1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57 /* ====================================================================
58 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in
69 * the documentation and/or other materials provided with the
70 * distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 * software must display the following acknowledgment:
74 * "This product includes software developed by the OpenSSL Project
75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 * endorse or promote products derived from this software without
79 * prior written permission. For written permission, please contact
80 * openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 * nor may "OpenSSL" appear in their names without prior written
84 * permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 * acknowledgment:
88 * "This product includes software developed by the OpenSSL Project
89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com). This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com). */
108
109 #include <openssl/bn.h>
110
111 #include <assert.h>
112 #include <string.h>
113
114 #include <openssl/cpu.h>
115 #include <openssl/err.h>
116 #include <openssl/mem.h>
117
118 #include "internal.h"
119
120
121 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
122 #define OPENSSL_BN_ASM_MONT5
123 #define RSAZ_ENABLED
124
125 #include "rsaz_exp.h"
126 #endif
127
BN_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)128 int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
129 int i, bits, ret = 0;
130 BIGNUM *v, *rr;
131
132 if ((p->flags & BN_FLG_CONSTTIME) != 0) {
133 /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
134 OPENSSL_PUT_ERROR(BN, BN_exp, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
135 return 0;
136 }
137
138 BN_CTX_start(ctx);
139 if (r == a || r == p) {
140 rr = BN_CTX_get(ctx);
141 } else {
142 rr = r;
143 }
144
145 v = BN_CTX_get(ctx);
146 if (rr == NULL || v == NULL) {
147 goto err;
148 }
149
150 if (BN_copy(v, a) == NULL) {
151 goto err;
152 }
153 bits = BN_num_bits(p);
154
155 if (BN_is_odd(p)) {
156 if (BN_copy(rr, a) == NULL) {
157 goto err;
158 }
159 } else {
160 if (!BN_one(rr)) {
161 goto err;
162 }
163 }
164
165 for (i = 1; i < bits; i++) {
166 if (!BN_sqr(v, v, ctx)) {
167 goto err;
168 }
169 if (BN_is_bit_set(p, i)) {
170 if (!BN_mul(rr, rr, v, ctx)) {
171 goto err;
172 }
173 }
174 }
175
176 if (r != rr) {
177 BN_copy(r, rr);
178 }
179 ret = 1;
180
181 err:
182 BN_CTX_end(ctx);
183 return ret;
184 }
185
186 /* maximum precomputation table size for *variable* sliding windows */
187 #define TABLE_SIZE 32
188
189 typedef struct bn_recp_ctx_st {
190 BIGNUM N; /* the divisor */
191 BIGNUM Nr; /* the reciprocal */
192 int num_bits;
193 int shift;
194 int flags;
195 } BN_RECP_CTX;
196
BN_RECP_CTX_init(BN_RECP_CTX * recp)197 static void BN_RECP_CTX_init(BN_RECP_CTX *recp) {
198 BN_init(&recp->N);
199 BN_init(&recp->Nr);
200 recp->num_bits = 0;
201 recp->flags = 0;
202 }
203
BN_RECP_CTX_free(BN_RECP_CTX * recp)204 static void BN_RECP_CTX_free(BN_RECP_CTX *recp) {
205 if (recp == NULL) {
206 return;
207 }
208
209 BN_free(&recp->N);
210 BN_free(&recp->Nr);
211 }
212
BN_RECP_CTX_set(BN_RECP_CTX * recp,const BIGNUM * d,BN_CTX * ctx)213 static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) {
214 if (!BN_copy(&(recp->N), d)) {
215 return 0;
216 }
217 BN_zero(&recp->Nr);
218 recp->num_bits = BN_num_bits(d);
219 recp->shift = 0;
220
221 return 1;
222 }
223
224 /* len is the expected size of the result We actually calculate with an extra
225 * word of precision, so we can do faster division if the remainder is not
226 * required.
227 * r := 2^len / m */
BN_reciprocal(BIGNUM * r,const BIGNUM * m,int len,BN_CTX * ctx)228 static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) {
229 int ret = -1;
230 BIGNUM *t;
231
232 BN_CTX_start(ctx);
233 t = BN_CTX_get(ctx);
234 if (t == NULL) {
235 goto err;
236 }
237
238 if (!BN_set_bit(t, len)) {
239 goto err;
240 }
241
242 if (!BN_div(r, NULL, t, m, ctx)) {
243 goto err;
244 }
245
246 ret = len;
247
248 err:
249 BN_CTX_end(ctx);
250 return ret;
251 }
252
BN_div_recp(BIGNUM * dv,BIGNUM * rem,const BIGNUM * m,BN_RECP_CTX * recp,BN_CTX * ctx)253 static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
254 BN_RECP_CTX *recp, BN_CTX *ctx) {
255 int i, j, ret = 0;
256 BIGNUM *a, *b, *d, *r;
257
258 BN_CTX_start(ctx);
259 a = BN_CTX_get(ctx);
260 b = BN_CTX_get(ctx);
261 if (dv != NULL) {
262 d = dv;
263 } else {
264 d = BN_CTX_get(ctx);
265 }
266
267 if (rem != NULL) {
268 r = rem;
269 } else {
270 r = BN_CTX_get(ctx);
271 }
272
273 if (a == NULL || b == NULL || d == NULL || r == NULL) {
274 goto err;
275 }
276
277 if (BN_ucmp(m, &(recp->N)) < 0) {
278 BN_zero(d);
279 if (!BN_copy(r, m)) {
280 return 0;
281 }
282 BN_CTX_end(ctx);
283 return 1;
284 }
285
286 /* We want the remainder
287 * Given input of ABCDEF / ab
288 * we need multiply ABCDEF by 3 digests of the reciprocal of ab */
289
290 /* i := max(BN_num_bits(m), 2*BN_num_bits(N)) */
291 i = BN_num_bits(m);
292 j = recp->num_bits << 1;
293 if (j > i) {
294 i = j;
295 }
296
297 /* Nr := round(2^i / N) */
298 if (i != recp->shift) {
299 recp->shift =
300 BN_reciprocal(&(recp->Nr), &(recp->N), i,
301 ctx); /* BN_reciprocal returns i, or -1 for an error */
