/external/eigen/test/ |
D | product_extra.cpp | 51 …VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()… in product_extra() 56 VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2), in product_extra() 57 (-m1.conjugate()*s2).eval() * (s1 * vc2).eval()); in product_extra() 58 VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()), in product_extra() 59 (-m1*s2).eval() * (s1 * vc2.conjugate()).eval()); in product_extra() 60 VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()), in product_extra() 61 (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval()); in product_extra() 77 VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2), in product_extra() 78 (s1 * v1).eval() * (-m1.conjugate()*s2).eval()); in product_extra() 79 VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2), in product_extra() [all …]
|
D | product_trsolve.cpp | 46 VERIFY_TRSM(cmLhs.conjugate().template triangularView<Lower>(), cmRhs); in trsolve() 50 VERIFY_TRSM(cmLhs.conjugate().template triangularView<Upper>(), rmRhs); in trsolve() 53 VERIFY_TRSM(cmLhs.conjugate().template triangularView<UnitLower>(), cmRhs); in trsolve() 57 VERIFY_TRSM(rmLhs.conjugate().template triangularView<UnitUpper>(), rmRhs); in trsolve() 60 VERIFY_TRSM_ONTHERIGHT(cmLhs.conjugate().template triangularView<Lower>(), cmRhs); in trsolve() 63 VERIFY_TRSM_ONTHERIGHT(cmLhs.conjugate().template triangularView<Upper>(), rmRhs); in trsolve() 65 VERIFY_TRSM_ONTHERIGHT(cmLhs.conjugate().template triangularView<UnitLower>(), cmRhs); in trsolve() 69 VERIFY_TRSM_ONTHERIGHT(rmLhs.conjugate().template triangularView<UnitUpper>(), rmRhs); in trsolve()
|
D | product_trmv.cpp | 44 …VERIFY(((s1*m3).conjugate() * v1).isApprox((s1*m1).conjugate().template triangularView<Eigen::Lowe… in trmv() 46 …VERIFY((m3.conjugate() * v1.conjugate()).isApprox(m1.conjugate().template triangularView<Eigen::Up… in trmv() 62 …ERIFY((m3.adjoint() * (s1*v1.conjugate())).isApprox(m1.adjoint().template triangularView<Eigen::Up… in trmv()
|
D | product_trmm.cpp | 46 …)).template triangularView<Mode>() * (s2*ge_left.transpose()), s1*triTr.conjugate() * (s2*ge_left.… in trmm() 47 …spose() * mat.adjoint().template triangularView<Mode>(), ge_right.transpose() * triTr.conjugate()); in trmm() 49 …t()).template triangularView<Mode>() * (s2*ge_left.adjoint()), s1*triTr.conjugate() * (s2*ge_left.… in trmm() 50 …adjoint() * mat.adjoint().template triangularView<Mode>(), ge_right.adjoint() * triTr.conjugate()); in trmm() 53 …VERIFY_IS_APPROX( (ge_xs_save + s1*triTr.conjugate() * (s2*ge_left.adjoint())).eval(), ge_xs.noali… in trmm() 56 …VERIFY_IS_APPROX( ge_sx_save - (ge_right.adjoint() * (-s1 * triTr).conjugate()).eval(), ge_sx.noal… in trmm() 58 …te triangularView<Mode>() * ge_left.adjoint(), numext::conj(s1) * triTr.conjugate() * ge_left.adjo… in trmm()
|
D | sparse_solvers.cpp | 60 VERIFY_IS_APPROX(refMat2.conjugate().template triangularView<Upper>().solve(vec2), in sparse_solvers() 61 m2.conjugate().template triangularView<Upper>().solve(vec3)); in sparse_solvers() 66 VERIFY_IS_APPROX(refMat2.conjugate().template triangularView<Upper>().solve(vec2), in sparse_solvers() 67 mm2.conjugate().template triangularView<Upper>().solve(vec3)); in sparse_solvers()
|
