1 /* 2 * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_MAIN_INTERFACE_AUDIO_PROCESSING_H_ 12 #define WEBRTC_MODULES_AUDIO_PROCESSING_MAIN_INTERFACE_AUDIO_PROCESSING_H_ 13 14 #include <stddef.h> // size_t 15 16 #include "typedefs.h" 17 #include "module.h" 18 19 namespace webrtc { 20 21 class AudioFrame; 22 class EchoCancellation; 23 class EchoControlMobile; 24 class GainControl; 25 class HighPassFilter; 26 class LevelEstimator; 27 class NoiseSuppression; 28 class VoiceDetection; 29 30 // The Audio Processing Module (APM) provides a collection of voice processing 31 // components designed for real-time communications software. 32 // 33 // APM operates on two audio streams on a frame-by-frame basis. Frames of the 34 // primary stream, on which all processing is applied, are passed to 35 // |ProcessStream()|. Frames of the reverse direction stream, which are used for 36 // analysis by some components, are passed to |AnalyzeReverseStream()|. On the 37 // client-side, this will typically be the near-end (capture) and far-end 38 // (render) streams, respectively. APM should be placed in the signal chain as 39 // close to the audio hardware abstraction layer (HAL) as possible. 40 // 41 // On the server-side, the reverse stream will normally not be used, with 42 // processing occurring on each incoming stream. 43 // 44 // Component interfaces follow a similar pattern and are accessed through 45 // corresponding getters in APM. All components are disabled at create-time, 46 // with default settings that are recommended for most situations. New settings 47 // can be applied without enabling a component. Enabling a component triggers 48 // memory allocation and initialization to allow it to start processing the 49 // streams. 50 // 51 // Thread safety is provided with the following assumptions to reduce locking 52 // overhead: 53 // 1. The stream getters and setters are called from the same thread as 54 // ProcessStream(). More precisely, stream functions are never called 55 // concurrently with ProcessStream(). 56 // 2. Parameter getters are never called concurrently with the corresponding 57 // setter. 58 // 59 // APM accepts only 16-bit linear PCM audio data in frames of 10 ms. Multiple 60 // channels should be interleaved. 61 // 62 // Usage example, omitting error checking: 63 // AudioProcessing* apm = AudioProcessing::Create(0); 64 // apm->set_sample_rate_hz(32000); // Super-wideband processing. 65 // 66 // // Mono capture and stereo render. 67 // apm->set_num_channels(1, 1); 68 // apm->set_num_reverse_channels(2); 69 // 70 // apm->high_pass_filter()->Enable(true); 71 // 72 // apm->echo_cancellation()->enable_drift_compensation(false); 73 // apm->echo_cancellation()->Enable(true); 74 // 75 // apm->noise_reduction()->set_level(kHighSuppression); 76 // apm->noise_reduction()->Enable(true); 77 // 78 // apm->gain_control()->set_analog_level_limits(0, 255); 79 // apm->gain_control()->set_mode(kAdaptiveAnalog); 80 // apm->gain_control()->Enable(true); 81 // 82 // apm->voice_detection()->Enable(true); 83 // 84 // // Start a voice call... 85 // 86 // // ... Render frame arrives bound for the audio HAL ... 87 // apm->AnalyzeReverseStream(render_frame); 88 // 89 // // ... Capture frame arrives from the audio HAL ... 90 // // Call required set_stream_ functions. 91 // apm->set_stream_delay_ms(delay_ms); 92 // apm->gain_control()->set_stream_analog_level(analog_level); 93 // 94 // apm->ProcessStream(capture_frame); 95 // 96 // // Call required stream_ functions. 97 // analog_level = apm->gain_control()->stream_analog_level(); 98 // has_voice = apm->stream_has_voice(); 99 // 100 // // Repeate render and capture processing for the duration of the call... 101 // // Start a new call... 102 // apm->Initialize(); 103 // 104 // // Close the application... 105 // AudioProcessing::Destroy(apm); 106 // apm = NULL; 107 // 108 class AudioProcessing : public Module { 109 public: 110 // Creates a APM instance, with identifier |id|. Use one instance for every 111 // primary audio stream requiring processing. On the client-side, this would 112 // typically be one instance for the near-end stream, and additional instances 113 // for each far-end stream which requires processing. On the server-side, 114 // this would typically be one instance for every incoming stream. 