEntryNode();
3128
3129 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3130 DestPhysReg, RecordedNodes[RecNo].first,
3131 InputGlue);
3132
3133 InputGlue = InputChain.getValue(1);
3134 continue;
3135 }
3136
3137 case OPC_EmitNodeXForm: {
3138 unsigned XFormNo = MatcherTable[MatcherIndex++];
3139 unsigned RecNo = MatcherTable[MatcherIndex++];
3140 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3141 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3142 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3143 continue;
3144 }
3145
3146 case OPC_EmitNode:
3147 case OPC_MorphNodeTo: {
3148 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3149 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3150 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3151 // Get the result VT list.
3152 unsigned NumVTs = MatcherTable[MatcherIndex++];
3153 SmallVector<EVT, 4> VTs;
3154 for (unsigned i = 0; i != NumVTs; ++i) {
3155 MVT::SimpleValueType VT =
3156 (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3157 if (VT == MVT::iPTR)
3158 VT = TLI->getPointerTy().SimpleTy;
3159 VTs.push_back(VT);
3160 }
3161
3162 if (EmitNodeInfo & OPFL_Chain)
3163 VTs.push_back(MVT::Other);
3164 if (EmitNodeInfo & OPFL_GlueOutput)
3165 VTs.push_back(MVT::Glue);
3166
3167 // This is hot code, so optimize the two most common cases of 1 and 2
3168 // results.
3169 SDVTList VTList;
3170 if (VTs.size() == 1)
3171 VTList = CurDAG->getVTList(VTs[0]);
3172 else if (VTs.size() == 2)
3173 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3174 else
3175 VTList = CurDAG->getVTList(VTs);
3176
3177 // Get the operand list.
3178 unsigned NumOps = MatcherTable[MatcherIndex++];
3179 SmallVector<SDValue, 8> Ops;
3180 for (unsigned i = 0; i != NumOps; ++i) {
3181 unsigned RecNo = MatcherTable[MatcherIndex++];
3182 if (RecNo & 128)
3183 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3184
3185 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3186 Ops.push_back(RecordedNodes[RecNo].first);
3187 }
3188
3189 // If there are variadic operands to add, handle them now.
3190 if (EmitNodeInfo & OPFL_VariadicInfo) {
3191 // Determine the start index to copy from.
3192 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3193 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3194 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3195 "Invalid variadic node");
3196 // Copy all of the variadic operands, not including a potential glue
3197 // input.
3198 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3199 i != e; ++i) {
3200 SDValue V = NodeToMatch->getOperand(i);
3201 if (V.getValueType() == MVT::Glue) break;
3202 Ops.push_back(V);
3203 }
3204 }
3205
3206 // If this has chain/glue inputs, add them.
3207 if (EmitNodeInfo & OPFL_Chain)
3208 Ops.push_back(InputChain);
3209 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3210 Ops.push_back(InputGlue);
3211
3212 // Create the node.
3213 SDNode *Res = nullptr;
3214 if (Opcode != OPC_MorphNodeTo) {
3215 // If this is a normal EmitNode command, just create the new node and
3216 // add the results to the RecordedNodes list.
3217 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3218 VTList, Ops);
3219
3220 // Add all the non-glue/non-chain results to the RecordedNodes list.
3221 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3222 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3223 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3224 nullptr));
3225 }
3226
3227 } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
3228 Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops, EmitNodeInfo);
3229 } else {
3230 // NodeToMatch was eliminated by CSE when the target changed the DAG.
3231 // We will visit the equivalent node later.
3232 DEBUG(dbgs() << "Node was eliminated by CSE\n");
3233 return nullptr;
3234 }
3235
3236 // If the node had chain/glue results, update our notion of the current
3237 // chain and glue.
3238 if (EmitNodeInfo & OPFL_GlueOutput) {
3239 InputGlue = SDValue(Res, VTs.size()-1);
3240 if (EmitNodeInfo & OPFL_Chain)
3241 InputChain = SDValue(Res, VTs.size()-2);
3242 } else if (EmitNodeInfo & OPFL_Chain)
3243 InputChain = SDValue(Res, VTs.size()-1);
3244
3245 // If the OPFL_MemRefs glue is set on this node, slap all of the
3246 // accumulated memrefs onto it.
3247 //
3248 // FIXME: This is vastly incorrect for patterns with multiple outputs
3249 // instructions that access memory and for ComplexPatterns that match
3250 // loads.
3251 if (EmitNodeInfo & OPFL_MemRefs) {
3252 // Only attach load or store memory operands if the generated
3253 // instruction may load or store.
3254 const MCInstrDesc &MCID = TII->get(TargetOpc);
3255 bool mayLoad = MCID.mayLoad();
3256 bool mayStore = MCID.mayStore();
3257
3258 unsigned NumMemRefs = 0;
3259 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3260 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3261 if ((*I)->isLoad()) {
3262 if (mayLoad)
3263 ++NumMemRefs;
3264 } else if ((*I)->isStore()) {
3265 if (mayStore)
3266 ++NumMemRefs;
3267 } else {
3268 ++NumMemRefs;
3269 }
3270 }
3271
3272 MachineSDNode::mmo_iterator MemRefs =
3273 MF->allocateMemRefsArray(NumMemRefs);
3274
3275 MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
3276 for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
3277 MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
3278 if ((*I)->isLoad()) {
3279 if (mayLoad)
3280 *MemRefsPos++ = *I;
3281 } else if ((*I)->isStore()) {
3282 if (mayStore)
3283 *MemRefsPos++ = *I;
3284 } else {
3285 *MemRefsPos++ = *I;
3286 }
3287 }
3288
3289 cast<MachineSDNode>(Res)
3290 ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
3291 }
3292
3293 DEBUG(dbgs() << " "
3294 << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
3295 << " node: "; Res->dump(CurDAG); dbgs() << "\n");
3296
3297 // If this was a MorphNodeTo then we're completely done!