302 }
303
304 if (recp->shift == -1) {
305 goto err;
306 }
307
308 /* d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i -
309 * BN_num_bits(N)))|
310 * = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i -
311 * BN_num_bits(N)))|
312 * <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
313 * = |m/N| */
314 if (!BN_rshift(a, m, recp->num_bits)) {
315 goto err;
316 }
317 if (!BN_mul(b, a, &(recp->Nr), ctx)) {
318 goto err;
319 }
320 if (!BN_rshift(d, b, i - recp->num_bits)) {
321 goto err;
322 }
323 d->neg = 0;
324
325 if (!BN_mul(b, &(recp->N), d, ctx)) {
326 goto err;
327 }
328 if (!BN_usub(r, m, b)) {
329 goto err;
330 }
331 r->neg = 0;
332
333 j = 0;
334 while (BN_ucmp(r, &(recp->N)) >= 0) {
335 if (j++ > 2) {
336 OPENSSL_PUT_ERROR(BN, BN_div_recp, BN_R_BAD_RECIPROCAL);
337 goto err;
338 }
339 if (!BN_usub(r, r, &(recp->N))) {
340 goto err;
341 }
342 if (!BN_add_word(d, 1)) {
343 goto err;
344 }
345 }
346
347 r->neg = BN_is_zero(r) ? 0 : m->neg;
348 d->neg = m->neg ^ recp->N.neg;
349 ret = 1;
350
351 err:
352 BN_CTX_end(ctx);
353 return ret;
354 }
355
BN_mod_mul_reciprocal(BIGNUM * r,const BIGNUM * x,const BIGNUM * y,BN_RECP_CTX * recp,BN_CTX * ctx)356 static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
357 BN_RECP_CTX *recp, BN_CTX *ctx) {
358 int ret = 0;
359 BIGNUM *a;
360 const BIGNUM *ca;
361
362 BN_CTX_start(ctx);
363 a = BN_CTX_get(ctx);
364 if (a == NULL) {
365 goto err;
366 }
367
368 if (y != NULL) {
369 if (x == y) {
370 if (!BN_sqr(a, x, ctx)) {
371 goto err;
372 }
373 } else {
374 if (!BN_mul(a, x, y, ctx)) {
375 goto err;
376 }
377 }
378 ca = a;
379 } else {
380 ca = x; /* Just do the mod */
381 }
382
383 ret = BN_div_recp(NULL, r, ca, recp, ctx);
384
385 err:
386 BN_CTX_end(ctx);
387 return ret;
388 }
389
390 /* BN_window_bits_for_exponent_size -- macro for sliding window mod_exp
391 * functions
392 *
393 * For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of
394 * multiplications is a constant plus on average
395 *
396 * 2^(w-1) + (b-w)/(w+1);
397 *
398 * here 2^(w-1) is for precomputing the table (we actually need entries only
399 * for windows that have the lowest bit set), and (b-w)/(w+1) is an
400 * approximation for the expected number of w-bit windows, not counting the
401 * first one.
402 *
403 * Thus we should use
404 *
405 * w >= 6 if b > 671
406 * w = 5 if 671 > b > 239
407 * w = 4 if 239 > b > 79
408 * w = 3 if 79 > b > 23
409 * w <= 2 if 23 > b
410 *
411 * (with draws in between). Very small exponents are often selected
412 * with low Hamming weight, so we use w = 1 for b <= 23. */
413 #define BN_window_bits_for_exponent_size(b) \
414 ((b) > 671 ? 6 : \
415 (b) > 239 ? 5 : \
416 (b) > 79 ? 4 : \
417 (b) > 23 ? 3 : 1)
418
mod_exp_recp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)419 static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
420 const BIGNUM *m, BN_CTX *ctx) {
421 int i, j, bits, ret = 0, wstart, window;
422 int start = 1;
423 BIGNUM *aa;
424 /* Table of variables obtained from 'ctx' */
425 BIGNUM *val[TABLE_SIZE];
426 BN_RECP_CTX recp;
427
428 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
429 /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
430 OPENSSL_PUT_ERROR(BN, mod_exp_recp, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
431 return 0;
432 }
433
434 bits = BN_num_bits(p);
435
436 if (bits == 0) {
437 ret = BN_one(r);
438 return ret;
439 }
440
441 BN_CTX_start(ctx);
442 aa = BN_CTX_get(ctx);
443 val[0] = BN_CTX_get(ctx);
444 if (!aa || !val[0]) {
445 goto err;
446 }
447
448 BN_RECP_CTX_init(&recp);
449 if (m->neg) {
450 /* ignore sign of 'm' */
451 if (!BN_copy(aa, m)) {
452 goto err;
453 }
454 aa->neg = 0;
455 if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) {
456 goto err;
457 }
458 } else {
459 if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) {
460 goto err;
461 }
462 }
463
464 if (!BN_nnmod(val[0], a, m, ctx)) {
465 goto err; /* 1 */
466 }
467 if (BN_is_zero(val[0])) {
468 BN_zero(r);
469 ret = 1;
470 goto err;
471 }
472
473 window = BN_window_bits_for_exponent_size(bits);
474 if (window > 1) {
475 if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) {
476 goto err; /* 2 */
477 }
478 j = 1 << (window - 1);
479 for (i = 1; i < j; i++) {
480 if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
481 !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) {
482 goto err;
483 }
484 }
485 }
486
487 start = 1; /* This is used to avoid multiplication etc
488 * when there is only the value '1' in the
489 * buffer. */
490 wstart = bits - 1; /* The top bit of the window */
491
492 if (!BN_one(r)) {
493 goto err;
494 }
495
496 for (;;) {
497 int wvalue; /* The 'value' of the window */
498 int wend; /* The bottom bit of the window */
499
500 if (BN_is_bit_set(p, wstart) == 0) {
501 if (!start) {
502 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
503 goto err;
504 }
505 }
506 if (wstart == 0) {
507 break;
508 }
509 wstart--;
510 continue;
511 }
512
513 /* We now have wstart on a 'set' bit, we now need to work out
514 * how bit a window to do. To do this we need to scan
515 * forward until the last set bit before the end of the
516 * window */
517 wvalue = 1;
518 wend = 0;
519 for (i = 1; i < window; i++) {
520 if (wstart - i < 0) {