115 static AudioProcessing* Create(int id); ~AudioProcessing()116 virtual ~AudioProcessing() {}; 117 118 // TODO(andrew): remove this method. We now allow users to delete instances 119 // directly, useful for scoped_ptr. 120 // Destroys a |apm| instance. 121 static void Destroy(AudioProcessing* apm); 122 123 // Initializes internal states, while retaining all user settings. This 124 // should be called before beginning to process a new audio stream. However, 125 // it is not necessary to call before processing the first stream after 126 // creation. 127 virtual int Initialize() = 0; 128 129 // Sets the sample |rate| in Hz for both the primary and reverse audio 130 // streams. 8000, 16000 or 32000 Hz are permitted. 131 virtual int set_sample_rate_hz(int rate) = 0; 132 virtual int sample_rate_hz() const = 0; 133 134 // Sets the number of channels for the primary audio stream. Input frames must 135 // contain a number of channels given by |input_channels|, while output frames 136 // will be returned with number of channels given by |output_channels|. 137 virtual int set_num_channels(int input_channels, int output_channels) = 0; 138 virtual int num_input_channels() const = 0; 139 virtual int num_output_channels() const = 0; 140 141 // Sets the number of channels for the reverse audio stream. Input frames must 142 // contain a number of channels given by |channels|. 143 virtual int set_num_reverse_channels(int channels) = 0; 144 virtual int num_reverse_channels() const = 0; 145 146 // Processes a 10 ms |frame| of the primary audio stream. On the client-side, 147 // this is the near-end (or captured) audio. 148 // 149 // If needed for enabled functionality, any function with the set_stream_ tag 150 // must be called prior to processing the current frame. Any getter function 151 // with the stream_ tag which is needed should be called after processing. 152 // 153 // The |_frequencyInHz|, |_audioChannel|, and |_payloadDataLengthInSamples| 154 // members of |frame| must be valid, and correspond to settings supplied 155 // to APM. 156 virtual int ProcessStream(AudioFrame* frame) = 0; 157 158 // Analyzes a 10 ms |frame| of the reverse direction audio stream. The frame 159 // will not be modified. On the client-side, this is the far-end (or to be 160 // rendered) audio. 161 // 162 // It is only necessary to provide this if echo processing is enabled, as the 163 // reverse stream forms the echo reference signal. It is recommended, but not 164 // necessary, to provide if gain control is enabled. On the server-side this 165 // typically will not be used. If you're not sure what to pass in here, 166 // chances are you don't need to use it. 167 // 168 // The |_frequencyInHz|, |_audioChannel|, and |_payloadDataLengthInSamples| 169 // members of |frame| must be valid. 170 // 171 // TODO(ajm): add const to input; requires an implementation fix. 172 virtual int AnalyzeReverseStream(AudioFrame* frame) = 0; 173 174 // This must be called if and only if echo processing is enabled. 175 // 176 // Sets the |delay| in ms between AnalyzeReverseStream() receiving a far-end 177 // frame and ProcessStream() receiving a near-end frame containing the 178 // corresponding echo. On the client-side this can be expressed as 179 // delay = (t_render - t_analyze) + (t_process - t_capture) 180 // where, 181 // - t_analyze is the time a frame is passed to AnalyzeReverseStream() and 182 // t_render is the time the first sample of the same frame is rendered by 183 // the audio hardware. 184 // - t_capture is the time the first sample of a frame is captured by the 185 // audio hardware and t_pull is the time the same frame is passed to 186 // ProcessStream(). 187 virtual int set_stream_delay_ms(int delay) = 0; 188 virtual int stream_delay_ms() const = 0; 189 190 // Starts recording debugging information to a file specified by |filename|, 191 // a NULL-terminated string. If there is an ongoing recording, the old file 192 // will be closed, and recording will continue in the newly specified file. 193 // An already existing file will be overwritten without warning. 