1 //===----- HexagonPacketizer.cpp - vliw packetizer ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a simple VLIW packetizer using DFA. The packetizer works on
11 // machine basic blocks. For each instruction I in BB, the packetizer consults
12 // the DFA to see if machine resources are available to execute I. If so, the
13 // packetizer checks if I depends on any instruction J in the current packet.
14 // If no dependency is found, I is added to current packet and machine resource
15 // is marked as taken. If any dependency is found, a target API call is made to
16 // prune the dependence.
17 //
18 //===----------------------------------------------------------------------===//
19 #include "llvm/CodeGen/DFAPacketizer.h"
20 #include "Hexagon.h"
21 #include "HexagonMachineFunctionInfo.h"
22 #include "HexagonRegisterInfo.h"
23 #include "HexagonSubtarget.h"
24 #include "HexagonTargetMachine.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/LatencyPriorityQueue.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/ScheduleDAG.h"
37 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
38 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39 #include "llvm/CodeGen/SchedulerRegistry.h"
40 #include "llvm/MC/MCInstrItineraries.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetRegisterInfo.h"
48 #include <map>
49 #include <vector>
50
51 using namespace llvm;
52
53 #define DEBUG_TYPE "packets"
54
55 static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles",
56 cl::ZeroOrMore, cl::Hidden, cl::init(true),
57 cl::desc("Allow non-solo packetization of volatile memory references"));
58
59 namespace llvm {
60 void initializeHexagonPacketizerPass(PassRegistry&);
61 }
62
63
64 namespace {
65 class HexagonPacketizer : public MachineFunctionPass {
66
67 public:
68 static char ID;
HexagonPacketizer()69 HexagonPacketizer() : MachineFunctionPass(ID) {
70 initializeHexagonPacketizerPass(*PassRegistry::getPassRegistry());
71 }
72
getAnalysisUsage(AnalysisUsage & AU) const73 void getAnalysisUsage(AnalysisUsage &AU) const override {
74 AU.setPreservesCFG();
75 AU.addRequired<MachineDominatorTree>();
76 AU.addRequired<MachineBranchProbabilityInfo>();
77 AU.addPreserved<MachineDominatorTree>();
78 AU.addRequired<MachineLoopInfo>();
79 AU.addPreserved<MachineLoopInfo>();
80 MachineFunctionPass::getAnalysisUsage(AU);
81 }
82
getPassName() const83 const char *getPassName() const override {
84 return "Hexagon Packetizer";
85 }
86
87 bool runOnMachineFunction(MachineFunction &Fn) override;
88 };
89 char HexagonPacketizer::ID = 0;
90
91 class HexagonPacketizerList : public VLIWPacketizerList {
92
93 private:
94
95 // Has the instruction been promoted to a dot-new instruction.
96 bool PromotedToDotNew;
97
98 // Has the instruction been glued to allocframe.
99 bool GlueAllocframeStore;
100
101 // Has the feeder instruction been glued to new value jump.
102 bool GlueToNewValueJump;
103
104 // Check if there is a dependence between some instruction already in this
105 // packet and this instruction.
106 bool Dependence;
107
108 // Only check for dependence if there are resources available to
109 // schedule this instruction.
110 bool FoundSequentialDependence;
111
112 /// \brief A handle to the branch probability pass.
113 const MachineBranchProbabilityInfo *MBPI;
114
115 // Track MIs with ignored dependece.
116 std::vector<MachineInstr*> IgnoreDepMIs;
117
118 public:
119 // Ctor.
120 HexagonPacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
121 const MachineBranchProbabilityInfo *MBPI);
122
123 // initPacketizerState - initialize some internal flags.
124 void initPacketizerState() override;
125
126 // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
127 bool ignorePseudoInstruction(MachineInstr *MI,
128 MachineBasicBlock *MBB) override;
129
130 // isSoloInstruction - return true if instruction MI can not be packetized
131 // with any other instruction, which means that MI itself is a packet.
132 bool isSoloInstruction(MachineInstr *MI) override;
133
134 // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
135 // together.
136 bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override;
137
138 // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
139 // and SUJ.
140 bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override;
141
142 MachineBasicBlock::iterator addToPacket(MachineInstr *MI) override;
143 private:
144 bool IsCallDependent(MachineInstr* MI, SDep::Kind DepType, unsigned DepReg);
145 bool PromoteToDotNew(MachineInstr* MI, SDep::Kind DepType,
146 MachineBasicBlock::iterator &MII,
147 const TargetRegisterClass* RC);
148 bool CanPromoteToDotNew(MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
149 const std::map<MachineInstr *, SUnit *> &MIToSUnit,
150 MachineBasicBlock::iterator &MII,
151 const TargetRegisterClass *RC);
152 bool
153 CanPromoteToNewValue(MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
154 const std::map<MachineInstr *, SUnit *> &MIToSUnit,
155 MachineBasicBlock::iterator &MII);
156 bool CanPromoteToNewValueStore(
157 MachineInstr *MI, MachineInstr *PacketMI, unsigned DepReg,
158 const std::map<MachineInstr *, SUnit *> &MIToSUnit);
159 bool DemoteToDotOld(MachineInstr *MI);
160 bool ArePredicatesComplements(
161 MachineInstr *MI1, MachineInstr *MI2,
162 const std::map<MachineInstr *, SUnit *> &MIToSUnit);
163 bool RestrictingDepExistInPacket(MachineInstr *, unsigned,
164 const std::map<MachineInstr *, SUnit *> &);
165 bool isNewifiable(MachineInstr* MI);
166 bool isCondInst(MachineInstr* MI);
167 bool tryAllocateResourcesForConstExt(MachineInstr* MI);
168 bool canReserveResourcesForConstExt(MachineInstr *MI);
169 void reserveResourcesForConstExt(MachineInstr* MI);
170 bool isNewValueInst(MachineInstr* MI);
171 };
172 }
173
174 INITIALIZE_PASS_BEGIN(HexagonPacketizer, "packets", "Hexagon Packetizer",
175 false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)176 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
177 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
178 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
179 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
180 INITIALIZE_PASS_END(HexagonPacketizer, "packets", "Hexagon Packetizer",
181 false, false)
182
183
184 // HexagonPacketizerList Ctor.
185 HexagonPacketizerList::HexagonPacketizerList(
186 MachineFunction &MF, MachineLoopInfo &MLI,
187 const MachineBranchProbabilityInfo *MBPI)
188 : VLIWPacketizerList(MF, MLI, true) {
189 this->MBPI = MBPI;
190 }
191
runOnMachineFunction(MachineFunction & Fn)192 bool HexagonPacketizer::runOnMachineFunction(MachineFunction &Fn) {
193 const TargetInstrInfo *TII = Fn.getSubtarget().getInstrInfo();
194 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
195 const MachineBranchProbabilityInfo *MBPI =
196 &getAnalysis<MachineBranchProbabilityInfo>();
197 // Instantiate the packetizer.
198 HexagonPacketizerList Packetizer(Fn, MLI, MBPI);
199
200 // DFA state table should not be empty.