521 break;
522 }
523 if (BN_is_bit_set(p, wstart - i)) {
524 wvalue <<= (i - wend);
525 wvalue |= 1;
526 wend = i;
527 }
528 }
529
530 /* wend is the size of the current window */
531 j = wend + 1;
532 /* add the 'bytes above' */
533 if (!start) {
534 for (i = 0; i < j; i++) {
535 if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
536 goto err;
537 }
538 }
539 }
540
541 /* wvalue will be an odd number < 2^window */
542 if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) {
543 goto err;
544 }
545
546 /* move the 'window' down further */
547 wstart -= wend + 1;
548 start = 0;
549 if (wstart < 0) {
550 break;
551 }
552 }
553 ret = 1;
554
555 err:
556 BN_CTX_end(ctx);
557 BN_RECP_CTX_free(&recp);
558 return ret;
559 }
560
BN_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx)561 int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
562 BN_CTX *ctx) {
563 /* For even modulus m = 2^k*m_odd, it might make sense to compute
564 * a^p mod m_odd and a^p mod 2^k separately (with Montgomery
565 * exponentiation for the odd part), using appropriate exponent
566 * reductions, and combine the results using the CRT.
567 *
568 * For now, we use Montgomery only if the modulus is odd; otherwise,
569 * exponentiation using the reciprocal-based quick remaindering
570 * algorithm is used.
571 *
572 * (Timing obtained with expspeed.c [computations a^p mod m
573 * where a, p, m are of the same length: 256, 512, 1024, 2048,
574 * 4096, 8192 bits], compared to the running time of the
575 * standard algorithm:
576 *
577 * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration]
578 * 55 .. 77 % [UltraSparc processor, but
579 * debug-solaris-sparcv8-gcc conf.]
580 *
581 * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration]
582 * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
583 *
584 * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
585 * at 2048 and more bits, but at 512 and 1024 bits, it was
586 * slower even than the standard algorithm!
587 *
588 * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
589 * should be obtained when the new Montgomery reduction code
590 * has been integrated into OpenSSL.) */
591
592 if (BN_is_odd(m)) {
593 if (a->top == 1 && !a->neg && BN_get_flags(p, BN_FLG_CONSTTIME) == 0) {
594 BN_ULONG A = a->d[0];
595 return BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
596 }
597
598 return BN_mod_exp_mont(r, a, p, m, ctx, NULL);
599 }
600
601 return mod_exp_recp(r, a, p, m, ctx);
602 }
603
BN_mod_exp_mont(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)604 int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
605 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) {
606 int i, j, bits, ret = 0, wstart, window;
607 int start = 1;
608 BIGNUM *d, *r;
609 const BIGNUM *aa;
610 /* Table of variables obtained from 'ctx' */
611 BIGNUM *val[TABLE_SIZE];
612 BN_MONT_CTX *mont = NULL;
613
614 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
615 return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
616 }
617
618 if (!BN_is_odd(m)) {
619 OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont, BN_R_CALLED_WITH_EVEN_MODULUS);
620 return 0;
621 }
622 bits = BN_num_bits(p);
623 if (bits == 0) {
624 ret = BN_one(rr);
625 return ret;
626 }
627
628 BN_CTX_start(ctx);
629 d = BN_CTX_get(ctx);
630 r = BN_CTX_get(ctx);
631 val[0] = BN_CTX_get(ctx);
632 if (!d || !r || !val[0]) {
633 goto err;
634 }
635
636 /* If this is not done, things will break in the montgomery part */
637
638 if (in_mont != NULL) {
639 mont = in_mont;
640 } else {
641 mont = BN_MONT_CTX_new();
642 if (mont == NULL) {
643 goto err;
644 }
645 if (!BN_MONT_CTX_set(mont, m, ctx)) {
646 goto err;
647 }
648 }
649
650 if (a->neg || BN_ucmp(a, m) >= 0) {
651 if (!BN_nnmod(val[0], a, m, ctx)) {
652 goto err;
653 }
654 aa = val[0];
655 } else {
656 aa = a;
657 }
658
659 if (BN_is_zero(aa)) {
660 BN_zero(rr);
661 ret = 1;
662 goto err;
663 }
664 if (!BN_to_montgomery(val[0], aa, mont, ctx)) {
665 goto err; /* 1 */
666 }
667
668 window = BN_window_bits_for_exponent_size(bits);
669 if (window > 1) {
670 if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) {
671 goto err; /* 2 */
672 }
673 j = 1 << (window - 1);
674 for (i = 1; i < j; i++) {
675 if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
676 !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) {
677 goto err;
678 }
679 }
680 }
681
682 start = 1; /* This is used to avoid multiplication etc
683 * when there is only the value '1' in the
684 * buffer. */
685 wstart = bits - 1; /* The top bit of the window */
686
687 j = m->top; /* borrow j */
688 if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
689 if (bn_wexpand(r, j) == NULL) {
690 goto err;
691 }
692 /* 2^(top*BN_BITS2) - m */
693 r->d[0] = (0 - m->d[0]) & BN_MASK2;
694 for (i = 1; i < j; i++) {
695 r->d[i] = (~m->d[i]) & BN_MASK2;
696 }
697 r->top = j;
698 /* Upper words will be zero if the corresponding words of 'm'
699 * were 0xfff[...], so decrement r->top accordingly. */
700 bn_correct_top(r);
701 } else if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) {
702 goto err;
703 }
704
705 for (;;) {
706 int wvalue; /* The 'value' of the window */
707 int wend; /* The bottom bit of the window */
708
709 if (BN_is_bit_set(p, wstart) == 0) {
