Home
last modified time | relevance | path

Searched refs:MatrixPower (Results 1 – 5 of 5) sorted by relevance

/external/eigen/unsupported/Eigen/src/MatrixFunctions/
DMatrixPower.h15 template<typename MatrixType> class MatrixPower; variable
24 MatrixPowerRetval(MatrixPower<MatrixType>& pow, RealScalar p) : m_pow(pow), m_p(p) in MatrixPowerRetval()
35 MatrixPower<MatrixType>& m_pow;
274 class MatrixPower
296 explicit MatrixPower(const MatrixType& A) : m_A(A), m_conditionNumber(0) in MatrixPower() function
355 void MatrixPower<MatrixType>::compute(ResultType& res, RealScalar p) in compute()
371 typename MatrixPower<MatrixType>::RealScalar
372 MatrixPower<MatrixType>::modfAndInit(RealScalar x, RealScalar* intpart) in modfAndInit()
397 void MatrixPower<MatrixType>::computeIntPower(ResultType& res, RealScalar p) in computeIntPower()
415 void MatrixPower<MatrixType>::computeFracPower(ResultType& res, RealScalar p) in computeFracPower()
[all …]
/external/eigen/unsupported/test/
Dmatrix_power.cpp46 MatrixPower<Matrix<T,2,2> > Apow(A); in test2dRotation()
68 MatrixPower<Matrix<std::complex<T>,2,2> > Apow(A); in test2dHyperbolicRotation()
91 MatrixPower<MatrixType> mpow(m1); in testExponentLaws()
/external/eigen/unsupported/doc/examples/
DMatrixPower_optimal.cpp9 MatrixPower<Matrix4cd> Apow(A); in main()
/external/eigen/unsupported/Eigen/
DMatrixFunctions62 #include "src/MatrixFunctions/MatrixPower.h"
244 algorithm as implemented by class MatrixPower. The exponent is split
267 \include MatrixPower.cpp
268 Output: \verbinclude MatrixPower.out
271 circumstances under which you should use class MatrixPower directly.
272 MatrixPower can save the result of Schur decomposition, so it's
283 \sa MatrixBase::exp(), MatrixBase::log(), class MatrixPower.
/external/eigen/Eigen/src/Core/
DMatrixBase.h166 template<typename MatrixPower, typename Lhs, typename Rhs>
167 Derived& lazyAssign(const MatrixPowerProduct<MatrixPower, Lhs,Rhs>& other);