1/* 2 * Copyright (C) 2010 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17/* 18 * This is a fast-and-accurate implementation of inverse Discrete Cosine 19 * Transform (IDCT) for ARMv6+. It also performs dequantization of the input 20 * coefficients just like other methods. 21 * 22 * This implementation is based on the scaled 1-D DCT algorithm proposed by 23 * Arai, Agui, and Nakajima. The following code is based on the figure 4-8 24 * on page 52 of the JPEG textbook by Pennebaker and Mitchell. Coefficients 25 * are (almost) directly mapped into registers. 26 * 27 * The accuracy is achieved by using SMULWy and SMLAWy instructions. Both 28 * multiply 32 bits by 16 bits and store the top 32 bits of the result. It 29 * makes 32-bit fixed-point arithmetic possible without overflow. That is 30 * why jpeg_idct_ifast(), which is written in C, cannot be improved. 31 * 32 * More tricks are used to gain more speed. First of all, we use as many 33 * registers as possible. ARM processor has 16 registers including sp (r13) 34 * and pc (r15), so only 14 registers can be used without limitations. In 35 * general, we let r0 to r7 hold the coefficients; r10 and r11 hold four 36 * 16-bit constants; r12 and r14 hold two of the four arguments; and r8 hold 37 * intermediate value. In the second pass, r9 is the loop counter. In the 38 * first pass, r8 to r11 are used to hold quantization values, so the loop 39 * counter is held by sp. Yes, the stack pointer. Since it must be aligned 40 * to 4-byte boundary all the time, we align it to 32-byte boundary and use 41 * bit 3 to bit 5. As the result, we actually use 14.1 registers. :-) 42 * 43 * Second, we rearrange quantization values to access them sequentially. The 44 * table is first transposed, and the new columns are placed in the order of 45 * 7, 5, 1, 3, 0, 2, 4, 6. Thus we can use LDMDB to load four values at a 46 * time. Rearranging coefficients also helps, but that requires to change a 47 * dozen of files, which seems not worth it. In addition, we choose to scale 48 * up quantization values by 13 bits, so the coefficients are scaled up by 49 * 16 bits after both passes. Then we can pack and saturate them two at a 50 * time using PKHTB and USAT16 instructions. 51 * 52 * Third, we reorder the instructions to avoid bubbles in the pipeline. This 53 * is done by hand accroding to the cycle timings and the interlock behavior 54 * described in the technical reference manual of ARM1136JF-S. We also take 55 * advantage of dual issue processors by interleaving instructions with 56 * dependencies. It has been benchmarked on four devices and all the results 57 * showed distinguishable improvements. Note that PLD instructions actually 58 * slow things down, so they are removed at the last minute. In the future, 59 * this might be futher improved using a system profiler. 60 */ 61 62// void armv6_idct(short *coefs, int *quans, unsigned char *rows, int col) 63 .arm 64 .text 65 .align 66 .global armv6_idct 67 .func armv6_idct 68 69armv6_idct: 70 // Push everything except sp (r13) and pc (r15). 71 stmdb sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r14} 72 73 // r12 = quans, r14 = coefs. 