710 if (!start && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
711 goto err;
712 }
713 if (wstart == 0) {
714 break;
715 }
716 wstart--;
717 continue;
718 }
719
720 /* We now have wstart on a 'set' bit, we now need to work out how bit a
721 * window to do. To do this we need to scan forward until the last set bit
722 * before the end of the window */
723 wvalue = 1;
724 wend = 0;
725 for (i = 1; i < window; i++) {
726 if (wstart - i < 0) {
727 break;
728 }
729 if (BN_is_bit_set(p, wstart - i)) {
730 wvalue <<= (i - wend);
731 wvalue |= 1;
732 wend = i;
733 }
734 }
735
736 /* wend is the size of the current window */
737 j = wend + 1;
738 /* add the 'bytes above' */
739 if (!start) {
740 for (i = 0; i < j; i++) {
741 if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
742 goto err;
743 }
744 }
745 }
746
747 /* wvalue will be an odd number < 2^window */
748 if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) {
749 goto err;
750 }
751
752 /* move the 'window' down further */
753 wstart -= wend + 1;
754 start = 0;
755 if (wstart < 0) {
756 break;
757 }
758 }
759
760 if (!BN_from_montgomery(rr, r, mont, ctx)) {
761 goto err;
762 }
763 ret = 1;
764
765 err:
766 if (in_mont == NULL) {
767 BN_MONT_CTX_free(mont);
768 }
769 BN_CTX_end(ctx);
770 return ret;
771 }
772
773 /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
774 * layout so that accessing any of these table values shows the same access
775 * pattern as far as cache lines are concerned. The following functions are
776 * used to transfer a BIGNUM from/to that table. */
copy_to_prebuf(const BIGNUM * b,int top,unsigned char * buf,int idx,int width)777 static int copy_to_prebuf(const BIGNUM *b, int top, unsigned char *buf, int idx,
778 int width) {
779 size_t i, j;
780
781 if (top > b->top) {
782 top = b->top; /* this works because 'buf' is explicitly zeroed */
783 }
784 for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) {
785 buf[j] = ((unsigned char *)b->d)[i];
786 }
787
788 return 1;
789 }
790
copy_from_prebuf(BIGNUM * b,int top,unsigned char * buf,int idx,int width)791 static int copy_from_prebuf(BIGNUM *b, int top, unsigned char *buf, int idx,
792 int width) {
793 size_t i, j;
794
795 if (bn_wexpand(b, top) == NULL) {
796 return 0;
797 }
798
799 for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) {
800 ((unsigned char *)b->d)[i] = buf[j];
801 }
802
803 b->top = top;
804 bn_correct_top(b);
805 return 1;
806 }
807
808 /* BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache
809 * line width of the target processor is at least the following value. */
810 #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64)
811 #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \
812 (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
813
814 /* Window sizes optimized for fixed window size modular exponentiation
815 * algorithm (BN_mod_exp_mont_consttime).
816 *
817 * To achieve the security goals of BN_mode_exp_mont_consttime, the maximum
818 * size of the window must not exceed
819 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
820 *
821 * Window size thresholds are defined for cache line sizes of 32 and 64, cache
822 * line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of
823 * 7 should only be used on processors that have a 128 byte or greater cache
824 * line size. */
825 #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
826
827 #define BN_window_bits_for_ctime_exponent_size(b) \
828 ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
829 #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
830
831 #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
832
833 #define BN_window_bits_for_ctime_exponent_size(b) \
834 ((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
835 #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
836
837 #endif
838
839 /* Given a pointer value, compute the next address that is a cache line
840 * multiple. */
841 #define MOD_EXP_CTIME_ALIGN(x_) \
842 ((unsigned char *)(x_) + \
843 (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \
844 (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
845
846 /* This variant of BN_mod_exp_mont() uses fixed windows and the special
847 * precomputation memory layout to limit data-dependency to a minimum
848 * to protect secret exponents (cf. the hyper-threading timing attacks
849 * pointed out by Colin Percival,
850 * http://www.daemonology.net/hyperthreading-considered-harmful/)
851 */
BN_mod_exp_mont_consttime(BIGNUM * rr,const BIGNUM * a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)852 int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
853 const BIGNUM *m, BN_CTX *ctx,
854 BN_MONT_CTX *in_mont) {
855 int i, bits, ret = 0, window, wvalue;
856 int top;
857 BN_MONT_CTX *mont = NULL;
858
859 int numPowers;
860 unsigned char *powerbufFree = NULL;
861 int powerbufLen = 0;
862 unsigned char *powerbuf = NULL;
863 BIGNUM tmp, am;
864
865 top = m->top;
866
867 if (!(m->d[0] & 1)) {
868 OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont_consttime,
869 BN_R_CALLED_WITH_EVEN_MODULUS);
870 return 0;
871 }
872 bits = BN_num_bits(p);
873 if (bits == 0) {
874 ret = BN_one(rr);
875 return ret;
876 }
877
878 BN_CTX_start(ctx);
879
880 /* Allocate a montgomery context if it was not supplied by the caller.