194 static const size_t kMaxFilenameSize = 1024; 195 virtual int StartDebugRecording(const char filename[kMaxFilenameSize]) = 0; 196 197 // Stops recording debugging information, and closes the file. Recording 198 // cannot be resumed in the same file (without overwriting it). 199 virtual int StopDebugRecording() = 0; 200 201 // These provide access to the component interfaces and should never return 202 // NULL. The pointers will be valid for the lifetime of the APM instance. 203 // The memory for these objects is entirely managed internally. 204 virtual EchoCancellation* echo_cancellation() const = 0; 205 virtual EchoControlMobile* echo_control_mobile() const = 0; 206 virtual GainControl* gain_control() const = 0; 207 virtual HighPassFilter* high_pass_filter() const = 0; 208 virtual LevelEstimator* level_estimator() const = 0; 209 virtual NoiseSuppression* noise_suppression() const = 0; 210 virtual VoiceDetection* voice_detection() const = 0; 211 212 struct Statistic { 213 int instant; // Instantaneous value. 214 int average; // Long-term average. 215 int maximum; // Long-term maximum. 216 int minimum; // Long-term minimum. 217 }; 218 219 // Fatal errors. 220 enum Errors { 221 kNoError = 0, 222 kUnspecifiedError = -1, 223 kCreationFailedError = -2, 224 kUnsupportedComponentError = -3, 225 kUnsupportedFunctionError = -4, 226 kNullPointerError = -5, 227 kBadParameterError = -6, 228 kBadSampleRateError = -7, 229 kBadDataLengthError = -8, 230 kBadNumberChannelsError = -9, 231 kFileError = -10, 232 kStreamParameterNotSetError = -11, 233 kNotEnabledError = -12 234 }; 235 236 // Warnings are non-fatal. 237 enum Warnings { 238 // This results when a set_stream_ parameter is out of range. Processing 239 // will continue, but the parameter may have been truncated. 240 kBadStreamParameterWarning = -13, 241 }; 242 243 // Inherited from Module. TimeUntilNextProcess()244 virtual WebRtc_Word32 TimeUntilNextProcess() { return -1; }; Process()245 virtual WebRtc_Word32 Process() { return -1; }; 246 }; 247 248 // The acoustic echo cancellation (AEC) component provides better performance 249 // than AECM but also requires more processing power and is dependent on delay 250 // stability and reporting accuracy. As such it is well-suited and recommended 251 // for PC and IP phone applications. 252 // 253 // Not recommended to be enabled on the server-side. 254 class EchoCancellation { 255 public: 256 // EchoCancellation and EchoControlMobile may not be enabled simultaneously. 257 // Enabling one will disable the other. 258 virtual int Enable(bool enable) = 0; 259 virtual bool is_enabled() const = 0; 260 261 // Differences in clock speed on the primary and reverse streams can impact 262 // the AEC performance. On the client-side, this could be seen when different 263 // render and capture devices are used, particularly with webcams. 264 // 265 // This enables a compensation mechanism, and requires that 266 // |set_device_sample_rate_hz()| and |set_stream_drift_samples()| be called. 267 virtual int enable_drift_compensation(bool enable) = 0; 268 virtual bool is_drift_compensation_enabled() const = 0; 269 270 // Provides the sampling rate of the audio devices. It is assumed the render 271 // and capture devices use the same nominal sample rate. Required if and only 272 // if drift compensation is enabled. 273 virtual int set_device_sample_rate_hz(int rate) = 0; 274 virtual int device_sample_rate_hz() const = 0; 275 276 // Sets the difference between the number of samples rendered and captured by 277 // the audio devices since the last call to |ProcessStream()|. Must be called 278 // if and only if drift compensation is enabled, prior to |ProcessStream()|. 279 virtual int set_stream_drift_samples(int drift) = 0; 280 virtual int stream_drift_samples() const = 0; 281 282 enum SuppressionLevel { 283 kLowSuppression, 284 kModerateSuppression, 285 kHighSuppression 286 }; 287 288 // Sets the aggressiveness of the suppressor. A higher level trades off 289 // double-talk performance for increased echo suppression. 