D | product_syrk.cpp | 94 …VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(m1.col(c).conjugate(),s1)._expre… in syrk() 95 …((s1 * m1.col(c).conjugate() * m1.col(c).conjugate().adjoint()).eval().template triangularView<Low… in syrk() 98 …VERIFY_IS_APPROX((m2.template selfadjointView<Upper>().rankUpdate(m1.col(c).conjugate(),s1)._expre… in syrk() 99 …((s1 * m1.col(c).conjugate() * m1.col(c).conjugate().adjoint()).eval().template triangularView<Upp… in syrk()
|
D | householder.cpp | 87 HCoeffsVectorType hc = qr.hCoeffs().conjugate(); in householder() 100 SquareMatrixType hseq_mat_conj = hseq.conjugate(); in householder() 105 VERIFY_IS_APPROX(hseq_mat.conjugate(), hseq_mat_conj); in householder() 109 VERIFY_IS_APPROX(hseq_mat.conjugate() * m6, hseq_mat_conj * m6); in householder() 113 VERIFY_IS_APPROX(m6 * hseq_mat.conjugate(), m6 * hseq_mat_conj); in householder()
|
D | triangular.cpp | 63 VERIFY_IS_APPROX(m3.template triangularView<Lower>().conjugate().toDenseMatrix(), in triangular_square() 64 m3.conjugate().template triangularView<Lower>().toDenseMatrix()); in triangular_square() 79 …VERIFY(v2.isApprox(m3.conjugate() * (m1.conjugate().template triangularView<Lower>().solve(v2)), l… in triangular_square() 89 …VERIFY(m2.isApprox(m3.conjugate() * (m1.conjugate().template triangularView<Lower>().solve(m2)), l… in triangular_square()
|
D | cholesky.cpp | 113 …VERIFY_IS_APPROX(MatrixType(chollo.matrixL().transpose().conjugate()), MatrixType(chollo.matrixU()… in cholesky() 114 …VERIFY_IS_APPROX(MatrixType(chollo.matrixU().transpose().conjugate()), MatrixType(chollo.matrixL()… in cholesky() 115 …VERIFY_IS_APPROX(MatrixType(cholup.matrixL().transpose().conjugate()), MatrixType(cholup.matrixU()… in cholesky() 116 …VERIFY_IS_APPROX(MatrixType(cholup.matrixU().transpose().conjugate()), MatrixType(cholup.matrixL()… in cholesky() 160 …VERIFY_IS_APPROX(MatrixType(ldltlo.matrixL().transpose().conjugate()), MatrixType(ldltlo.matrixU()… in cholesky() 161 …VERIFY_IS_APPROX(MatrixType(ldltlo.matrixU().transpose().conjugate()), MatrixType(ldltlo.matrixL()… in cholesky() 162 …VERIFY_IS_APPROX(MatrixType(ldltup.matrixL().transpose().conjugate()), MatrixType(ldltup.matrixU()… in cholesky() 163 …VERIFY_IS_APPROX(MatrixType(ldltup.matrixU().transpose().conjugate()), MatrixType(ldltup.matrixL()… in cholesky()
|
D | product_symm.cpp | 66 …RIFY_IS_APPROX(rhs12 = (s1*m2.adjoint()).template selfadjointView<Lower>() * (s2*rhs3).conjugate(), in symm() 67 rhs13 = (s1*m1.adjoint()) * (s2*rhs3).conjugate()); in symm() 71 …rhs12.noalias() += s1 * ((m2.adjoint()).template selfadjointView<Lower>() * (s2*rhs3).conjugate()), in symm() 72 rhs13 += (s1*m1.adjoint()) * (s2*rhs3).conjugate()); in symm()
|
D | adjoint.cpp | 84 VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); in adjoint() 85 VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); in adjoint() 102 VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c))); in adjoint() 117 VERIFY_IS_APPROX(m3,m1.conjugate()); in adjoint() 145 VERIFY_RAISES_ASSERT(a = a.conjugate().transpose()); in test_adjoint()
|
D | geo_quaternion.cpp | 142 VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); in quaternion() 214 VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1); in mapQuaternion() 217 VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1); in mapQuaternion() 220 VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1); in mapQuaternion() 223 VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1); in mapQuaternion()
|
/external/eigen/Eigen/src/Geometry/ |