3298 if (Opcode == OPC_MorphNodeTo) {
3299 // Update chain and glue uses.
3300 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3301 InputGlue, GlueResultNodesMatched, true);
3302 return Res;
3303 }
3304
3305 continue;
3306 }
3307
3308 case OPC_MarkGlueResults: {
3309 unsigned NumNodes = MatcherTable[MatcherIndex++];
3310
3311 // Read and remember all the glue-result nodes.
3312 for (unsigned i = 0; i != NumNodes; ++i) {
3313 unsigned RecNo = MatcherTable[MatcherIndex++];
3314 if (RecNo & 128)
3315 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3316
3317 assert(RecNo < RecordedNodes.size() && "Invalid MarkGlueResults");
3318 GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3319 }
3320 continue;
3321 }
3322
3323 case OPC_CompleteMatch: {
3324 // The match has been completed, and any new nodes (if any) have been
3325 // created. Patch up references to the matched dag to use the newly
3326 // created nodes.
3327 unsigned NumResults = MatcherTable[MatcherIndex++];
3328
3329 for (unsigned i = 0; i != NumResults; ++i) {
3330 unsigned ResSlot = MatcherTable[MatcherIndex++];
3331 if (ResSlot & 128)
3332 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3333
3334 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3335 SDValue Res = RecordedNodes[ResSlot].first;
3336
3337 assert(i < NodeToMatch->getNumValues() &&
3338 NodeToMatch->getValueType(i) != MVT::Other &&
3339 NodeToMatch->getValueType(i) != MVT::Glue &&
3340 "Invalid number of results to complete!");
3341 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3342 NodeToMatch->getValueType(i) == MVT::iPTR ||
3343 Res.getValueType() == MVT::iPTR ||
3344 NodeToMatch->getValueType(i).getSizeInBits() ==
3345 Res.getValueType().getSizeInBits()) &&
3346 "invalid replacement");
3347 CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
3348 }
3349
3350 // If the root node defines glue, add it to the glue nodes to update list.
3351 if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
3352 GlueResultNodesMatched.push_back(NodeToMatch);
3353
3354 // Update chain and glue uses.
3355 UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
3356 InputGlue, GlueResultNodesMatched, false);
3357
3358 assert(NodeToMatch->use_empty() &&
3359 "Didn't replace all uses of the node?");
3360
3361 // FIXME: We just return here, which interacts correctly with SelectRoot
3362 // above. We should fix this to not return an SDNode* anymore.
3363 return nullptr;
3364 }
3365 }
3366
3367 // If the code reached this point, then the match failed. See if there is
3368 // another child to try in the current 'Scope', otherwise pop it until we
3369 // find a case to check.
3370 DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex << "\n");
3371 ++NumDAGIselRetries;
3372 while (1) {
3373 if (MatchScopes.empty()) {
3374 CannotYetSelect(NodeToMatch);
3375 return nullptr;
3376 }
3377
3378 // Restore the interpreter state back to the point where the scope was
3379 // formed.
3380 MatchScope &LastScope = MatchScopes.back();
3381 RecordedNodes.resize(LastScope.NumRecordedNodes);
3382 NodeStack.clear();
3383 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3384 N = NodeStack.back();
3385
3386 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3387 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3388 MatcherIndex = LastScope.FailIndex;
3389
3390 DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
3391
3392 InputChain = LastScope.InputChain;
3393 InputGlue = LastScope.InputGlue;
3394 if (!LastScope.HasChainNodesMatched)
3395 ChainNodesMatched.clear();
3396 if (!LastScope.HasGlueResultNodesMatched)
3397 GlueResultNodesMatched.clear();
3398
3399 // Check to see what the offset is at the new MatcherIndex. If it is zero
3400 // we have reached the end of this scope, otherwise we have another child
3401 // in the current scope to try.
3402 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3403 if (NumToSkip & 128)
3404 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3405
3406 // If we have another child in this scope to match, update FailIndex and
3407 // try it.
3408 if (NumToSkip != 0) {
3409 LastScope.FailIndex = MatcherIndex+NumToSkip;
3410 break;
3411 }
3412
3413 // End of this scope, pop it and try the next child in the containing
3414 // scope.
3415 MatchScopes.pop_back();
3416 }
3417 }
3418 }
3419
3420
3421
CannotYetSelect(SDNode * N)3422 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3423 std::string msg;
3424 raw_string_ostream Msg(msg);
3425 Msg << "Cannot select: ";
3426
3427 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3428 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3429 N->getOpcode() != ISD::INTRINSIC_VOID) {
3430 N->printrFull(Msg, CurDAG);
3431 Msg << "\nIn function: " << MF->getName();
3432 } else {
3433 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3434 unsigned iid =
3435 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3436 if (iid < Intrinsic::num_intrinsics)
3437 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3438 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3439 Msg << "target intrinsic %" << TII->getName(iid);
3440 else
3441 Msg << "unknown intrinsic #" << iid;
3442 }
3443 report_fatal_error(Msg.str());
3444 }
3445
3446 char SelectionDAGISel::ID = 0;
3447