201 assert(Packetizer.getResourceTracker() && "Empty DFA table!");
202
203 //
204 // Loop over all basic blocks and remove KILL pseudo-instructions
205 // These instructions confuse the dependence analysis. Consider:
206 // D0 = ... (Insn 0)
207 // R0 = KILL R0, D0 (Insn 1)
208 // R0 = ... (Insn 2)
209 // Here, Insn 1 will result in the dependence graph not emitting an output
210 // dependence between Insn 0 and Insn 2. This can lead to incorrect
211 // packetization
212 //
213 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
214 MBB != MBBe; ++MBB) {
215 MachineBasicBlock::iterator End = MBB->end();
216 MachineBasicBlock::iterator MI = MBB->begin();
217 while (MI != End) {
218 if (MI->isKill()) {
219 MachineBasicBlock::iterator DeleteMI = MI;
220 ++MI;
221 MBB->erase(DeleteMI);
222 End = MBB->end();
223 continue;
224 }
225 ++MI;
226 }
227 }
228
229 // Loop over all of the basic blocks.
230 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
231 MBB != MBBe; ++MBB) {
232 // Find scheduling regions and schedule / packetize each region.
233 unsigned RemainingCount = MBB->size();
234 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
235 RegionEnd != MBB->begin();) {
236 // The next region starts above the previous region. Look backward in the
237 // instruction stream until we find the nearest boundary.
238 MachineBasicBlock::iterator I = RegionEnd;
239 for(;I != MBB->begin(); --I, --RemainingCount) {
240 if (TII->isSchedulingBoundary(std::prev(I), MBB, Fn))
241 break;
242 }
243 I = MBB->begin();
244
245 // Skip empty scheduling regions.
246 if (I == RegionEnd) {
247 RegionEnd = std::prev(RegionEnd);
248 --RemainingCount;
249 continue;
250 }
251 // Skip regions with one instruction.
252 if (I == std::prev(RegionEnd)) {
253 RegionEnd = std::prev(RegionEnd);
254 continue;
255 }
256
257 Packetizer.PacketizeMIs(MBB, I, RegionEnd);
258 RegionEnd = I;
259 }
260 }
261
262 return true;
263 }
264
265
IsIndirectCall(MachineInstr * MI)266 static bool IsIndirectCall(MachineInstr* MI) {
267 return MI->getOpcode() == Hexagon::J2_callr;
268 }
269
270 // Reserve resources for constant extender. Trigure an assertion if
271 // reservation fail.
reserveResourcesForConstExt(MachineInstr * MI)272 void HexagonPacketizerList::reserveResourcesForConstExt(MachineInstr* MI) {
273 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
274 MachineFunction *MF = MI->getParent()->getParent();
275 MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::A4_ext),
276 MI->getDebugLoc());
277
278 if (ResourceTracker->canReserveResources(PseudoMI)) {
279 ResourceTracker->reserveResources(PseudoMI);
280 MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
281 } else {
282 MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
283 llvm_unreachable("can not reserve resources for constant extender.");
284 }
285 return;
286 }
287
canReserveResourcesForConstExt(MachineInstr * MI)288 bool HexagonPacketizerList::canReserveResourcesForConstExt(MachineInstr *MI) {
289 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
290 assert((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
291 "Should only be called for constant extended instructions");
292 MachineFunction *MF = MI->getParent()->getParent();
293 MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::A4_ext),
294 MI->getDebugLoc());
295 bool CanReserve = ResourceTracker->canReserveResources(PseudoMI);
296 MF->DeleteMachineInstr(PseudoMI);
297 return CanReserve;
298 }
299
300 // Allocate resources (i.e. 4 bytes) for constant extender. If succeed, return
301 // true, otherwise, return false.
tryAllocateResourcesForConstExt(MachineInstr * MI)302 bool HexagonPacketizerList::tryAllocateResourcesForConstExt(MachineInstr* MI) {
303 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
304 MachineFunction *MF = MI->getParent()->getParent();
305 MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::A4_ext),
306 MI->getDebugLoc());
307
308 if (ResourceTracker->canReserveResources(PseudoMI)) {
309 ResourceTracker->reserveResources(PseudoMI);
310 MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
311 return true;
312 } else {
313 MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI);
314 return false;
315 }
316 }
317
318
IsCallDependent(MachineInstr * MI,SDep::Kind DepType,unsigned DepReg)319 bool HexagonPacketizerList::IsCallDependent(MachineInstr* MI,
320 SDep::Kind DepType,
321 unsigned DepReg) {
322
323 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
324 const HexagonRegisterInfo *QRI =
325 (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
326
327 // Check for lr dependence
328 if (DepReg == QRI->getRARegister()) {
329 return true;
330 }
331
332 if (QII->isDeallocRet(MI)) {
333 if (DepReg == QRI->getFrameRegister() ||
334 DepReg == QRI->getStackRegister())
335 return true;
336 }
337
338 // Check if this is a predicate dependence
339 const TargetRegisterClass* RC = QRI->getMinimalPhysRegClass(DepReg);
340 if (RC == &Hexagon::PredRegsRegClass) {
341 return true;
342 }
343
344 //
345 // Lastly check for an operand used in an indirect call
346 // If we had an attribute for checking if an instruction is an indirect call,
347 // then we could have avoided this relatively brittle implementation of
348 // IsIndirectCall()
349 //
350 // Assumes that the first operand of the CALLr is the function address
351 //
352 if (IsIndirectCall(MI) && (DepType == SDep::Data)) {
353 MachineOperand MO = MI->getOperand(0);
354 if (MO.isReg() && MO.isUse() && (MO.getReg() == DepReg)) {
355 return true;
356 }
357 }
358
359 return false;
360 }
361
IsRegDependence(const SDep::Kind DepType)362 static bool IsRegDependence(const SDep::Kind DepType) {
363 return (DepType == SDep::Data || DepType == SDep::Anti ||
364 DepType == SDep::Output);
365 }
366
IsDirectJump(MachineInstr * MI)367 static bool IsDirectJump(MachineInstr* MI) {
368 return (MI->getOpcode() == Hexagon::J2_jump);
369 }
370
IsSchedBarrier(MachineInstr * MI)371 static bool IsSchedBarrier(MachineInstr* MI) {
372 switch (MI->getOpcode()) {
373 case Hexagon::Y2_barrier:
374 return true;
375 }
376 return false;
377 }
378
IsControlFlow(MachineInstr * MI)379 static bool IsControlFlow(MachineInstr* MI) {
380 return (MI->getDesc().isTerminator() || MI->getDesc().isCall());
381 }
382
IsLoopN(MachineInstr * MI)383 static bool IsLoopN(MachineInstr *MI) {
384 return (MI->getOpcode() == Hexagon::J2_loop0i ||
385 MI->getOpcode() == Hexagon::J2_loop0r);
386 }
387
388 /// DoesModifyCalleeSavedReg - Returns true if the instruction modifies a
389 /// callee-saved register.