D | OrthoMethods.h | 111 …w(0) = (_expression().row(1) * other.coeff(2) - _expression().row(2) * other.coeff(1)).conjugate(); in cross() 112 …w(1) = (_expression().row(2) * other.coeff(0) - _expression().row(0) * other.coeff(2)).conjugate(); in cross() 113 …w(2) = (_expression().row(0) * other.coeff(1) - _expression().row(1) * other.coeff(0)).conjugate(); in cross() 118 …l(0) = (_expression().col(1) * other.coeff(2) - _expression().col(2) * other.coeff(1)).conjugate(); in cross() 119 …l(1) = (_expression().col(2) * other.coeff(0) - _expression().col(0) * other.coeff(2)).conjugate(); in cross() 120 …l(2) = (_expression().col(0) * other.coeff(1) - _expression().col(1) * other.coeff(0)).conjugate(); in cross()
|
/external/eigen/test/eigen2/ |
D | eigen2_adjoint.cpp | 42 VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); in adjoint() 43 VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); in adjoint() 67 VERIFY_IS_APPROX(m1.conjugate()(r,c), ei_conj(m1(r,c))); in adjoint()
|
D | eigen2_sparse_product.cpp | 85 refLo = refUp.transpose().conjugate(); in sparse_product() 86 mLo = mUp.transpose().conjugate(); in sparse_product() 96 VERIFY_IS_APPROX(mS.transpose().conjugate(), mS); in sparse_product()
|
/external/eigen/Eigen/src/Core/products/ |
D | TriangularMatrixVector_MKL.h | 102 if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \ 133 if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \ 187 if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \ 218 if (ConjRhs) x_tmp = rhs.conjugate(); else x_tmp = rhs; \
|
D | GeneralMatrixMatrix_MKL.h | 94 a_tmp = lhs.conjugate(); \ 101 b_tmp = rhs.conjugate(); \
|
D | SelfadjointMatrixMatrix_MKL.h | 133 a_tmp = lhs.conjugate(); \ 144 b_tmp = rhs.conjugate(); \ 258 a_tmp = rhs.conjugate(); \ 269 b_tmp = lhs.conjugate(); \
|
D | TriangularMatrixMatrix_MKL.h | 153 if (ConjugateRhs) b_tmp = rhs.conjugate(); else b_tmp = rhs; \ 165 if (conjA) a_tmp = lhs.conjugate(); else a_tmp = lhs; \ 267 if (ConjugateLhs) b_tmp = lhs.conjugate(); else b_tmp = lhs; \ 279 if (conjA) a_tmp = rhs.conjugate(); else a_tmp = rhs; \
|
D | TriangularSolverMatrix_MKL.h | 76 a_tmp = tri.conjugate(); \ 131 a_tmp = tri.conjugate(); \
|
/external/eigen/Eigen/src/Householder/ |
D | HouseholderSequence.h | 209 ConjugateReturnType conjugate() const 211 return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate()) 220 return conjugate().setTrans(!m_trans);
|
/external/eigen/Eigen/src/SVD/ |
D | UpperBidiagonalization.h | 71 return HouseholderUSequenceType(m_householder, m_householder.diagonal().conjugate()); in householderU() 77 …return HouseholderVSequenceType(m_householder.conjugate(), m_householder.const_derived().template … in householderV()
|
/external/eigen/doc/snippets/ |
D | tut_arithmetic_transpose_conjugate.cpp | 7 cout << "Here is the conjugate of a\n" << a.conjugate() << endl;
|
/external/eigen/Eigen/src/Eigenvalues/ |
D | HessenbergDecomposition.h | 235 return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate()) 316 ….applyHouseholderOnTheRight(matA.col(i).tail(remainingSize-1).conjugate(), numext::conj(h), &temp.…
|
/external/eigen/doc/ |
D | TutorialMatrixArithmetic.dox | 81 …conjugate \f$ \bar{a} \f$, and adjoint (i.e., conjugate transpose) \f$ a^* \f$ of a matrix or vect… 92 For real matrices, \c conjugate() is a no-operation, and so \c adjoint() is equivalent to \c transp… 162 When using complex numbers, Eigen's dot product is conjugate-linear in the first variable and linea…
|