/external/apache-commons-math/src/main/java/org/apache/commons/math/optimization/fitting/ |
D | HarmonicCoefficientsGuesser.java | 130 private final WeightedObservedPoint[] observations; field in HarmonicCoefficientsGuesser 144 public HarmonicCoefficientsGuesser(WeightedObservedPoint[] observations) { in HarmonicCoefficientsGuesser() argument 145 this.observations = observations.clone(); in HarmonicCoefficientsGuesser() 168 WeightedObservedPoint curr = observations[0]; in sortObservations() 169 for (int j = 1; j < observations.length; ++j) { in sortObservations() 171 curr = observations[j]; in sortObservations() 175 WeightedObservedPoint mI = observations[i]; in sortObservations() 177 observations[i + 1] = mI; in sortObservations() 179 mI = observations[i]; in sortObservations() 182 observations[i + 1] = curr; in sortObservations() [all …]
|
D | CurveFitter.java | 49 private final List<WeightedObservedPoint> observations; field in CurveFitter 56 observations = new ArrayList<WeightedObservedPoint>(); in CurveFitter() 83 observations.add(new WeightedObservedPoint(weight, x, y)); in addObservedPoint() 93 observations.add(observed); in addObservedPoint() 103 return observations.toArray(new WeightedObservedPoint[observations.size()]); in getObservations() 110 observations.clear(); in clearObservations() 130 double[] target = new double[observations.size()]; in fit() 131 double[] weights = new double[observations.size()]; in fit() 133 for (WeightedObservedPoint point : observations) { in fit() 168 final double[][] jacobian = new double[observations.size()][]; in jacobian() [all …]
|
D | GaussianParametersGuesser.java | 40 private final WeightedObservedPoint[] observations; field in GaussianParametersGuesser 50 public GaussianParametersGuesser(WeightedObservedPoint[] observations) { in GaussianParametersGuesser() argument 51 if (observations == null) { in GaussianParametersGuesser() 54 if (observations.length < 3) { in GaussianParametersGuesser() 55 throw new NumberIsTooSmallException(observations.length, 3, true); in GaussianParametersGuesser() 57 this.observations = observations.clone(); in GaussianParametersGuesser() 67 parameters = basicGuess(observations); in guess()
|
D | HarmonicFitter.java | 83 final WeightedObservedPoint[] observations = fitter.getObservations(); in fit() local 84 if (observations.length < 4) { in fit() 86 observations.length, 4); in fit() 89 HarmonicCoefficientsGuesser guesser = new HarmonicCoefficientsGuesser(observations); in fit()
|
D | GaussianFitter.java | 114 …protected GaussianParametersGuesser createParametersGuesser(WeightedObservedPoint[] observations) { in createParametersGuesser() argument 115 return new GaussianParametersGuesser(observations); in createParametersGuesser()
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/optimization/ |
D | LeastSquaresConverter.java | 64 private final double[] observations; field in LeastSquaresConverter 77 final double[] observations) { in LeastSquaresConverter() argument 79 this.observations = observations.clone(); in LeastSquaresConverter() 113 final double[] observations, final double[] weights) in LeastSquaresConverter() argument 115 if (observations.length != weights.length) { in LeastSquaresConverter() 118 observations.length, weights.length); in LeastSquaresConverter() 121 this.observations = observations.clone(); in LeastSquaresConverter() 146 final double[] observations, final RealMatrix scale) in LeastSquaresConverter() argument 148 if (observations.length != scale.getColumnDimension()) { in LeastSquaresConverter() 151 observations.length, scale.getColumnDimension()); in LeastSquaresConverter() [all …]
|
/external/ceres-solver/examples/ |
D | simple_bundle_adjuster.cc | 56 const double* observations() const { return observations_; } in observations() function in BALProblem 188 const double* observations = bal_problem.observations(); in main() local 199 SnavelyReprojectionError::Create(observations[2 * i + 0], in main() 200 observations[2 * i + 1]); in main()
|
D | bundle_adjuster.cc | 259 const double* observations = bal_problem->observations(); in BuildProblem() local 268 observations[2 * i + 0], in BuildProblem() 269 observations[2 * i + 1]) in BuildProblem() 271 observations[2 * i + 0], in BuildProblem() 272 observations[2 * i + 1]); in BuildProblem()
|
D | bal_problem.h | 75 const double* observations() const { return observations_; } in observations() function
|
/external/ceres-solver/docs/source/ |
D | history.rst | 22 observations of the newly discovered asteroid `Ceres
|
D | tutorial.rst | 484 Assuming the observations are in a :math:`2n` sized array called 697 bal_problem.observations()[2 * i + 0], 698 bal_problem.observations()[2 * i + 1]);
|
D | modeling.rst | 589 IntrinsicProjection(const double* observations); 650 new CameraProjection(observations)); 677 IntrinsicProjection(const double* observations);
|
D | solving.rst | 2167 observations :math:`y` is the solution to the non-linear least squares 2200 So, if it is the case that the observations being fitted to have a
|
/external/ceres-solver/internal/ceres/ |
D | system_test.cc | 341 const double* observations() const { return observations_; } in observations() function in ceres::internal::BundleAdjustmentProblem
|
/external/zlib/src/doc/ |
D | txtvsbin.txt | 57 The idea behind this algorithm relies on two observations.
|
/external/llvm/docs/tutorial/ |
D | OCamlLangImpl8.rst | 193 I'll make a few observations:
|
D | LangImpl9.rst | 188 I'll make a few observations:
|
/external/chromium-trace/trace-viewer/third_party/webapp2/ |
D | CHANGES | 508 - Review of Response based on observations from
|
/external/pcre/dist/doc/ |
D | pcre.txt | 9399 observations about PCRE.
|