881 * If this is not done, things will break in the montgomery part. */
882 if (in_mont != NULL) {
883 mont = in_mont;
884 } else {
885 mont = BN_MONT_CTX_new();
886 if (mont == NULL || !BN_MONT_CTX_set(mont, m, ctx)) {
887 goto err;
888 }
889 }
890
891 #ifdef RSAZ_ENABLED
892 /* If the size of the operands allow it, perform the optimized
893 * RSAZ exponentiation. For further information see
894 * crypto/bn/rsaz_exp.c and accompanying assembly modules. */
895 if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024) &&
896 rsaz_avx2_eligible()) {
897 if (NULL == bn_wexpand(rr, 16)) {
898 goto err;
899 }
900 RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]);
901 rr->top = 16;
902 rr->neg = 0;
903 bn_correct_top(rr);
904 ret = 1;
905 goto err;
906 } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
907 if (NULL == bn_wexpand(rr, 8)) {
908 goto err;
909 }
910 RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
911 rr->top = 8;
912 rr->neg = 0;
913 bn_correct_top(rr);
914 ret = 1;
915 goto err;
916 }
917 #endif
918
919 /* Get the window size to use with size of p. */
920 window = BN_window_bits_for_ctime_exponent_size(bits);
921 #if defined(OPENSSL_BN_ASM_MONT5)
922 if (window >= 5) {
923 window = 5; /* ~5% improvement for RSA2048 sign, and even for RSA4096 */
924 if ((top & 7) == 0) {
925 powerbufLen += 2 * top * sizeof(m->d[0]);
926 }
927 }
928 #endif
929 (void)0;
930
931 /* Allocate a buffer large enough to hold all of the pre-computed
932 * powers of am, am itself and tmp.
933 */
934 numPowers = 1 << window;
935 powerbufLen +=
936 sizeof(m->d[0]) *
937 (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers));
938 #ifdef alloca
939 if (powerbufLen < 3072) {
940 powerbufFree = alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
941 } else
942 #endif
943 {
944 if ((powerbufFree = (unsigned char *)OPENSSL_malloc(
945 powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) {
946 goto err;
947 }
948 }
949
950 powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
951 memset(powerbuf, 0, powerbufLen);
952
953 #ifdef alloca
954 if (powerbufLen < 3072) {
955 powerbufFree = NULL;
956 }
957 #endif
958
959 /* lay down tmp and am right after powers table */
960 tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
961 am.d = tmp.d + top;
962 tmp.top = am.top = 0;
963 tmp.dmax = am.dmax = top;
964 tmp.neg = am.neg = 0;
965 tmp.flags = am.flags = BN_FLG_STATIC_DATA;
966
967 /* prepare a^0 in Montgomery domain */
968 /* by Shay Gueron's suggestion */
969 if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
970 /* 2^(top*BN_BITS2) - m */
971 tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
972 for (i = 1; i < top; i++) {
973 tmp.d[i] = (~m->d[i]) & BN_MASK2;
974 }
975 tmp.top = top;
976 } else if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx)) {
977 goto err;
978 }
979
980 /* prepare a^1 in Montgomery domain */
981 if (a->neg || BN_ucmp(a, m) >= 0) {
982 if (!BN_mod(&am, a, m, ctx) ||
983 !BN_to_montgomery(&am, &am, mont, ctx)) {
984 goto err;
985 }
986 } else if (!BN_to_montgomery(&am, a, mont, ctx)) {
987 goto err;
988 }
989
990 #if defined(OPENSSL_BN_ASM_MONT5)
991 /* This optimization uses ideas from http://eprint.iacr.org/2011/239,
992 * specifically optimization of cache-timing attack countermeasures
993 * and pre-computation optimization. */
994
995 /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
996 * 512-bit RSA is hardly relevant, we omit it to spare size... */
997 if (window == 5 && top > 1) {
998 void bn_mul_mont_gather5(BN_ULONG * rp, const BN_ULONG * ap,
999 const void * table, const BN_ULONG * np,
1000 const BN_ULONG * n0, int num, int power);
1001 void bn_scatter5(const BN_ULONG * inp, size_t num, void * table,
1002 size_t power);
1003 void bn_gather5(BN_ULONG * out, size_t num, void * table, size_t power);
1004 void bn_power5(BN_ULONG * rp, const BN_ULONG * ap, const void * table,
1005 const BN_ULONG * np, const BN_ULONG * n0, int num,
1006 int power);
1007 int bn_from_montgomery(BN_ULONG * rp, const BN_ULONG * ap,
1008 const BN_ULONG * not_used, const BN_ULONG * np,
1009 const BN_ULONG * n0, int num);
1010
1011 BN_ULONG *np = mont->N.d, *n0 = mont->n0, *np2;
1012
1013 /* BN_to_montgomery can contaminate words above .top
1014 * [in BN_DEBUG[_DEBUG] build]... */
1015 for (i = am.top; i < top; i++) {
1016 am.d[i] = 0;
1017 }
1018 for (i = tmp.top; i < top; i++) {
1019 tmp.d[i] = 0;
1020 }
1021
1022 if (top & 7) {
1023 np2 = np;
1024 } else {
1025 for (np2 = am.d + top, i = 0; i < top; i++) {
1026 np2[2 * i] = np[i];
1027 }
1028 }
1029
1030 bn_scatter5(tmp.d, top, powerbuf, 0);
1031 bn_scatter5(am.d, am.top, powerbuf, 1);
1032 bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
1033 bn_scatter5(tmp.d, top, powerbuf, 2);
1034
1035 /* same as above, but uses squaring for 1/2 of operations */
1036 for (i = 4; i < 32; i *= 2) {
1037 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1038 bn_scatter5(tmp.d, top, powerbuf, i);
1039 }
1040 for (i = 3; i < 8; i += 2) {
1041 int j;
1042 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
1043 bn_scatter5(tmp.d, top, powerbuf, i);
1044 for (j = 2 * i; j < 32; j *= 2) {
1045 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1046 bn_scatter5(tmp.d, top, powerbuf, j);
1047 }
1048 }
1049 for (; i < 16; i += 2) {
1050 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
1051 bn_scatter5(tmp.d, top, powerbuf, i);
1052 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1053 bn_scatter5(tmp.d, top, powerbuf, 2 * i);
1054 }
1055 for (; i < 32; i += 2) {
1056 bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np2, n0, top, i - 1);
1057 bn_scatter5(tmp.d, top, powerbuf, i);
1058 }
1059
1060 bits--;
1061 for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) {
1062 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1063 }
1064 bn_gather5(tmp.d, top, powerbuf, wvalue);
1065
1066 /* At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
1067 * that has not been read yet.) */
1068 assert(bits >= -1 && (bits == -1 || bits % 5 == 4));
1069
1070 /* Scan the exponent one window at a time starting from the most
1071 * significant bits.