74 sub r4, sp, #236 75 bic sp, r4, #31 76 add r5, sp, #224 77 add r12, r1, #256 78 stm r5, {r2, r3, r4} 79 add r14, r0, #16 80 81pass1_head: 82 // Load quantization values. (q[0, 2, 4, 6]) 83 ldmdb r12!, {r8, r9, r10, r11} 84 85 // Load coefficients. (c[4, 1, 2, 3, 0, 5, 6, 7]) 86 ldrsh r4, [r14, #-2] ! 87 ldrsh r1, [r14, #16] 88 ldrsh r2, [r14, #32] 89 ldrsh r3, [r14, #48] 90 ldrsh r0, [r14, #64] 91 ldrsh r5, [r14, #80] 92 ldrsh r6, [r14, #96] 93 ldrsh r7, [r14, #112] 94 95 // r4 = q[0] * c[0]; 96 mul r4, r8, r4 97 98 // Check if ACs are all zero. 99 cmp r0, #0 100 orreqs r8, r1, r2 101 orreqs r8, r3, r5 102 orreqs r8, r6, r7 103 beq pass1_zero 104 105 // Step 1: Dequantizations. 106 107 // r2 = q[2] * c[2]; 108 // r0 = q[4] * c[4] + r4; 109 // r6 = q[6] * c[6] + r2; 110 mul r2, r9, r2 111 mla r0, r10, r0, r4 112 mla r6, r11, r6, r2 113 114 // Load quantization values. (q[7, 5, 1, 3]) 115 ldmdb r12!, {r8, r9, r10, r11} 116 117 // r4 = r4 * 2 - r0 = -(r0 - r4 * 2); 118 // r2 = r2 * 2 - r6 = -(r6 - r2 * 2); 119 rsb r4, r0, r4, lsl #1 120 rsb r2, r6, r2, lsl #1 121 122 // r7 = q[7] * c[7]; 123 // r5 = q[5] * c[5]; 124 // r1 = q[1] * c[1] + r7; 125 // r3 = q[3] * c[3] + r5; 126 mul r7, r8, r7 127 mul r5, r9, r5 128 mla r1, r10, r1, r7 129 mla r3, r11, r3, r5 130 131 // Load constants. 132 ldrd r10, constants 133 134 // Step 2: Rotations and Butterflies. 135 136 // r7 = r1 - r7 * 2; 137 // r1 = r1 - r3; 138 // r5 = r5 * 2 - r3 = -(r3 - r5 * 2); 139 // r3 = r1 + r3 * 2; 140 // r8 = r5 + r7; 141 sub r7, r1, r7, lsl #1 142 sub r1, r1, r3 143 rsb r5, r3, r5, lsl #1 144 add r3, r1, r3, lsl #1 145 add r8, r5, r7 146 147 // r2 = r2 * 1.41421 = r2 * 27146 / 65536 + r2; 148 // r8 = r8 * 1.84776 / 8 = r8 * 15137 / 65536; 149 // r1 = r1 * 1.41421 = r1 * 27146 / 65536 + r1; 150 smlawt r2, r2, r10, r2 151 smulwb r8, r8, r10 152 smlawt r1, r1, r10, r1 153 154 // r0 = r0 + r6; 155 // r2 = r2 - r6; 156 // r6 = r0 - r6 * 2; 157 add r0, r0, r6 158 sub r2, r2, r6 159 sub r6, r0, r6, lsl #1 160 161 // r5 = r5 * -2.61313 / 8 + r8 = r5 * -21407 / 65536 + r8; 162 // r8 = r7 * -1.08239 / 8 + r8 = r7 * -8867 / 65536 + r8; 163 smlawt r5, r5, r11, r8 164 smlawb r8, r7, r11, r8 165 166 // r4 = r4 + r2; 167 // r0 = r0 + r3; 168 // r2 = r4 - r2 * 2; 169 add r4, r4, r2 170 add r0, r0, r3 171 sub r2, r4, r2, lsl #1 172 173 // r7 = r5 * 8 - r3 = -(r3 - r5 * 8); 174 // r3 = r0 - r3 * 2; 175 // r1 = r1 - r7; 176 // r4 = r4 + r7; 177 // r5 = r8 * 8 - r1 = -(r1 - r8 * 8); 178 // r7 = r4 - r7 * 2; 179 rsb r7, r3, r5, lsl #3 180 sub r3, r0, r3, lsl #1 181 sub r1, r1, r7 182 add r4, r4, r7 183 rsb r5, r1, r8, lsl #3 184 sub r7, r4, r7, lsl #1 185 186 // r2 = r2 + r1; 187 // r6 = r6 + r5; 188 // r1 = r2 - r1 * 2; 189 // r5 = r6 - r5 * 2; 190 add r2, r2, r1 191 add r6, r6, r5 192 sub r1, r2, r1, lsl #1 193 sub r5, r6, r5, lsl #1 194 195 // Step 3: Reorder and Save. 196 197 str r0, [sp, #-4] ! 198 str r4, [sp, #32] 199 str r2, [sp, #64] 200 str r6, [sp, #96] 201 str r5, [sp, #128] 202 str r1, [sp, #160] 203 str r7, [sp, #192] 204 str r3, [sp, #224] 205 b pass1_tail 206 207 // Precomputed 16-bit constants: 27146, 15137, -21407, -8867. 208 // Put them in the middle since LDRD only accepts offsets from -255 to 255. 209 .align 3 210constants: 211 .word 0x6a0a3b21 212 .word 0xac61dd5d 213 214pass1_zero: 215 str r4, [sp, #-4] ! 