DoesModifyCalleeSavedReg(MachineInstr * MI,const TargetRegisterInfo * TRI)390 static bool DoesModifyCalleeSavedReg(MachineInstr *MI,
391 const TargetRegisterInfo *TRI) {
392 for (const MCPhysReg *CSR =
393 TRI->getCalleeSavedRegs(MI->getParent()->getParent());
394 *CSR; ++CSR) {
395 unsigned CalleeSavedReg = *CSR;
396 if (MI->modifiesRegister(CalleeSavedReg, TRI))
397 return true;
398 }
399 return false;
400 }
401
402 // Returns true if an instruction can be promoted to .new predicate
403 // or new-value store.
isNewifiable(MachineInstr * MI)404 bool HexagonPacketizerList::isNewifiable(MachineInstr* MI) {
405 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
406 return isCondInst(MI) || QII->mayBeNewStore(MI);
407 }
408
isCondInst(MachineInstr * MI)409 bool HexagonPacketizerList::isCondInst (MachineInstr* MI) {
410 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
411 const MCInstrDesc& TID = MI->getDesc();
412 // bug 5670: until that is fixed,
413 // this portion is disabled.
414 if ( TID.isConditionalBranch() // && !IsRegisterJump(MI)) ||
415 || QII->isConditionalTransfer(MI)
416 || QII->isConditionalALU32(MI)
417 || QII->isConditionalLoad(MI)
418 || QII->isConditionalStore(MI)) {
419 return true;
420 }
421 return false;
422 }
423
424
425 // Promote an instructiont to its .new form.
426 // At this time, we have already made a call to CanPromoteToDotNew
427 // and made sure that it can *indeed* be promoted.
PromoteToDotNew(MachineInstr * MI,SDep::Kind DepType,MachineBasicBlock::iterator & MII,const TargetRegisterClass * RC)428 bool HexagonPacketizerList::PromoteToDotNew(MachineInstr* MI,
429 SDep::Kind DepType, MachineBasicBlock::iterator &MII,
430 const TargetRegisterClass* RC) {
431
432 assert (DepType == SDep::Data);
433 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
434
435 int NewOpcode;
436 if (RC == &Hexagon::PredRegsRegClass)
437 NewOpcode = QII->GetDotNewPredOp(MI, MBPI);
438 else
439 NewOpcode = QII->GetDotNewOp(MI);
440 MI->setDesc(QII->get(NewOpcode));
441
442 return true;
443 }
444
DemoteToDotOld(MachineInstr * MI)445 bool HexagonPacketizerList::DemoteToDotOld(MachineInstr* MI) {
446 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
447 int NewOpcode = QII->GetDotOldOp(MI->getOpcode());
448 MI->setDesc(QII->get(NewOpcode));
449 return true;
450 }
451
452 enum PredicateKind {
453 PK_False,
454 PK_True,
455 PK_Unknown
456 };
457
458 /// Returns true if an instruction is predicated on p0 and false if it's
459 /// predicated on !p0.
getPredicateSense(MachineInstr * MI,const HexagonInstrInfo * QII)460 static PredicateKind getPredicateSense(MachineInstr* MI,
461 const HexagonInstrInfo *QII) {
462 if (!QII->isPredicated(MI))
463 return PK_Unknown;
464
465 if (QII->isPredicatedTrue(MI))
466 return PK_True;
467
468 return PK_False;
469 }
470
GetPostIncrementOperand(MachineInstr * MI,const HexagonInstrInfo * QII)471 static MachineOperand& GetPostIncrementOperand(MachineInstr *MI,
472 const HexagonInstrInfo *QII) {
473 assert(QII->isPostIncrement(MI) && "Not a post increment operation.");
474 #ifndef NDEBUG
475 // Post Increment means duplicates. Use dense map to find duplicates in the
476 // list. Caution: Densemap initializes with the minimum of 64 buckets,
477 // whereas there are at most 5 operands in the post increment.
478 DenseMap<unsigned, unsigned> DefRegsSet;
479 for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
480 if (MI->getOperand(opNum).isReg() &&
481 MI->getOperand(opNum).isDef()) {
482 DefRegsSet[MI->getOperand(opNum).getReg()] = 1;
483 }
484
485 for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++)
486 if (MI->getOperand(opNum).isReg() &&
487 MI->getOperand(opNum).isUse()) {
488 if (DefRegsSet[MI->getOperand(opNum).getReg()]) {
489 return MI->getOperand(opNum);
490 }
491 }
492 #else
493 if (MI->getDesc().mayLoad()) {
494 // The 2nd operand is always the post increment operand in load.
495 assert(MI->getOperand(1).isReg() &&
496 "Post increment operand has be to a register.");
497 return (MI->getOperand(1));
498 }
499 if (MI->getDesc().mayStore()) {
500 // The 1st operand is always the post increment operand in store.
501 assert(MI->getOperand(0).isReg() &&
502 "Post increment operand has be to a register.");
503 return (MI->getOperand(0));
504 }
505 #endif
506 // we should never come here.
507 llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
508 }
509
510 // get the value being stored
GetStoreValueOperand(MachineInstr * MI)511 static MachineOperand& GetStoreValueOperand(MachineInstr *MI) {
512 // value being stored is always the last operand.
513 return (MI->getOperand(MI->getNumOperands()-1));
514 }
515
516 // can be new value store?
517 // Following restrictions are to be respected in convert a store into
518 // a new value store.
519 // 1. If an instruction uses auto-increment, its address register cannot
520 // be a new-value register. Arch Spec 5.4.2.1
521 // 2. If an instruction uses absolute-set addressing mode,
522 // its address register cannot be a new-value register.
523 // Arch Spec 5.4.2.1.TODO: This is not enabled as
524 // as absolute-set address mode patters are not implemented.
525 // 3. If an instruction produces a 64-bit result, its registers cannot be used
526 // as new-value registers. Arch Spec 5.4.2.2.
527 // 4. If the instruction that sets a new-value register is conditional, then
528 // the instruction that uses the new-value register must also be conditional,
529 // and both must always have their predicates evaluate identically.
530 // Arch Spec 5.4.2.3.
531 // 5. There is an implied restriction of a packet can not have another store,
532 // if there is a new value store in the packet. Corollary, if there is
533 // already a store in a packet, there can not be a new value store.
534 // Arch Spec: 3.4.4.2
CanPromoteToNewValueStore(MachineInstr * MI,MachineInstr * PacketMI,unsigned DepReg,const std::map<MachineInstr *,SUnit * > & MIToSUnit)535 bool HexagonPacketizerList::CanPromoteToNewValueStore(
536 MachineInstr *MI, MachineInstr *PacketMI, unsigned DepReg,
537 const std::map<MachineInstr *, SUnit *> &MIToSUnit) {
538 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
539 // Make sure we are looking at the store, that can be promoted.
540 if (!QII->mayBeNewStore(MI))
541 return false;
542
543 // Make sure there is dependency and can be new value'ed
544 if (GetStoreValueOperand(MI).isReg() &&
545 GetStoreValueOperand(MI).getReg() != DepReg)
546 return false;
547
548 const HexagonRegisterInfo *QRI =
549 (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
550 const MCInstrDesc& MCID = PacketMI->getDesc();
551 // first operand is always the result
552
553 const TargetRegisterClass* PacketRC = QII->getRegClass(MCID, 0, QRI, MF);
554
555 // if there is already an store in the packet, no can do new value store
556 // Arch Spec 3.4.4.2.
