1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/compiler/instruction-selector-unittest.h"
6 
7 namespace v8 {
8 namespace internal {
9 namespace compiler {
10 
11 namespace {
12 
13 // Immediates (random subset).
14 static const int32_t kImmediates[] = {
15     kMinInt, -42, -1, 0,  1,  2,    3,      4,          5,
16     6,       7,   8,  16, 42, 0xff, 0xffff, 0x0f0f0f0f, kMaxInt};
17 
18 }  // namespace
19 
20 
TEST_F(InstructionSelectorTest,Int32AddWithParameter)21 TEST_F(InstructionSelectorTest, Int32AddWithParameter) {
22   StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
23   m.Return(m.Int32Add(m.Parameter(0), m.Parameter(1)));
24   Stream s = m.Build();
25   ASSERT_EQ(1U, s.size());
26   EXPECT_EQ(kIA32Add, s[0]->arch_opcode());
27 }
28 
29 
TEST_F(InstructionSelectorTest,Int32AddWithImmediate)30 TEST_F(InstructionSelectorTest, Int32AddWithImmediate) {
31   TRACED_FOREACH(int32_t, imm, kImmediates) {
32     {
33       StreamBuilder m(this, kMachInt32, kMachInt32);
34       m.Return(m.Int32Add(m.Parameter(0), m.Int32Constant(imm)));
35       Stream s = m.Build();
36       ASSERT_EQ(1U, s.size());
37       EXPECT_EQ(kIA32Add, s[0]->arch_opcode());
38       ASSERT_EQ(2U, s[0]->InputCount());
39       EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
40     }
41     {
42       StreamBuilder m(this, kMachInt32, kMachInt32);
43       m.Return(m.Int32Add(m.Int32Constant(imm), m.Parameter(0)));
44       Stream s = m.Build();
45       ASSERT_EQ(1U, s.size());
46       EXPECT_EQ(kIA32Add, s[0]->arch_opcode());
47       ASSERT_EQ(2U, s[0]->InputCount());
48       EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
49     }
50   }
51 }
52 
53 
TEST_F(InstructionSelectorTest,Int32SubWithParameter)54 TEST_F(InstructionSelectorTest, Int32SubWithParameter) {
55   StreamBuilder m(this, kMachInt32, kMachInt32, kMachInt32);
56   m.Return(m.Int32Sub(m.Parameter(0), m.Parameter(1)));
57   Stream s = m.Build();
58   ASSERT_EQ(1U, s.size());
59   EXPECT_EQ(kIA32Sub, s[0]->arch_opcode());
60   EXPECT_EQ(1U, s[0]->OutputCount());
61 }
62 
63 
TEST_F(InstructionSelectorTest,Int32SubWithImmediate)64 TEST_F(InstructionSelectorTest, Int32SubWithImmediate) {
65   TRACED_FOREACH(int32_t, imm, kImmediates) {
66     StreamBuilder m(this, kMachInt32, kMachInt32);
67     m.Return(m.Int32Sub(m.Parameter(0), m.Int32Constant(imm)));
68     Stream s = m.Build();
69     ASSERT_EQ(1U, s.size());
70     EXPECT_EQ(kIA32Sub, s[0]->arch_opcode());
71     ASSERT_EQ(2U, s[0]->InputCount());
72     EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1)));
73   }
74 }
75 
76 
77 // -----------------------------------------------------------------------------
78 // Loads and stores
79 
80 namespace {
81 
82 struct MemoryAccess {
83   MachineType type;
84   ArchOpcode load_opcode;
85   ArchOpcode store_opcode;
86 };
87 
88 
operator <<(std::ostream & os,const MemoryAccess & memacc)89 std::ostream& operator<<(std::ostream& os, const MemoryAccess& memacc) {
90   OStringStream ost;
91   ost << memacc.type;
92   return os << ost.c_str();
93 }
94 
95 
96 static const MemoryAccess kMemoryAccesses[] = {
97     {kMachInt8, kIA32Movsxbl, kIA32Movb},
98     {kMachUint8, kIA32Movzxbl, kIA32Movb},
99     {kMachInt16, kIA32Movsxwl, kIA32Movw},
100     {kMachUint16, kIA32Movzxwl, kIA32Movw},
101     {kMachInt32, kIA32Movl, kIA32Movl},
102     {kMachUint32, kIA32Movl, kIA32Movl},
103     {kMachFloat32, kIA32Movss, kIA32Movss},
104     {kMachFloat64, kIA32Movsd, kIA32Movsd}};
105 
106 }  // namespace
107 
108 
109 typedef InstructionSelectorTestWithParam<MemoryAccess>
110     InstructionSelectorMemoryAccessTest;
111 
112 
TEST_P(InstructionSelectorMemoryAccessTest,LoadWithParameters)113 TEST_P(InstructionSelectorMemoryAccessTest, LoadWithParameters) {
114   const MemoryAccess memacc = GetParam();
115   StreamBuilder m(this, memacc.type, kMachPtr, kMachInt32);
116   m.Return(m.Load(memacc.type, m.Parameter(0), m.Parameter(1)));
117   Stream s = m.Build();
118   ASSERT_EQ(1U, s.size());