290 virtual int set_suppression_level(SuppressionLevel level) = 0; 291 virtual SuppressionLevel suppression_level() const = 0; 292 293 // Returns false if the current frame almost certainly contains no echo 294 // and true if it _might_ contain echo. 295 virtual bool stream_has_echo() const = 0; 296 297 // Enables the computation of various echo metrics. These are obtained 298 // through |GetMetrics()|. 299 virtual int enable_metrics(bool enable) = 0; 300 virtual bool are_metrics_enabled() const = 0; 301 302 // Each statistic is reported in dB. 303 // P_far: Far-end (render) signal power. 304 // P_echo: Near-end (capture) echo signal power. 305 // P_out: Signal power at the output of the AEC. 306 // P_a: Internal signal power at the point before the AEC's non-linear 307 // processor. 308 struct Metrics { 309 // RERL = ERL + ERLE 310 AudioProcessing::Statistic residual_echo_return_loss; 311 312 // ERL = 10log_10(P_far / P_echo) 313 AudioProcessing::Statistic echo_return_loss; 314 315 // ERLE = 10log_10(P_echo / P_out) 316 AudioProcessing::Statistic echo_return_loss_enhancement; 317 318 // (Pre non-linear processing suppression) A_NLP = 10log_10(P_echo / P_a) 319 AudioProcessing::Statistic a_nlp; 320 }; 321 322 // TODO(ajm): discuss the metrics update period. 323 virtual int GetMetrics(Metrics* metrics) = 0; 324 325 // Enables computation and logging of delay values. Statistics are obtained 326 // through |GetDelayMetrics()|. 327 virtual int enable_delay_logging(bool enable) = 0; 328 virtual bool is_delay_logging_enabled() const = 0; 329 330 // The delay metrics consists of the delay |median| and the delay standard 331 // deviation |std|. The values are averaged over the time period since the 332 // last call to |GetDelayMetrics()|. 333 virtual int GetDelayMetrics(int* median, int* std) = 0; 334 335 protected: ~EchoCancellation()336 virtual ~EchoCancellation() {}; 337 }; 338 339 // The acoustic echo control for mobile (AECM) component is a low complexity 340 // robust option intended for use on mobile devices. 341 // 342 // Not recommended to be enabled on the server-side. 343 class EchoControlMobile { 344 public: 345 // EchoCancellation and EchoControlMobile may not be enabled simultaneously. 346 // Enabling one will disable the other. 347 virtual int Enable(bool enable) = 0; 348 virtual bool is_enabled() const = 0; 349 350 // Recommended settings for particular audio routes. In general, the louder 351 // the echo is expected to be, the higher this value should be set. The 352 // preferred setting may vary from device to device. 353 enum RoutingMode { 354 kQuietEarpieceOrHeadset, 355 kEarpiece, 356 kLoudEarpiece, 357 kSpeakerphone, 358 kLoudSpeakerphone 359 }; 360 361 // Sets echo control appropriate for the audio routing |mode| on the device. 362 // It can and should be updated during a call if the audio routing changes. 363 virtual int set_routing_mode(RoutingMode mode) = 0; 364 virtual RoutingMode routing_mode() const = 0; 365 366 // Comfort noise replaces suppressed background noise to maintain a 367 // consistent signal level. 368 virtual int enable_comfort_noise(bool enable) = 0; 369 virtual bool is_comfort_noise_enabled() const = 0; 370 371 // A typical use case is to initialize the component with an echo path from a 372 // previous call. The echo path is retrieved using |GetEchoPath()|, typically 373 // at the end of a call. The data can then be stored for later use as an 374 // initializer before the next call, using |SetEchoPath()|. 375 // 376 // Controlling the echo path this way requires the data |size_bytes| to match 377 // the internal echo path size. This size can be acquired using 378 // |echo_path_size_bytes()|. |SetEchoPath()| causes an entire reset, worth 379 // noting if it is to be called during an ongoing call. 380 // 381 // It is possible that version incompatibilities may result in a stored echo 382 // path of the incorrect size. In this case, the stored path should be 383 // discarded. 384 virtual int SetEchoPath(const void* echo_path, size_t size_bytes) = 0; 385 virtual int GetEchoPath(void* echo_path, size_t size_bytes) const = 0; 386 387 // The returned path size is guaranteed not to change for the lifetime of 388 // the application. 