557 for (std::vector<MachineInstr*>::iterator VI = CurrentPacketMIs.begin(),
558 VE = CurrentPacketMIs.end();
559 (VI != VE); ++VI) {
560 SUnit *PacketSU = MIToSUnit.find(*VI)->second;
561 if (PacketSU->getInstr()->getDesc().mayStore() ||
562 // if we have mayStore = 1 set on ALLOCFRAME and DEALLOCFRAME,
563 // then we don't need this
564 PacketSU->getInstr()->getOpcode() == Hexagon::S2_allocframe ||
565 PacketSU->getInstr()->getOpcode() == Hexagon::L2_deallocframe)
566 return false;
567 }
568
569 if (PacketRC == &Hexagon::DoubleRegsRegClass) {
570 // new value store constraint: double regs can not feed into new value store
571 // arch spec section: 5.4.2.2
572 return false;
573 }
574
575 // Make sure it's NOT the post increment register that we are going to
576 // new value.
577 if (QII->isPostIncrement(MI) &&
578 MI->getDesc().mayStore() &&
579 GetPostIncrementOperand(MI, QII).getReg() == DepReg) {
580 return false;
581 }
582
583 if (QII->isPostIncrement(PacketMI) &&
584 PacketMI->getDesc().mayLoad() &&
585 GetPostIncrementOperand(PacketMI, QII).getReg() == DepReg) {
586 // if source is post_inc, or absolute-set addressing,
587 // it can not feed into new value store
588 // r3 = memw(r2++#4)
589 // memw(r30 + #-1404) = r2.new -> can not be new value store
590 // arch spec section: 5.4.2.1
591 return false;
592 }
593
594 // If the source that feeds the store is predicated, new value store must
595 // also be predicated.
596 if (QII->isPredicated(PacketMI)) {
597 if (!QII->isPredicated(MI))
598 return false;
599
600 // Check to make sure that they both will have their predicates
601 // evaluate identically
602 unsigned predRegNumSrc = 0;
603 unsigned predRegNumDst = 0;
604 const TargetRegisterClass* predRegClass = nullptr;
605
606 // Get predicate register used in the source instruction
607 for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
608 if ( PacketMI->getOperand(opNum).isReg())
609 predRegNumSrc = PacketMI->getOperand(opNum).getReg();
610 predRegClass = QRI->getMinimalPhysRegClass(predRegNumSrc);
611 if (predRegClass == &Hexagon::PredRegsRegClass) {
612 break;
613 }
614 }
615 assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
616 ("predicate register not found in a predicated PacketMI instruction"));
617
618 // Get predicate register used in new-value store instruction
619 for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
620 if ( MI->getOperand(opNum).isReg())
621 predRegNumDst = MI->getOperand(opNum).getReg();
622 predRegClass = QRI->getMinimalPhysRegClass(predRegNumDst);
623 if (predRegClass == &Hexagon::PredRegsRegClass) {
624 break;
625 }
626 }
627 assert ((predRegClass == &Hexagon::PredRegsRegClass ) &&
628 ("predicate register not found in a predicated MI instruction"));
629
630 // New-value register producer and user (store) need to satisfy these
631 // constraints:
632 // 1) Both instructions should be predicated on the same register.
633 // 2) If producer of the new-value register is .new predicated then store
634 // should also be .new predicated and if producer is not .new predicated
635 // then store should not be .new predicated.
636 // 3) Both new-value register producer and user should have same predicate
637 // sense, i.e, either both should be negated or both should be none negated.
638
639 if (( predRegNumDst != predRegNumSrc) ||
640 QII->isDotNewInst(PacketMI) != QII->isDotNewInst(MI) ||
641 getPredicateSense(MI, QII) != getPredicateSense(PacketMI, QII)) {
642 return false;
643 }
644 }
645
646 // Make sure that other than the new-value register no other store instruction
647 // register has been modified in the same packet. Predicate registers can be
648 // modified by they should not be modified between the producer and the store
649 // instruction as it will make them both conditional on different values.
650 // We already know this to be true for all the instructions before and
651 // including PacketMI. Howerver, we need to perform the check for the
652 // remaining instructions in the packet.
653
654 std::vector<MachineInstr*>::iterator VI;
655 std::vector<MachineInstr*>::iterator VE;
656 unsigned StartCheck = 0;
657
658 for (VI=CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end();
659 (VI != VE); ++VI) {
660 SUnit *TempSU = MIToSUnit.find(*VI)->second;
661 MachineInstr* TempMI = TempSU->getInstr();
662
663 // Following condition is true for all the instructions until PacketMI is
664 // reached (StartCheck is set to 0 before the for loop).
665 // StartCheck flag is 1 for all the instructions after PacketMI.
666 if (TempMI != PacketMI && !StartCheck) // start processing only after
667 continue; // encountering PacketMI
668
669 StartCheck = 1;
670 if (TempMI == PacketMI) // We don't want to check PacketMI for dependence
671 continue;
672
673 for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
674 if (MI->getOperand(opNum).isReg() &&
675 TempSU->getInstr()->modifiesRegister(MI->getOperand(opNum).getReg(),
676 QRI))
677 return false;
678 }
679 }
680
681 // Make sure that for non-POST_INC stores:
682 // 1. The only use of reg is DepReg and no other registers.
683 // This handles V4 base+index registers.
684 // The following store can not be dot new.
685 // Eg. r0 = add(r0, #3)a
686 // memw(r1+r0<<#2) = r0
687 if (!QII->isPostIncrement(MI) &&
688 GetStoreValueOperand(MI).isReg() &&
689 GetStoreValueOperand(MI).getReg() == DepReg) {
690 for(unsigned opNum = 0; opNum < MI->getNumOperands()-1; opNum++) {
691 if (MI->getOperand(opNum).isReg() &&
692 MI->getOperand(opNum).getReg() == DepReg) {
693 return false;
694 }
695 }
696 // 2. If data definition is because of implicit definition of the register,
697 // do not newify the store. Eg.
698 // %R9<def> = ZXTH %R12, %D6<imp-use>, %R12<imp-def>
699 // STrih_indexed %R8, 2, %R12<kill>; mem:ST2[%scevgep343]
700 for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) {
701 if (PacketMI->getOperand(opNum).isReg() &&
702 PacketMI->getOperand(opNum).getReg() == DepReg &&
703 PacketMI->getOperand(opNum).isDef() &&
704 PacketMI->getOperand(opNum).isImplicit()) {
705 return false;
706 }
707 }
708 }
709
710 // Can be dot new store.
711 return true;
712 }
713
714 // can this MI to promoted to either
715 // new value store or new value jump
CanPromoteToNewValue(MachineInstr * MI,SUnit * PacketSU,unsigned DepReg,const std::map<MachineInstr *,SUnit * > & MIToSUnit,MachineBasicBlock::iterator & MII)716 bool HexagonPacketizerList::CanPromoteToNewValue(
717 MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
718 const std::map<MachineInstr *, SUnit *> &MIToSUnit,
719 MachineBasicBlock::iterator &MII) {
720
721 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
722 if (!QII->mayBeNewStore(MI))
723 return false;
724
725 MachineInstr *PacketMI = PacketSU->getInstr();
726
727 // Check to see the store can be new value'ed.