119   EXPECT_EQ(memacc.load_opcode, s[0]->arch_opcode());
120   EXPECT_EQ(2U, s[0]->InputCount());
121   EXPECT_EQ(1U, s[0]->OutputCount());
122 }
123 
124 
TEST_P(InstructionSelectorMemoryAccessTest,LoadWithImmediateBase)125 TEST_P(InstructionSelectorMemoryAccessTest, LoadWithImmediateBase) {
126   const MemoryAccess memacc = GetParam();
127   TRACED_FOREACH(int32_t, base, kImmediates) {
128     StreamBuilder m(this, memacc.type, kMachPtr);
129     m.Return(m.Load(memacc.type, m.Int32Constant(base), m.Parameter(0)));
130     Stream s = m.Build();
131     ASSERT_EQ(1U, s.size());
132     EXPECT_EQ(memacc.load_opcode, s[0]->arch_opcode());
133     ASSERT_EQ(2U, s[0]->InputCount());
134     ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
135     EXPECT_EQ(base, s.ToInt32(s[0]->InputAt(1)));
136     EXPECT_EQ(1U, s[0]->OutputCount());
137   }
138 }
139 
140 
TEST_P(InstructionSelectorMemoryAccessTest,LoadWithImmediateIndex)141 TEST_P(InstructionSelectorMemoryAccessTest, LoadWithImmediateIndex) {
142   const MemoryAccess memacc = GetParam();
143   TRACED_FOREACH(int32_t, index, kImmediates) {
144     StreamBuilder m(this, memacc.type, kMachPtr);
145     m.Return(m.Load(memacc.type, m.Parameter(0), m.Int32Constant(index)));
146     Stream s = m.Build();
147     ASSERT_EQ(1U, s.size());
148     EXPECT_EQ(memacc.load_opcode, s[0]->arch_opcode());
149     ASSERT_EQ(2U, s[0]->InputCount());
150     ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
151     EXPECT_EQ(index, s.ToInt32(s[0]->InputAt(1)));
152     EXPECT_EQ(1U, s[0]->OutputCount());
153   }
154 }
155 
156 
TEST_P(InstructionSelectorMemoryAccessTest,StoreWithParameters)157 TEST_P(InstructionSelectorMemoryAccessTest, StoreWithParameters) {
158   const MemoryAccess memacc = GetParam();
159   StreamBuilder m(this, kMachInt32, kMachPtr, kMachInt32, memacc.type);
160   m.Store(memacc.type, m.Parameter(0), m.Parameter(1), m.Parameter(2));
161   m.Return(m.Int32Constant(0));
162   Stream s = m.Build();
163   ASSERT_EQ(1U, s.size());
164   EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode());
165   EXPECT_EQ(3U, s[0]->InputCount());
166   EXPECT_EQ(0U, s[0]->OutputCount());
167 }
168 
169 
TEST_P(InstructionSelectorMemoryAccessTest,StoreWithImmediateBase)170 TEST_P(InstructionSelectorMemoryAccessTest, StoreWithImmediateBase) {
171   const MemoryAccess memacc = GetParam();
172   TRACED_FOREACH(int32_t, base, kImmediates) {
173     StreamBuilder m(this, kMachInt32, kMachInt32, memacc.type);
174     m.Store(memacc.type, m.Int32Constant(base), m.Parameter(0), m.Parameter(1));
175     m.Return(m.Int32Constant(0));
176     Stream s = m.Build();
177     ASSERT_EQ(1U, s.size());
178     EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode());
179     ASSERT_EQ(3U, s[0]->InputCount());
180     ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
181     EXPECT_EQ(base, s.ToInt32(s[0]->InputAt(1)));
182     EXPECT_EQ(0U, s[0]->OutputCount());
183   }
184 }
185 
186 
TEST_P(InstructionSelectorMemoryAccessTest,StoreWithImmediateIndex)187 TEST_P(InstructionSelectorMemoryAccessTest, StoreWithImmediateIndex) {
188   const MemoryAccess memacc = GetParam();
189   TRACED_FOREACH(int32_t, index, kImmediates) {
190     StreamBuilder m(this, kMachInt32, kMachPtr, memacc.type);
191     m.Store(memacc.type, m.Parameter(0), m.Int32Constant(index),
192             m.Parameter(1));
193     m.Return(m.Int32Constant(0));
194     Stream s = m.Build();
195     ASSERT_EQ(1U, s.size());
196     EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode());
197     ASSERT_EQ(3U, s[0]->InputCount());
198     ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind());
199     EXPECT_EQ(index, s.ToInt32(s[0]->InputAt(1)));
200     EXPECT_EQ(0U, s[0]->OutputCount());
201   }
202 }
203 
204 
205 INSTANTIATE_TEST_CASE_P(InstructionSelectorTest,
206                         InstructionSelectorMemoryAccessTest,
207                         ::testing::ValuesIn(kMemoryAccesses));
208 
209 }  // namespace compiler
210 }  // namespace internal
211 }  // namespace v8
212