Searched refs:Jacobian (Results 1 – 10 of 10) sorted by relevance
/external/opencv/cvaux/src/ |
D | cvlevmartrif.cpp | 66 void icvJacobianFunction_ProjTrifocal(const CvMat *vectX,CvMat *Jacobian) in icvJacobianFunction_ProjTrifocal() argument 72 if( vectX == 0 || Jacobian == 0 ) in icvJacobianFunction_ProjTrifocal() 77 if( !CV_IS_MAT(vectX) || !CV_IS_MAT(Jacobian) ) in icvJacobianFunction_ProjTrifocal() 90 if( Jacobian->rows == numPoints*6 || Jacobian->cols != 36+numPoints*4 ) in icvJacobianFunction_ProjTrifocal() 107 cvZero(Jacobian); in icvJacobianFunction_ProjTrifocal() 142 cvmSet( Jacobian, in icvJacobianFunction_ProjTrifocal() 151 … cvmSet(Jacobian,currMatr*numPoints*2+currProjPoint*2,currMatr*12+i,X[i]/piX[2]);//x' p1i in icvJacobianFunction_ProjTrifocal() 152 … cvmSet(Jacobian,currMatr*numPoints*2+currProjPoint*2,currMatr*12+8+i,X[i]*tmp1);//x' p3i in icvJacobianFunction_ProjTrifocal() 155 … cvmSet(Jacobian,currMatr*numPoints*2+currProjPoint*2+1,currMatr*12+4+i,X[i]/piX[2]);//y' p2i in icvJacobianFunction_ProjTrifocal() 156 … cvmSet(Jacobian,currMatr*numPoints*2+currProjPoint*2+1,currMatr*12+8+i,X[i]*tmp2);//y' p3i in icvJacobianFunction_ProjTrifocal()
|
/external/ceres-solver/docs/source/ |
D | faqs.rst | 73 evaluated analytically. Computing the Jacobian in such cases is 93 is the invertible Jacobian of :math:`f` at :math:`x`. Then the 94 Jacobian :math:`Df^{-1}(y) = [Df(x)]^{-1}`, i.e., the Jacobian of 95 the :math:`f^{-1}` is the inverse of the Jacobian of :math:`f`. 98 f^{-1}(y)` by whatever means you can. Evaluate the Jacobian of 99 :math:`f` at :math:`x`. If the Jacobian matrix is invertible, then 100 the inverse is the Jacobian of the inverse at :math:`y`. 135 2. For general sparse problems (i.e., the Jacobian matrix has a 212 Jacobian evaluation 0.361 231 Jacobian evaluation 0.361 [all …]
|
D | solving.rst | 37 In the following, the Jacobian :math:`J(x)` of :math:`F(x)` is an 892 parts of the Jacobian approximation which correspond to 1062 Number of threads used by Ceres to evaluate the Jacobian. 1270 ordering to permute the columns of the Jacobian matrix. There are 1273 1. Compute the Jacobian matrix in some order and then have the 1274 factorization algorithm permute the columns of the Jacobian. 1276 2. Compute the Jacobian with its columns already permuted. 1279 factorization algorithm has to make a copy of the permuted Jacobian 1280 matrix, thus Ceres pre-permutes the columns of the Jacobian matrix 1286 expense of an extra copy of the Jacobian matrix. Setting [all …]
|
D | features.rst | 57 storing and factoring the Jacobian is not feasible or a low 64 multithreading of the Jacobian evaluation and the linear solvers.
|
D | modeling.rst | 62 of Jacobian matrices, i.e., given :math:`\left[x_{i_1}, ... , 98 Compute the residual vector and the Jacobian matrices. 110 to storage for Jacobian matrices corresponding to each parameter 111 block. The Jacobian matrices are in the same order as 115 elements. Each Jacobian matrix is stored in row-major order, i.e., 122 ``NULL``, then the Jacobian matrix corresponding to the 129 This can be used to communicate numerical failures in Jacobian 769 and the Jacobian will be affected appropriately. 1010 the case, then its possible to re-weight the residual and the Jacobian 1020 Then, define the rescaled residual and Jacobian as [all …]
|
D | tutorial.rst | 261 // Compute the Jacobian if asked for. 276 linear, the Jacobian is constant [#f4]_ . 425 Jacobian evaluation 0.000 683 and computing its analytic Jacobian is a bit of a pain. Automatic
|
D | version_history.rst | 40 Jacobian changes over the course of the optimization can now be 182 #. Faster Jacobian evaluation when a loss function is used.
|
D | building.rst | 207 Jacobian evaluation 0.412
|
/external/pdfium/core/src/fxcodec/lcms2/lcms2-2.6/src/ |
D | cmslut.c | 1706 cmsMAT3 Jacobian; in cmsPipelineEvalReverseFloat() local 1766 Jacobian.v[0].n[j] = ((fxd[0] - fx[0]) / JACOBIAN_EPSILON); in cmsPipelineEvalReverseFloat() 1767 Jacobian.v[1].n[j] = ((fxd[1] - fx[1]) / JACOBIAN_EPSILON); in cmsPipelineEvalReverseFloat() 1768 Jacobian.v[2].n[j] = ((fxd[2] - fx[2]) / JACOBIAN_EPSILON); in cmsPipelineEvalReverseFloat() 1776 if (!_cmsMAT3solve(&tmp, &Jacobian, &tmp2)) in cmsPipelineEvalReverseFloat()
|
/external/ceres-solver/scripts/ |
D | ceres-solver.spec | 41 - Threaded Jacobian evaluators and linear solvers
|