728 if (CanPromoteToNewValueStore(MI, PacketMI, DepReg, MIToSUnit))
729 return true;
730
731 // Check to see the compare/jump can be new value'ed.
732 // This is done as a pass on its own. Don't need to check it here.
733 return false;
734 }
735
736 // Check to see if an instruction can be dot new
737 // There are three kinds.
738 // 1. dot new on predicate - V2/V3/V4
739 // 2. dot new on stores NV/ST - V4
740 // 3. dot new on jump NV/J - V4 -- This is generated in a pass.
CanPromoteToDotNew(MachineInstr * MI,SUnit * PacketSU,unsigned DepReg,const std::map<MachineInstr *,SUnit * > & MIToSUnit,MachineBasicBlock::iterator & MII,const TargetRegisterClass * RC)741 bool HexagonPacketizerList::CanPromoteToDotNew(
742 MachineInstr *MI, SUnit *PacketSU, unsigned DepReg,
743 const std::map<MachineInstr *, SUnit *> &MIToSUnit,
744 MachineBasicBlock::iterator &MII, const TargetRegisterClass *RC) {
745 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
746 // Already a dot new instruction.
747 if (QII->isDotNewInst(MI) && !QII->mayBeNewStore(MI))
748 return false;
749
750 if (!isNewifiable(MI))
751 return false;
752
753 // predicate .new
754 if (RC == &Hexagon::PredRegsRegClass && isCondInst(MI))
755 return true;
756 else if (RC != &Hexagon::PredRegsRegClass &&
757 !QII->mayBeNewStore(MI)) // MI is not a new-value store
758 return false;
759 else {
760 // Create a dot new machine instruction to see if resources can be
761 // allocated. If not, bail out now.
762 int NewOpcode = QII->GetDotNewOp(MI);
763 const MCInstrDesc &desc = QII->get(NewOpcode);
764 DebugLoc dl;
765 MachineInstr *NewMI =
766 MI->getParent()->getParent()->CreateMachineInstr(desc, dl);
767 bool ResourcesAvailable = ResourceTracker->canReserveResources(NewMI);
768 MI->getParent()->getParent()->DeleteMachineInstr(NewMI);
769
770 if (!ResourcesAvailable)
771 return false;
772
773 // new value store only
774 // new new value jump generated as a passes
775 if (!CanPromoteToNewValue(MI, PacketSU, DepReg, MIToSUnit, MII)) {
776 return false;
777 }
778 }
779 return true;
780 }
781
782 // Go through the packet instructions and search for anti dependency
783 // between them and DepReg from MI
784 // Consider this case:
785 // Trying to add
786 // a) %R1<def> = TFRI_cdNotPt %P3, 2
787 // to this packet:
788 // {
789 // b) %P0<def> = OR_pp %P3<kill>, %P0<kill>
790 // c) %P3<def> = TFR_PdRs %R23
791 // d) %R1<def> = TFRI_cdnPt %P3, 4
792 // }
793 // The P3 from a) and d) will be complements after
794 // a)'s P3 is converted to .new form
795 // Anti Dep between c) and b) is irrelevant for this case
RestrictingDepExistInPacket(MachineInstr * MI,unsigned DepReg,const std::map<MachineInstr *,SUnit * > & MIToSUnit)796 bool HexagonPacketizerList::RestrictingDepExistInPacket(
797 MachineInstr *MI, unsigned DepReg,
798 const std::map<MachineInstr *, SUnit *> &MIToSUnit) {
799
800 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
801 SUnit *PacketSUDep = MIToSUnit.find(MI)->second;
802
803 for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
804 VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
805
806 // We only care for dependencies to predicated instructions
807 if(!QII->isPredicated(*VIN)) continue;
808
809 // Scheduling Unit for current insn in the packet
810 SUnit *PacketSU = MIToSUnit.find(*VIN)->second;
811
812 // Look at dependencies between current members of the packet
813 // and predicate defining instruction MI.
814 // Make sure that dependency is on the exact register
815 // we care about.
816 if (PacketSU->isSucc(PacketSUDep)) {
817 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
818 if ((PacketSU->Succs[i].getSUnit() == PacketSUDep) &&
819 (PacketSU->Succs[i].getKind() == SDep::Anti) &&
820 (PacketSU->Succs[i].getReg() == DepReg)) {
821 return true;
822 }
823 }
824 }
825 }
826
827 return false;
828 }
829
830
831 /// Gets the predicate register of a predicated instruction.
getPredicatedRegister(MachineInstr * MI,const HexagonInstrInfo * QII)832 static unsigned getPredicatedRegister(MachineInstr *MI,
833 const HexagonInstrInfo *QII) {
834 /// We use the following rule: The first predicate register that is a use is
835 /// the predicate register of a predicated instruction.
836
837 assert(QII->isPredicated(MI) && "Must be predicated instruction");
838
839 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
840 OE = MI->operands_end(); OI != OE; ++OI) {
841 MachineOperand &Op = *OI;
842 if (Op.isReg() && Op.getReg() && Op.isUse() &&
843 Hexagon::PredRegsRegClass.contains(Op.getReg()))
844 return Op.getReg();
845 }
846
847 llvm_unreachable("Unknown instruction operand layout");
848
849 return 0;
850 }
851
852 // Given two predicated instructions, this function detects whether
853 // the predicates are complements
ArePredicatesComplements(MachineInstr * MI1,MachineInstr * MI2,const std::map<MachineInstr *,SUnit * > & MIToSUnit)854 bool HexagonPacketizerList::ArePredicatesComplements(
855 MachineInstr *MI1, MachineInstr *MI2,
856 const std::map<MachineInstr *, SUnit *> &MIToSUnit) {
857
858 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
859
860 // If we don't know the predicate sense of the instructions bail out early, we
861 // need it later.
862 if (getPredicateSense(MI1, QII) == PK_Unknown ||
863 getPredicateSense(MI2, QII) == PK_Unknown)
864 return false;
865
866 // Scheduling unit for candidate
867 SUnit *SU = MIToSUnit.find(MI1)->second;
868
869 // One corner case deals with the following scenario:
870 // Trying to add
871 // a) %R24<def> = TFR_cPt %P0, %R25
872 // to this packet:
873 //
874 // {
875 // b) %R25<def> = TFR_cNotPt %P0, %R24
876 // c) %P0<def> = CMPEQri %R26, 1
877 // }
878 //
879 // On general check a) and b) are complements, but
880 // presence of c) will convert a) to .new form, and
881 // then it is not a complement
882 // We attempt to detect it by analyzing existing
883 // dependencies in the packet
884
885 // Analyze relationships between all existing members of the packet.