389 static size_t echo_path_size_bytes(); 390 391 protected: ~EchoControlMobile()392 virtual ~EchoControlMobile() {}; 393 }; 394 395 // The automatic gain control (AGC) component brings the signal to an 396 // appropriate range. This is done by applying a digital gain directly and, in 397 // the analog mode, prescribing an analog gain to be applied at the audio HAL. 398 // 399 // Recommended to be enabled on the client-side. 400 class GainControl { 401 public: 402 virtual int Enable(bool enable) = 0; 403 virtual bool is_enabled() const = 0; 404 405 // When an analog mode is set, this must be called prior to |ProcessStream()| 406 // to pass the current analog level from the audio HAL. Must be within the 407 // range provided to |set_analog_level_limits()|. 408 virtual int set_stream_analog_level(int level) = 0; 409 410 // When an analog mode is set, this should be called after |ProcessStream()| 411 // to obtain the recommended new analog level for the audio HAL. It is the 412 // users responsibility to apply this level. 413 virtual int stream_analog_level() = 0; 414 415 enum Mode { 416 // Adaptive mode intended for use if an analog volume control is available 417 // on the capture device. It will require the user to provide coupling 418 // between the OS mixer controls and AGC through the |stream_analog_level()| 419 // functions. 420 // 421 // It consists of an analog gain prescription for the audio device and a 422 // digital compression stage. 423 kAdaptiveAnalog, 424 425 // Adaptive mode intended for situations in which an analog volume control 426 // is unavailable. It operates in a similar fashion to the adaptive analog 427 // mode, but with scaling instead applied in the digital domain. As with 428 // the analog mode, it additionally uses a digital compression stage. 429 kAdaptiveDigital, 430 431 // Fixed mode which enables only the digital compression stage also used by 432 // the two adaptive modes. 433 // 434 // It is distinguished from the adaptive modes by considering only a 435 // short time-window of the input signal. It applies a fixed gain through 436 // most of the input level range, and compresses (gradually reduces gain 437 // with increasing level) the input signal at higher levels. This mode is 438 // preferred on embedded devices where the capture signal level is 439 // predictable, so that a known gain can be applied. 440 kFixedDigital 441 }; 442 443 virtual int set_mode(Mode mode) = 0; 444 virtual Mode mode() const = 0; 445 446 // Sets the target peak |level| (or envelope) of the AGC in dBFs (decibels 447 // from digital full-scale). The convention is to use positive values. For 448 // instance, passing in a value of 3 corresponds to -3 dBFs, or a target 449 // level 3 dB below full-scale. Limited to [0, 31]. 450 // 451 // TODO(ajm): use a negative value here instead, if/when VoE will similarly 452 // update its interface. 453 virtual int set_target_level_dbfs(int level) = 0; 454 virtual int target_level_dbfs() const = 0; 455 456 // Sets the maximum |gain| the digital compression stage may apply, in dB. A 457 // higher number corresponds to greater compression, while a value of 0 will 458 // leave the signal uncompressed. Limited to [0, 90]. 459 virtual int set_compression_gain_db(int gain) = 0; 460 virtual int compression_gain_db() const = 0; 461 462 // When enabled, the compression stage will hard limit the signal to the 463 // target level. Otherwise, the signal will be compressed but not limited 464 // above the target level. 465 virtual int enable_limiter(bool enable) = 0; 466 virtual bool is_limiter_enabled() const = 0; 467 468 // Sets the |minimum| and |maximum| analog levels of the audio capture device. 469 // Must be set if and only if an analog mode is used. Limited to [0, 65535]. 470 virtual int set_analog_level_limits(int minimum, 471 int maximum) = 0; 472 virtual int analog_level_minimum() const = 0; 473 virtual int analog_level_maximum() const = 0; 474 475 // Returns true if the AGC has detected a saturation event (period where the 476 // signal reaches digital full-scale) in the current frame and the analog 477 // level cannot be reduced. 478 // 479 // This could be used as an indicator to reduce or disable analog mic gain at 480 // the audio HAL. 481 virtual bool stream_is_saturated() const = 0; 482 483 protected: ~GainControl()484 virtual ~GainControl() {}; 485 }; 486 487 // A filtering component which removes DC offset and low-frequency noise. 