216 str r4, [sp, #32] 217 str r4, [sp, #64] 218 str r4, [sp, #96] 219 str r4, [sp, #128] 220 str r4, [sp, #160] 221 str r4, [sp, #192] 222 str r4, [sp, #224] 223 sub r12, r12, #16 224 225pass1_tail: 226 ands r9, sp, #31 227 bne pass1_head 228 229 // r12 = rows, r14 = col. 230 ldr r12, [sp, #256] 231 ldr r14, [sp, #260] 232 233 // Load constants. 234 ldrd r10, constants 235 236pass2_head: 237 // Load coefficients. (c[0, 1, 2, 3, 4, 5, 6, 7]) 238 ldmia sp!, {r0, r1, r2, r3, r4, r5, r6, r7} 239 240 // r0 = r0 + 0x00808000; 241 add r0, r0, #0x00800000 242 add r0, r0, #0x00008000 243 244 // Step 1: Analog to the first pass. 245 246 // r0 = r0 + r4; 247 // r6 = r6 + r2; 248 add r0, r0, r4 249 add r6, r6, r2 250 251 // r4 = r0 - r4 * 2; 252 // r2 = r2 * 2 - r6 = -(r6 - r2 * 2); 253 sub r4, r0, r4, lsl #1 254 rsb r2, r6, r2, lsl #1 255 256 // r1 = r1 + r7; 257 // r3 = r3 + r5; 258 add r1, r1, r7 259 add r3, r3, r5 260 261 // Step 2: Rotations and Butterflies. 262 263 // r7 = r1 - r7 * 2; 264 // r1 = r1 - r3; 265 // r5 = r5 * 2 - r3 = -(r3 - r5 * 2); 266 // r3 = r1 + r3 * 2; 267 // r8 = r5 + r7; 268 sub r7, r1, r7, lsl #1 269 sub r1, r1, r3 270 rsb r5, r3, r5, lsl #1 271 add r3, r1, r3, lsl #1 272 add r8, r5, r7 273 274 // r2 = r2 * 1.41421 = r2 * 27146 / 65536 + r2; 275 // r8 = r8 * 1.84776 / 8 = r8 * 15137 / 65536; 276 // r1 = r1 * 1.41421 = r1 * 27146 / 65536 + r1; 277 smlawt r2, r2, r10, r2 278 smulwb r8, r8, r10 279 smlawt r1, r1, r10, r1 280 281 // r0 = r0 + r6; 282 // r2 = r2 - r6; 283 // r6 = r0 - r6 * 2; 284 add r0, r0, r6 285 sub r2, r2, r6 286 sub r6, r0, r6, lsl #1 287 288 // r5 = r5 * -2.61313 / 8 + r8 = r5 * -21407 / 65536 + r8; 289 // r8 = r7 * -1.08239 / 8 + r8 = r7 * -8867 / 65536 + r8; 290 smlawt r5, r5, r11, r8 291 smlawb r8, r7, r11, r8 292 293 // r4 = r4 + r2; 294 // r0 = r0 + r3; 295 // r2 = r4 - r2 * 2; 296 add r4, r4, r2 297 add r0, r0, r3 298 sub r2, r4, r2, lsl #1 299 300 // r7 = r5 * 8 - r3 = -(r3 - r5 * 8); 301 // r3 = r0 - r3 * 2; 302 // r1 = r1 - r7; 303 // r4 = r4 + r7; 304 // r5 = r8 * 8 - r1 = -(r1 - r8 * 8); 305 // r7 = r4 - r7 * 2; 306 rsb r7, r3, r5, lsl #3 307 sub r3, r0, r3, lsl #1 308 sub r1, r1, r7 309 add r4, r4, r7 310 rsb r5, r1, r8, lsl #3 311 sub r7, r4, r7, lsl #1 312 313 // r2 = r2 + r1; 314 // r6 = r6 + r5; 315 // r1 = r2 - r1 * 2; 316 // r5 = r6 - r5 * 2; 317 add r2, r2, r1 318 add r6, r6, r5 319 sub r1, r2, r1, lsl #1 320 sub r5, r6, r5, lsl #1 321 322 // Step 3: Reorder and Save. 323 324 // Load output pointer. 325 ldr r8, [r12], #4 326 327 // For little endian: r6, r2, r4, r0, r3, r7, r1, r5. 328 pkhtb r6, r6, r4, asr #16 329 pkhtb r2, r2, r0, asr #16 330 pkhtb r3, r3, r1, asr #16 331 pkhtb r7, r7, r5, asr #16 332 usat16 r6, #8, r6 333 usat16 r2, #8, r2 334 usat16 r3, #8, r3 335 usat16 r7, #8, r7 336 orr r0, r2, r6, lsl #8 337 orr r1, r7, r3, lsl #8 338 339#ifdef __ARMEB__ 340 // Reverse bytes for big endian. 341 rev r0, r0 342 rev r1, r1 343#endif 344 345 // Use STR instead of STRD to support unaligned access. 346 str r0, [r8, r14] ! 347 str r1, [r8, #4] 348 349pass2_tail: 350 adds r9, r9, #0x10000000 351 bpl pass2_head 352 353 ldr sp, [sp, #8] 354 add sp, sp, #236 355 356 ldmia sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r12, r14} 357 bx lr 358 .endfunc 359