1072 */
1073 if (top & 7) {
1074 while (bits >= 0) {
1075 for (wvalue = 0, i = 0; i < 5; i++, bits--) {
1076 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1077 }
1078
1079 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1080 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1081 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1082 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1083 bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
1084 bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
1085 }
1086 } else {
1087 const uint8_t *p_bytes = (const uint8_t *)p->d;
1088 int max_bits = p->top * BN_BITS2;
1089 assert(bits < max_bits);
1090 /* |p = 0| has been handled as a special case, so |max_bits| is at least
1091 * one word. */
1092 assert(max_bits >= 64);
1093
1094 /* If the first bit to be read lands in the last byte, unroll the first
1095 * iteration to avoid reading past the bounds of |p->d|. (After the first
1096 * iteration, we are guaranteed to be past the last byte.) Note |bits|
1097 * here is the top bit, inclusive. */
1098 if (bits - 4 >= max_bits - 8) {
1099 /* Read five bits from |bits-4| through |bits|, inclusive. */
1100 wvalue = p_bytes[p->top * BN_BYTES - 1];
1101 wvalue >>= (bits - 4) & 7;
1102 wvalue &= 0x1f;
1103 bits -= 5;
1104 bn_power5(tmp.d, tmp.d, powerbuf, np2, n0, top, wvalue);
1105 }
1106 while (bits >= 0) {
1107 /* Read five bits from |bits-4| through |bits|, inclusive. */
1108 int first_bit = bits - 4;
1109 wvalue = *(const uint16_t *) (p_bytes + (first_bit >> 3));
1110 wvalue >>= first_bit & 7;
1111 wvalue &= 0x1f;
1112 bits -= 5;
1113 bn_power5(tmp.d, tmp.d, powerbuf, np2, n0, top, wvalue);
1114 }
1115 }
1116
1117 ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np2, n0, top);
1118 tmp.top = top;
1119 bn_correct_top(&tmp);
1120 if (ret) {
1121 if (!BN_copy(rr, &tmp)) {
1122 ret = 0;
1123 }
1124 goto err; /* non-zero ret means it's not error */
1125 }
1126 } else
1127 #endif
1128 {
1129 if (!copy_to_prebuf(&tmp, top, powerbuf, 0, numPowers) ||
1130 !copy_to_prebuf(&am, top, powerbuf, 1, numPowers)) {
1131 goto err;
1132 }
1133
1134 /* If the window size is greater than 1, then calculate
1135 * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
1136 * (even powers could instead be computed as (a^(i/2))^2
1137 * to use the slight performance advantage of sqr over mul).
1138 */
1139 if (window > 1) {
1140 if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx) ||
1141 !copy_to_prebuf(&tmp, top, powerbuf, 2, numPowers)) {
1142 goto err;
1143 }
1144 for (i = 3; i < numPowers; i++) {
1145 /* Calculate a^i = a^(i-1) * a */
1146 if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx) ||
1147 !copy_to_prebuf(&tmp, top, powerbuf, i, numPowers)) {
1148 goto err;
1149 }
1150 }
1151 }
1152
1153 bits--;
1154 for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) {
1155 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1156 }
1157 if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, numPowers)) {
1158 goto err;
1159 }
1160
1161 /* Scan the exponent one window at a time starting from the most
1162 * significant bits.
1163 */
1164 while (bits >= 0) {
1165 wvalue = 0; /* The 'value' of the window */
1166
1167 /* Scan the window, squaring the result as we go */
1168 for (i = 0; i < window; i++, bits--) {
1169 if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) {
1170 goto err;
1171 }
1172 wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
1173 }
1174
1175 /* Fetch the appropriate pre-computed value from the pre-buf */
1176 if (!copy_from_prebuf(&am, top, powerbuf, wvalue, numPowers)) {
1177 goto err;
1178 }
1179
1180 /* Multiply the result into the intermediate result */
1181 if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) {
1182 goto err;
1183 }
1184 }
1185 }
1186
1187 /* Convert the final result from montgomery to standard format */
1188 if (!BN_from_montgomery(rr, &tmp, mont, ctx)) {
1189 goto err;
1190 }
1191 ret = 1;
1192 err:
1193 if (in_mont == NULL) {
1194 BN_MONT_CTX_free(mont);
1195 }
1196 if (powerbuf != NULL) {
1197 OPENSSL_cleanse(powerbuf, powerbufLen);
1198 OPENSSL_free(powerbufFree);
1199 }
1200 BN_CTX_end(ctx);
1201 return (ret);
1202 }
1203
BN_mod_exp_mont_word(BIGNUM * rr,BN_ULONG a,const BIGNUM * p,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)1204 int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
1205 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) {
1206 BN_MONT_CTX *mont = NULL;
1207 int b, bits, ret = 0;
1208 int r_is_one;
1209 BN_ULONG w, next_w;
1210 BIGNUM *d, *r, *t;
1211 BIGNUM *swap_tmp;
1212 #define BN_MOD_MUL_WORD(r, w, m) \
1213 (BN_mul_word(r, (w)) && \
1214 (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \
1215 (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
1216 /* BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