886 // Look for Anti dependecy on the same predicate reg
887 // as used in the candidate
888 for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(),
889 VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) {
890
891 // Scheduling Unit for current insn in the packet
892 SUnit *PacketSU = MIToSUnit.find(*VIN)->second;
893
894 // If this instruction in the packet is succeeded by the candidate...
895 if (PacketSU->isSucc(SU)) {
896 for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
897 // The corner case exist when there is true data
898 // dependency between candidate and one of current
899 // packet members, this dep is on predicate reg, and
900 // there already exist anti dep on the same pred in
901 // the packet.
902 if (PacketSU->Succs[i].getSUnit() == SU &&
903 PacketSU->Succs[i].getKind() == SDep::Data &&
904 Hexagon::PredRegsRegClass.contains(
905 PacketSU->Succs[i].getReg()) &&
906 // Here I know that *VIN is predicate setting instruction
907 // with true data dep to candidate on the register
908 // we care about - c) in the above example.
909 // Now I need to see if there is an anti dependency
910 // from c) to any other instruction in the
911 // same packet on the pred reg of interest
912 RestrictingDepExistInPacket(*VIN,PacketSU->Succs[i].getReg(),
913 MIToSUnit)) {
914 return false;
915 }
916 }
917 }
918 }
919
920 // If the above case does not apply, check regular
921 // complement condition.
922 // Check that the predicate register is the same and
923 // that the predicate sense is different
924 // We also need to differentiate .old vs. .new:
925 // !p0 is not complimentary to p0.new
926 unsigned PReg1 = getPredicatedRegister(MI1, QII);
927 unsigned PReg2 = getPredicatedRegister(MI2, QII);
928 return ((PReg1 == PReg2) &&
929 Hexagon::PredRegsRegClass.contains(PReg1) &&
930 Hexagon::PredRegsRegClass.contains(PReg2) &&
931 (getPredicateSense(MI1, QII) != getPredicateSense(MI2, QII)) &&
932 (QII->isDotNewInst(MI1) == QII->isDotNewInst(MI2)));
933 }
934
935 // initPacketizerState - Initialize packetizer flags
initPacketizerState()936 void HexagonPacketizerList::initPacketizerState() {
937
938 Dependence = false;
939 PromotedToDotNew = false;
940 GlueToNewValueJump = false;
941 GlueAllocframeStore = false;
942 FoundSequentialDependence = false;
943
944 return;
945 }
946
947 // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
ignorePseudoInstruction(MachineInstr * MI,MachineBasicBlock * MBB)948 bool HexagonPacketizerList::ignorePseudoInstruction(MachineInstr *MI,
949 MachineBasicBlock *MBB) {
950 if (MI->isDebugValue())
951 return true;
952
953 // We must print out inline assembly
954 if (MI->isInlineAsm())
955 return false;
956
957 // We check if MI has any functional units mapped to it.
958 // If it doesn't, we ignore the instruction.
959 const MCInstrDesc& TID = MI->getDesc();
960 unsigned SchedClass = TID.getSchedClass();
961 const InstrStage* IS =
962 ResourceTracker->getInstrItins()->beginStage(SchedClass);
963 unsigned FuncUnits = IS->getUnits();
964 return !FuncUnits;
965 }
966
967 // isSoloInstruction: - Returns true for instructions that must be
968 // scheduled in their own packet.
isSoloInstruction(MachineInstr * MI)969 bool HexagonPacketizerList::isSoloInstruction(MachineInstr *MI) {
970
971 if (MI->isInlineAsm())
972 return true;
973
974 if (MI->isEHLabel())
975 return true;
976
977 // From Hexagon V4 Programmer's Reference Manual 3.4.4 Grouping constraints:
978 // trap, pause, barrier, icinva, isync, and syncht are solo instructions.
979 // They must not be grouped with other instructions in a packet.
980 if (IsSchedBarrier(MI))
981 return true;
982
983 return false;
984 }
985
986 // isLegalToPacketizeTogether:
987 // SUI is the current instruction that is out side of the current packet.
988 // SUJ is the current instruction inside the current packet against which that
989 // SUI will be packetized.
isLegalToPacketizeTogether(SUnit * SUI,SUnit * SUJ)990 bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
991 MachineInstr *I = SUI->getInstr();
992 MachineInstr *J = SUJ->getInstr();
993 assert(I && J && "Unable to packetize null instruction!");
994
995 const MCInstrDesc &MCIDI = I->getDesc();
996 const MCInstrDesc &MCIDJ = J->getDesc();
997
998 MachineBasicBlock::iterator II = I;
999
1000 const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
1001 const HexagonRegisterInfo *QRI =
1002 (const HexagonRegisterInfo *)MF.getSubtarget().getRegisterInfo();
1003 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1004
1005 // Inline asm cannot go in the packet.
1006 if (I->getOpcode() == Hexagon::INLINEASM)
1007 llvm_unreachable("Should not meet inline asm here!");
1008
1009 if (isSoloInstruction(I))
1010 llvm_unreachable("Should not meet solo instr here!");
1011
1012 // A save callee-save register function call can only be in a packet
1013 // with instructions that don't write to the callee-save registers.
1014 if ((QII->isSaveCalleeSavedRegsCall(I) &&
1015 DoesModifyCalleeSavedReg(J, QRI)) ||
1016 (QII->isSaveCalleeSavedRegsCall(J) &&
1017 DoesModifyCalleeSavedReg(I, QRI))) {
1018 Dependence = true;
1019 return false;
1020 }
1021
1022 // Two control flow instructions cannot go in the same packet.
1023 if (IsControlFlow(I) && IsControlFlow(J)) {
1024 Dependence = true;
1025 return false;
1026 }
1027
1028 // A LoopN instruction cannot appear in the same packet as a jump or call.
1029 if (IsLoopN(I) &&
1030 (IsDirectJump(J) || MCIDJ.isCall() || QII->isDeallocRet(J))) {
1031 Dependence = true;
1032 return false;
1033 }
1034 if (IsLoopN(J) &&
1035 (IsDirectJump(I) || MCIDI.isCall() || QII->isDeallocRet(I))) {
1036 Dependence = true;
1037 return false;
1038 }
1039
1040 // dealloc_return cannot appear in the same packet as a conditional or
1041 // unconditional jump.
1042 if (QII->isDeallocRet(I) &&
1043 (MCIDJ.isBranch() || MCIDJ.isCall() || MCIDJ.isBarrier())) {
1044 Dependence = true;
1045 return false;
1046 }
1047
1048
1049 // V4 allows dual store. But does not allow second store, if the
1050 // first store is not in SLOT0. New value store, new value jump,
1051 // dealloc_return and memop always take SLOT0.
1052 // Arch spec 3.4.4.2
1053 if (MCIDI.mayStore() && MCIDJ.mayStore() &&
1054 (QII->isNewValueInst(J) || QII->isMemOp(J) || QII->isMemOp(I))) {
1055 Dependence = true;
1056 return false;
1057 }
1058
1059 if ((QII->isMemOp(J) && MCIDI.mayStore())
1060 || (MCIDJ.mayStore() && QII->isMemOp(I))
1061 || (QII->isMemOp(J) && QII->isMemOp(I))) {
1062 Dependence = true;
1063 return false;
1064 }
1065
1066 //if dealloc_return
1067 if (MCIDJ.mayStore() && QII->isDeallocRet(I)) {
1068 Dependence = true;
1069 return false;
1070 }
1071
1072 // If an instruction feeds new value jump, glue it.