488 // Recommended to be enabled on the client-side. 489 class HighPassFilter { 490 public: 491 virtual int Enable(bool enable) = 0; 492 virtual bool is_enabled() const = 0; 493 494 protected: ~HighPassFilter()495 virtual ~HighPassFilter() {}; 496 }; 497 498 // An estimation component used to retrieve level metrics. 499 class LevelEstimator { 500 public: 501 virtual int Enable(bool enable) = 0; 502 virtual bool is_enabled() const = 0; 503 504 // Returns the root mean square (RMS) level in dBFs (decibels from digital 505 // full-scale), or alternately dBov. It is computed over all primary stream 506 // frames since the last call to RMS(). The returned value is positive but 507 // should be interpreted as negative. It is constrained to [0, 127]. 508 // 509 // The computation follows: 510 // http://tools.ietf.org/html/draft-ietf-avtext-client-to-mixer-audio-level-05 511 // with the intent that it can provide the RTP audio level indication. 512 // 513 // Frames passed to ProcessStream() with an |_energy| of zero are considered 514 // to have been muted. The RMS of the frame will be interpreted as -127. 515 virtual int RMS() = 0; 516 517 protected: ~LevelEstimator()518 virtual ~LevelEstimator() {}; 519 }; 520 521 // The noise suppression (NS) component attempts to remove noise while 522 // retaining speech. Recommended to be enabled on the client-side. 523 // 524 // Recommended to be enabled on the client-side. 525 class NoiseSuppression { 526 public: 527 virtual int Enable(bool enable) = 0; 528 virtual bool is_enabled() const = 0; 529 530 // Determines the aggressiveness of the suppression. Increasing the level 531 // will reduce the noise level at the expense of a higher speech distortion. 532 enum Level { 533 kLow, 534 kModerate, 535 kHigh, 536 kVeryHigh 537 }; 538 539 virtual int set_level(Level level) = 0; 540 virtual Level level() const = 0; 541 542 protected: ~NoiseSuppression()543 virtual ~NoiseSuppression() {}; 544 }; 545 546 // The voice activity detection (VAD) component analyzes the stream to 547 // determine if voice is present. A facility is also provided to pass in an 548 // external VAD decision. 549 // 550 // In addition to |stream_has_voice()| the VAD decision is provided through the 551 // |AudioFrame| passed to |ProcessStream()|. The |_vadActivity| member will be 552 // modified to reflect the current decision. 553 class VoiceDetection { 554 public: 555 virtual int Enable(bool enable) = 0; 556 virtual bool is_enabled() const = 0; 557 558 // Returns true if voice is detected in the current frame. Should be called 559 // after |ProcessStream()|. 560 virtual bool stream_has_voice() const = 0; 561 562 // Some of the APM functionality requires a VAD decision. In the case that 563 // a decision is externally available for the current frame, it can be passed 564 // in here, before |ProcessStream()| is called. 565 // 566 // VoiceDetection does _not_ need to be enabled to use this. If it happens to 567 // be enabled, detection will be skipped for any frame in which an external 568 // VAD decision is provided. 569 virtual int set_stream_has_voice(bool has_voice) = 0; 570 571 // Specifies the likelihood that a frame will be declared to contain voice. 572 // A higher value makes it more likely that speech will not be clipped, at 573 // the expense of more noise being detected as voice. 574 enum Likelihood { 575 kVeryLowLikelihood, 576 kLowLikelihood, 577 kModerateLikelihood, 578 kHighLikelihood 579 }; 580 581 virtual int set_likelihood(Likelihood likelihood) = 0; 582 virtual Likelihood likelihood() const = 0; 583 584 // Sets the |size| of the frames in ms on which the VAD will operate. Larger 585 // frames will improve detection accuracy, but reduce the frequency of 586 // updates. 587 // 588 // This does not impact the size of frames passed to |ProcessStream()|. 589 virtual int set_frame_size_ms(int size) = 0; 590 virtual int frame_size_ms() const = 0; 591 592 protected: ~VoiceDetection()593 virtual ~VoiceDetection() {}; 594 }; 595 } // namespace webrtc 596 597 #endif // WEBRTC_MODULES_AUDIO_PROCESSING_MAIN_INTERFACE_AUDIO_PROCESSING_H_ 598