1217 * probably more overhead than always using BN_mod (which uses BN_copy if a
1218 * similar test returns true). We can use BN_mod and do not need BN_nnmod
1219 * because our accumulator is never negative (the result of BN_mod does not
1220 * depend on the sign of the modulus). */
1221 #define BN_TO_MONTGOMERY_WORD(r, w, mont) \
1222 (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
1223
1224 if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) {
1225 /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
1226 OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont_word,
1227 ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
1228 return 0;
1229 }
1230
1231 if (!BN_is_odd(m)) {
1232 OPENSSL_PUT_ERROR(BN, BN_mod_exp_mont_word, BN_R_CALLED_WITH_EVEN_MODULUS);
1233 return 0;
1234 }
1235
1236 if (m->top == 1) {
1237 a %= m->d[0]; /* make sure that 'a' is reduced */
1238 }
1239
1240 bits = BN_num_bits(p);
1241 if (bits == 0) {
1242 /* x**0 mod 1 is still zero. */
1243 if (BN_is_one(m)) {
1244 ret = 1;
1245 BN_zero(rr);
1246 } else {
1247 ret = BN_one(rr);
1248 }
1249 return ret;
1250 }
1251 if (a == 0) {
1252 BN_zero(rr);
1253 ret = 1;
1254 return ret;
1255 }
1256
1257 BN_CTX_start(ctx);
1258 d = BN_CTX_get(ctx);
1259 r = BN_CTX_get(ctx);
1260 t = BN_CTX_get(ctx);
1261 if (d == NULL || r == NULL || t == NULL) {
1262 goto err;
1263 }
1264
1265 if (in_mont != NULL) {
1266 mont = in_mont;
1267 } else {
1268 mont = BN_MONT_CTX_new();
1269 if (mont == NULL || !BN_MONT_CTX_set(mont, m, ctx)) {
1270 goto err;
1271 }
1272 }
1273
1274 r_is_one = 1; /* except for Montgomery factor */
1275
1276 /* bits-1 >= 0 */
1277
1278 /* The result is accumulated in the product r*w. */
1279 w = a; /* bit 'bits-1' of 'p' is always set */
1280 for (b = bits - 2; b >= 0; b--) {
1281 /* First, square r*w. */
1282 next_w = w * w;
1283 if ((next_w / w) != w) {
1284 /* overflow */
1285 if (r_is_one) {
1286 if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
1287 goto err;
1288 }
1289 r_is_one = 0;
1290 } else {
1291 if (!BN_MOD_MUL_WORD(r, w, m)) {
1292 goto err;
1293 }
1294 }
1295 next_w = 1;
1296 }
1297
1298 w = next_w;
1299 if (!r_is_one) {
1300 if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
1301 goto err;
1302 }
1303 }
1304
1305 /* Second, multiply r*w by 'a' if exponent bit is set. */
1306 if (BN_is_bit_set(p, b)) {
1307 next_w = w * a;
1308 if ((next_w / a) != w) {
1309 /* overflow */
1310 if (r_is_one) {
1311 if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
1312 goto err;
1313 }
1314 r_is_one = 0;
1315 } else {
1316 if (!BN_MOD_MUL_WORD(r, w, m)) {
1317 goto err;
1318 }
1319 }
1320 next_w = a;
1321 }
1322 w = next_w;
1323 }
1324 }
1325
1326 /* Finally, set r:=r*w. */
1327 if (w != 1) {
1328 if (r_is_one) {
1329 if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) {
1330 goto err;
1331 }
1332 r_is_one = 0;
1333 } else {
1334 if (!BN_MOD_MUL_WORD(r, w, m)) {
1335 goto err;
1336 }
1337 }
1338 }
1339
1340 if (r_is_one) {
1341 /* can happen only if a == 1*/
1342 if (!BN_one(rr)) {
1343 goto err;
1344 }
1345 } else {
1346 if (!BN_from_montgomery(rr, r, mont, ctx)) {
1347 goto err;
1348 }
1349 }
1350 ret = 1;
1351
1352 err:
1353 if (in_mont == NULL) {
1354 BN_MONT_CTX_free(mont);
1355 }
1356 BN_CTX_end(ctx);
1357 return ret;
1358 }
1359
1360 #define TABLE_SIZE 32
1361
BN_mod_exp2_mont(BIGNUM * rr,const BIGNUM * a1,const BIGNUM * p1,const BIGNUM * a2,const BIGNUM * p2,const BIGNUM * m,BN_CTX * ctx,BN_MONT_CTX * in_mont)1362 int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
1363 const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
1364 BN_CTX *ctx, BN_MONT_CTX *in_mont) {
1365 int i, j, bits, b, bits1, bits2, ret = 0, wpos1, wpos2, window1, window2,
1366 wvalue1, wvalue2;
1367 int r_is_one = 1;
1368 BIGNUM *d, *r;
1369 const BIGNUM *a_mod_m;
1370 /* Tables of variables obtained from 'ctx' */
1371 BIGNUM *val1[TABLE_SIZE], *val2[TABLE_SIZE];
1372 BN_MONT_CTX *mont = NULL;
1373
1374 if (!(m->d[0] & 1)) {
1375 OPENSSL_PUT_ERROR(BN, BN_mod_exp2_mont, BN_R_CALLED_WITH_EVEN_MODULUS);
1376 return 0;
1377 }
1378 bits1 = BN_num_bits(p1);
1379 bits2 = BN_num_bits(p2);
1380 if (bits1 == 0 && bits2 == 0) {
1381 ret = BN_one(rr);
1382 return ret;
1383 }
1384
1385 bits = (bits1 > bits2) ? bits1 : bits2;
1386
1387 BN_CTX_start(ctx);
1388 d = BN_CTX_get(ctx);
1389 r = BN_CTX_get(ctx);
1390 val1[0] = BN_CTX_get(ctx);
1391 val2[0] = BN_CTX_get(ctx);
1392 if (!d || !r || !val1[0] || !val2[0]) {
1393 goto err;
1394 }
1395
1396 if (in_mont != NULL) {
1397 mont = in_mont;
1398 } else {
1399 mont = BN_MONT_CTX_new();
1400 if (mont == NULL) {
1401 goto err;
1402 }
1403 if (!BN_MONT_CTX_set(mont, m, ctx)) {
1404 goto err;
1405 }
1406 }
1407
1408 window1 = BN_window_bits_for_exponent_size(bits1);
1409 window2 = BN_window_bits_for_exponent_size(bits2);
1410
1411 /* Build table for a1: val1[i] := a1^(2*i + 1) mod m for i = 0 ..