1073 MachineBasicBlock::iterator NextMII = I;
1074 ++NextMII;
1075 if (NextMII != I->getParent()->end() && QII->isNewValueJump(NextMII)) {
1076 MachineInstr *NextMI = NextMII;
1077
1078 bool secondRegMatch = false;
1079 bool maintainNewValueJump = false;
1080
1081 if (NextMI->getOperand(1).isReg() &&
1082 I->getOperand(0).getReg() == NextMI->getOperand(1).getReg()) {
1083 secondRegMatch = true;
1084 maintainNewValueJump = true;
1085 }
1086
1087 if (!secondRegMatch &&
1088 I->getOperand(0).getReg() == NextMI->getOperand(0).getReg()) {
1089 maintainNewValueJump = true;
1090 }
1091
1092 for (std::vector<MachineInstr*>::iterator
1093 VI = CurrentPacketMIs.begin(),
1094 VE = CurrentPacketMIs.end();
1095 (VI != VE && maintainNewValueJump); ++VI) {
1096 SUnit *PacketSU = MIToSUnit.find(*VI)->second;
1097
1098 // NVJ can not be part of the dual jump - Arch Spec: section 7.8
1099 if (PacketSU->getInstr()->getDesc().isCall()) {
1100 Dependence = true;
1101 break;
1102 }
1103 // Validate
1104 // 1. Packet does not have a store in it.
1105 // 2. If the first operand of the nvj is newified, and the second
1106 // operand is also a reg, it (second reg) is not defined in
1107 // the same packet.
1108 // 3. If the second operand of the nvj is newified, (which means
1109 // first operand is also a reg), first reg is not defined in
1110 // the same packet.
1111 if (PacketSU->getInstr()->getDesc().mayStore() ||
1112 PacketSU->getInstr()->getOpcode() == Hexagon::S2_allocframe ||
1113 // Check #2.
1114 (!secondRegMatch && NextMI->getOperand(1).isReg() &&
1115 PacketSU->getInstr()->modifiesRegister(
1116 NextMI->getOperand(1).getReg(), QRI)) ||
1117 // Check #3.
1118 (secondRegMatch &&
1119 PacketSU->getInstr()->modifiesRegister(
1120 NextMI->getOperand(0).getReg(), QRI))) {
1121 Dependence = true;
1122 break;
1123 }
1124 }
1125 if (!Dependence)
1126 GlueToNewValueJump = true;
1127 else
1128 return false;
1129 }
1130
1131 if (SUJ->isSucc(SUI)) {
1132 for (unsigned i = 0;
1133 (i < SUJ->Succs.size()) && !FoundSequentialDependence;
1134 ++i) {
1135
1136 if (SUJ->Succs[i].getSUnit() != SUI) {
1137 continue;
1138 }
1139
1140 SDep::Kind DepType = SUJ->Succs[i].getKind();
1141
1142 // For direct calls:
1143 // Ignore register dependences for call instructions for
1144 // packetization purposes except for those due to r31 and
1145 // predicate registers.
1146 //
1147 // For indirect calls:
1148 // Same as direct calls + check for true dependences to the register
1149 // used in the indirect call.
1150 //
1151 // We completely ignore Order dependences for call instructions
1152 //
1153 // For returns:
1154 // Ignore register dependences for return instructions like jumpr,
1155 // dealloc return unless we have dependencies on the explicit uses
1156 // of the registers used by jumpr (like r31) or dealloc return
1157 // (like r29 or r30).
1158 //
1159 // TODO: Currently, jumpr is handling only return of r31. So, the
1160 // following logic (specificaly IsCallDependent) is working fine.
1161 // We need to enable jumpr for register other than r31 and then,
1162 // we need to rework the last part, where it handles indirect call
1163 // of that (IsCallDependent) function. Bug 6216 is opened for this.
1164 //
1165 unsigned DepReg = 0;
1166 const TargetRegisterClass* RC = nullptr;
1167 if (DepType == SDep::Data) {
1168 DepReg = SUJ->Succs[i].getReg();
1169 RC = QRI->getMinimalPhysRegClass(DepReg);
1170 }
1171 if ((MCIDI.isCall() || MCIDI.isReturn()) &&
1172 (!IsRegDependence(DepType) ||
1173 !IsCallDependent(I, DepType, SUJ->Succs[i].getReg()))) {
1174 /* do nothing */
1175 }
1176
1177 // For instructions that can be promoted to dot-new, try to promote.
1178 else if ((DepType == SDep::Data) &&
1179 CanPromoteToDotNew(I, SUJ, DepReg, MIToSUnit, II, RC) &&
1180 PromoteToDotNew(I, DepType, II, RC)) {
1181 PromotedToDotNew = true;
1182 /* do nothing */
1183 }
1184
1185 else if ((DepType == SDep::Data) &&
1186 (QII->isNewValueJump(I))) {
1187 /* do nothing */
1188 }
1189
1190 // For predicated instructions, if the predicates are complements
1191 // then there can be no dependence.
1192 else if (QII->isPredicated(I) &&
1193 QII->isPredicated(J) &&
1194 ArePredicatesComplements(I, J, MIToSUnit)) {
1195 /* do nothing */
1196
1197 }
1198 else if (IsDirectJump(I) &&
1199 !MCIDJ.isBranch() &&
1200 !MCIDJ.isCall() &&
1201 (DepType == SDep::Order)) {
1202 // Ignore Order dependences between unconditional direct branches
1203 // and non-control-flow instructions
1204 /* do nothing */
1205 }
1206 else if (MCIDI.isConditionalBranch() && (DepType != SDep::Data) &&
1207 (DepType != SDep::Output)) {
1208 // Ignore all dependences for jumps except for true and output
1209 // dependences
1210 /* do nothing */
1211 }
1212
1213 // Ignore output dependences due to superregs. We can
1214 // write to two different subregisters of R1:0 for instance
1215 // in the same cycle
1216 //
1217
1218 //
1219 // Let the
1220 // If neither I nor J defines DepReg, then this is a
1221 // superfluous output dependence. The dependence must be of the
1222 // form:
1223 // R0 = ...
1224 // R1 = ...
1225 // and there is an output dependence between the two instructions
1226 // with
1227 // DepReg = D0
1228 // We want to ignore these dependences.
1229 // Ideally, the dependence constructor should annotate such
1230 // dependences. We can then avoid this relatively expensive check.
1231 //
1232 else if (DepType == SDep::Output) {
1233 // DepReg is the register that's responsible for the dependence.
1234 unsigned DepReg = SUJ->Succs[i].getReg();
1235
1236 // Check if I and J really defines DepReg.
1237 if (I->definesRegister(DepReg) ||
1238 J->definesRegister(DepReg)) {
1239 FoundSequentialDependence = true;
1240 break;
1241 }
1242 }
1243
1244 // We ignore Order dependences for
1245 // 1. Two loads unless they are volatile.