1412 * 2^(window1-1) */
1413 if (a1->neg || BN_ucmp(a1, m) >= 0) {
1414 if (!BN_mod(val1[0], a1, m, ctx)) {
1415 goto err;
1416 }
1417 a_mod_m = val1[0];
1418 } else {
1419 a_mod_m = a1;
1420 }
1421
1422 if (BN_is_zero(a_mod_m)) {
1423 BN_zero(rr);
1424 ret = 1;
1425 goto err;
1426 }
1427
1428 if (!BN_to_montgomery(val1[0], a_mod_m, mont, ctx)) {
1429 goto err;
1430 }
1431
1432 if (window1 > 1) {
1433 if (!BN_mod_mul_montgomery(d, val1[0], val1[0], mont, ctx)) {
1434 goto err;
1435 }
1436
1437 j = 1 << (window1 - 1);
1438 for (i = 1; i < j; i++) {
1439 if (((val1[i] = BN_CTX_get(ctx)) == NULL) ||
1440 !BN_mod_mul_montgomery(val1[i], val1[i - 1], d, mont, ctx)) {
1441 goto err;
1442 }
1443 }
1444 }
1445
1446 /* Build table for a2: val2[i] := a2^(2*i + 1) mod m for i = 0 ..
1447 * 2^(window2-1) */
1448 if (a2->neg || BN_ucmp(a2, m) >= 0) {
1449 if (!BN_mod(val2[0], a2, m, ctx)) {
1450 goto err;
1451 }
1452 a_mod_m = val2[0];
1453 } else {
1454 a_mod_m = a2;
1455 }
1456
1457 if (BN_is_zero(a_mod_m)) {
1458 BN_zero(rr);
1459 ret = 1;
1460 goto err;
1461 }
1462
1463 if (!BN_to_montgomery(val2[0], a_mod_m, mont, ctx)) {
1464 goto err;
1465 }
1466
1467 if (window2 > 1) {
1468 if (!BN_mod_mul_montgomery(d, val2[0], val2[0], mont, ctx)) {
1469 goto err;
1470 }
1471
1472 j = 1 << (window2 - 1);
1473 for (i = 1; i < j; i++) {
1474 if (((val2[i] = BN_CTX_get(ctx)) == NULL) ||
1475 !BN_mod_mul_montgomery(val2[i], val2[i - 1], d, mont, ctx)) {
1476 goto err;
1477 }
1478 }
1479 }
1480
1481 /* Now compute the power product, using independent windows. */
1482 r_is_one = 1;
1483 wvalue1 = 0; /* The 'value' of the first window */
1484 wvalue2 = 0; /* The 'value' of the second window */
1485 wpos1 = 0; /* If wvalue1 > 0, the bottom bit of the first window */
1486 wpos2 = 0; /* If wvalue2 > 0, the bottom bit of the second window */
1487
1488 if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) {
1489 goto err;
1490 }
1491
1492 for (b = bits - 1; b >= 0; b--) {
1493 if (!r_is_one) {
1494 if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
1495 goto err;
1496 }
1497 }
1498
1499 if (!wvalue1 && BN_is_bit_set(p1, b)) {
1500 /* consider bits b-window1+1 .. b for this window */
1501 i = b - window1 + 1;
1502 /* works for i<0 */
1503 while (!BN_is_bit_set(p1, i)) {
1504 i++;
1505 }
1506 wpos1 = i;
1507 wvalue1 = 1;
1508 for (i = b - 1; i >= wpos1; i--) {
1509 wvalue1 <<= 1;
1510 if (BN_is_bit_set(p1, i)) {
1511 wvalue1++;
1512 }
1513 }
1514 }
1515
1516 if (!wvalue2 && BN_is_bit_set(p2, b)) {
1517 /* consider bits b-window2+1 .. b for this window */
1518 i = b - window2 + 1;
1519 while (!BN_is_bit_set(p2, i)) {
1520 i++;
1521 }
1522 wpos2 = i;
1523 wvalue2 = 1;
1524 for (i = b - 1; i >= wpos2; i--) {
1525 wvalue2 <<= 1;
1526 if (BN_is_bit_set(p2, i)) {
1527 wvalue2++;
1528 }
1529 }
1530 }
1531
1532 if (wvalue1 && b == wpos1) {
1533 /* wvalue1 is odd and < 2^window1 */
1534 if (!BN_mod_mul_montgomery(r, r, val1[wvalue1 >> 1], mont, ctx)) {
1535 goto err;
1536 }
1537 wvalue1 = 0;
1538 r_is_one = 0;
1539 }
1540
1541 if (wvalue2 && b == wpos2) {
1542 /* wvalue2 is odd and < 2^window2 */
1543 if (!BN_mod_mul_montgomery(r, r, val2[wvalue2 >> 1], mont, ctx)) {
1544 goto err;
1545 }
1546 wvalue2 = 0;
1547 r_is_one = 0;
1548 }
1549 }
1550
1551 if (!BN_from_montgomery(rr, r, mont, ctx)) {
1552 goto err;
1553 }
1554 ret = 1;
1555
1556 err:
1557 if (in_mont == NULL) {
1558 BN_MONT_CTX_free(mont);
1559 }
1560 BN_CTX_end(ctx);
1561 return ret;
1562 }
1563