1246 // 2. Two stores in V4 unless they are volatile.
1247 else if ((DepType == SDep::Order) &&
1248 !I->hasOrderedMemoryRef() &&
1249 !J->hasOrderedMemoryRef()) {
1250 if (MCIDI.mayStore() && MCIDJ.mayStore()) {
1251 /* do nothing */
1252 }
1253 // store followed by store-- not OK on V2
1254 // store followed by load -- not OK on all (OK if addresses
1255 // are not aliased)
1256 // load followed by store -- OK on all
1257 // load followed by load -- OK on all
1258 else if ( !MCIDJ.mayStore()) {
1259 /* do nothing */
1260 }
1261 else {
1262 FoundSequentialDependence = true;
1263 break;
1264 }
1265 }
1266
1267 // For V4, special case ALLOCFRAME. Even though there is dependency
1268 // between ALLOCFRAME and subsequent store, allow it to be
1269 // packetized in a same packet. This implies that the store is using
1270 // caller's SP. Hence, offset needs to be updated accordingly.
1271 else if (DepType == SDep::Data
1272 && J->getOpcode() == Hexagon::S2_allocframe
1273 && (I->getOpcode() == Hexagon::S2_storerd_io
1274 || I->getOpcode() == Hexagon::S2_storeri_io
1275 || I->getOpcode() == Hexagon::S2_storerb_io)
1276 && I->getOperand(0).getReg() == QRI->getStackRegister()
1277 && QII->isValidOffset(I->getOpcode(),
1278 I->getOperand(1).getImm() -
1279 (FrameSize + HEXAGON_LRFP_SIZE)))
1280 {
1281 GlueAllocframeStore = true;
1282 // Since this store is to be glued with allocframe in the same
1283 // packet, it will use SP of the previous stack frame, i.e
1284 // caller's SP. Therefore, we need to recalculate offset according
1285 // to this change.
1286 I->getOperand(1).setImm(I->getOperand(1).getImm() -
1287 (FrameSize + HEXAGON_LRFP_SIZE));
1288 }
1289
1290 //
1291 // Skip over anti-dependences. Two instructions that are
1292 // anti-dependent can share a packet
1293 //
1294 else if (DepType != SDep::Anti) {
1295 FoundSequentialDependence = true;
1296 break;
1297 }
1298 }
1299
1300 if (FoundSequentialDependence) {
1301 Dependence = true;
1302 return false;
1303 }
1304 }
1305
1306 return true;
1307 }
1308
1309 // isLegalToPruneDependencies
isLegalToPruneDependencies(SUnit * SUI,SUnit * SUJ)1310 bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
1311 MachineInstr *I = SUI->getInstr();
1312 assert(I && SUJ->getInstr() && "Unable to packetize null instruction!");
1313
1314 const unsigned FrameSize = MF.getFrameInfo()->getStackSize();
1315
1316 if (Dependence) {
1317
1318 // Check if the instruction was promoted to a dot-new. If so, demote it
1319 // back into a dot-old.
1320 if (PromotedToDotNew) {
1321 DemoteToDotOld(I);
1322 }
1323
1324 // Check if the instruction (must be a store) was glued with an Allocframe
1325 // instruction. If so, restore its offset to its original value, i.e. use
1326 // curent SP instead of caller's SP.
1327 if (GlueAllocframeStore) {
1328 I->getOperand(1).setImm(I->getOperand(1).getImm() +
1329 FrameSize + HEXAGON_LRFP_SIZE);
1330 }
1331
1332 return false;
1333 }
1334 return true;
1335 }
1336
1337 MachineBasicBlock::iterator
addToPacket(MachineInstr * MI)1338 HexagonPacketizerList::addToPacket(MachineInstr *MI) {
1339
1340 MachineBasicBlock::iterator MII = MI;
1341 MachineBasicBlock *MBB = MI->getParent();
1342
1343 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1344
1345 if (GlueToNewValueJump) {
1346
1347 ++MII;
1348 MachineInstr *nvjMI = MII;
1349 assert(ResourceTracker->canReserveResources(MI));
1350 ResourceTracker->reserveResources(MI);
1351 if ((QII->isExtended(MI) || QII->isConstExtended(MI)) &&
1352 !tryAllocateResourcesForConstExt(MI)) {
1353 endPacket(MBB, MI);
1354 ResourceTracker->reserveResources(MI);
1355 assert(canReserveResourcesForConstExt(MI) &&
1356 "Ensure that there is a slot");
1357 reserveResourcesForConstExt(MI);
1358 // Reserve resources for new value jump constant extender.
1359 assert(canReserveResourcesForConstExt(MI) &&
1360 "Ensure that there is a slot");
1361 reserveResourcesForConstExt(nvjMI);
1362 assert(ResourceTracker->canReserveResources(nvjMI) &&
1363 "Ensure that there is a slot");
1364
1365 } else if ( // Extended instruction takes two slots in the packet.
1366 // Try reserve and allocate 4-byte in the current packet first.
1367 (QII->isExtended(nvjMI)
1368 && (!tryAllocateResourcesForConstExt(nvjMI)
1369 || !ResourceTracker->canReserveResources(nvjMI)))
1370 || // For non-extended instruction, no need to allocate extra 4 bytes.
1371 (!QII->isExtended(nvjMI) &&
1372 !ResourceTracker->canReserveResources(nvjMI)))
1373 {
1374 endPacket(MBB, MI);
1375 // A new and empty packet starts.
1376 // We are sure that the resources requirements can be satisfied.
1377 // Therefore, do not need to call "canReserveResources" anymore.
1378 ResourceTracker->reserveResources(MI);
1379 if (QII->isExtended(nvjMI))
1380 reserveResourcesForConstExt(nvjMI);
1381 }
1382 // Here, we are sure that "reserveResources" would succeed.
1383 ResourceTracker->reserveResources(nvjMI);
1384 CurrentPacketMIs.push_back(MI);
1385 CurrentPacketMIs.push_back(nvjMI);
1386 } else {
1387 if ( (QII->isExtended(MI) || QII->isConstExtended(MI))
1388 && ( !tryAllocateResourcesForConstExt(MI)
1389 || !ResourceTracker->canReserveResources(MI)))
1390 {
1391 endPacket(MBB, MI);
1392 // Check if the instruction was promoted to a dot-new. If so, demote it
1393 // back into a dot-old
1394 if (PromotedToDotNew) {
1395 DemoteToDotOld(MI);
1396 }
1397 reserveResourcesForConstExt(MI);
1398 }
1399 // In case that "MI" is not an extended insn,
1400 // the resource availability has already been checked.
1401 ResourceTracker->reserveResources(MI);
1402 CurrentPacketMIs.push_back(MI);
1403 }
1404 return MII;
1405 }
1406
1407 //===----------------------------------------------------------------------===//
1408 // Public Constructor Functions
1409 //===----------------------------------------------------------------------===//
1410
createHexagonPacketizer()1411 FunctionPass *llvm::createHexagonPacketizer() {
1412 return new HexagonPacketizer();
1413 }
1414
1415