1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * All landingpad instructions must use the same personality function with
43 // the same function.
44 // * All other things that are tested by asserts spread about the code...
45 //
46 //===----------------------------------------------------------------------===//
47
48 #include "llvm/IR/Verifier.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/CallSite.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/ConstantRange.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugInfo.h"
61 #include "llvm/IR/DerivedTypes.h"
62 #include "llvm/IR/Dominators.h"
63 #include "llvm/IR/InlineAsm.h"
64 #include "llvm/IR/InstIterator.h"
65 #include "llvm/IR/InstVisitor.h"
66 #include "llvm/IR/IntrinsicInst.h"
67 #include "llvm/IR/LLVMContext.h"
68 #include "llvm/IR/Metadata.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/PassManager.h"
71 #include "llvm/IR/Statepoint.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <algorithm>
78 #include <cstdarg>
79 using namespace llvm;
80
81 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
82
83 namespace {
84 struct VerifierSupport {
85 raw_ostream &OS;
86 const Module *M;
87
88 /// \brief Track the brokenness of the module while recursively visiting.
89 bool Broken;
90
VerifierSupport__anon2bfcd1980111::VerifierSupport91 explicit VerifierSupport(raw_ostream &OS)
92 : OS(OS), M(nullptr), Broken(false) {}
93
94 private:
Write__anon2bfcd1980111::VerifierSupport95 void Write(const Value *V) {
96 if (!V)
97 return;
98 if (isa<Instruction>(V)) {
99 OS << *V << '\n';
100 } else {
101 V->printAsOperand(OS, true, M);
102 OS << '\n';
103 }
104 }
105
Write__anon2bfcd1980111::VerifierSupport106 void Write(const Metadata *MD) {
107 if (!MD)
108 return;
109 MD->print(OS, M);
110 OS << '\n';
111 }
112
Write__anon2bfcd1980111::VerifierSupport113 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
114 Write(MD.get());
115 }
116
Write__anon2bfcd1980111::VerifierSupport117 void Write(const NamedMDNode *NMD) {
118 if (!NMD)
119 return;
120 NMD->print(OS);
121 OS << '\n';
122 }
123
Write__anon2bfcd1980111::VerifierSupport124 void Write(Type *T) {
125 if (!T)
126 return;
127 OS << ' ' << *T;
128 }
129
Write__anon2bfcd1980111::VerifierSupport130 void Write(const Comdat *C) {
131 if (!C)
132 return;
133 OS << *C;
134 }
135
136 template <typename T1, typename... Ts>
WriteTs__anon2bfcd1980111::VerifierSupport137 void WriteTs(const T1 &V1, const Ts &... Vs) {
138 Write(V1);
139 WriteTs(Vs...);
140 }
141
WriteTs__anon2bfcd1980111::VerifierSupport142 template <typename... Ts> void WriteTs() {}
143
144 public:
145 /// \brief A check failed, so printout out the condition and the message.
146 ///
147 /// This provides a nice place to put a breakpoint if you want to see why
148 /// something is not correct.
CheckFailed__anon2bfcd1980111::VerifierSupport149 void CheckFailed(const Twine &Message) {
150 OS << Message << '\n';
151 Broken = true;
152 }
153
154 /// \brief A check failed (with values to print).
155 ///
156 /// This calls the Message-only version so that the above is easier to set a
157 /// breakpoint on.
158 template <typename T1, typename... Ts>
CheckFailed__anon2bfcd1980111::VerifierSupport159 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
160 CheckFailed(Message);
161 WriteTs(V1, Vs...);
162 }
163 };
164
165 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
166 friend class InstVisitor<Verifier>;
167
168 LLVMContext *Context;
169 DominatorTree DT;
170
171 /// \brief When verifying a basic block, keep track of all of the
172 /// instructions we have seen so far.
173 ///
174 /// This allows us to do efficient dominance checks for the case when an
175 /// instruction has an operand that is an instruction in the same block.
176 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
177
178 /// \brief Keep track of the metadata nodes that have been checked already.
179 SmallPtrSet<const Metadata *, 32> MDNodes;
180
181 /// \brief Track unresolved string-based type references.
182 SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;
183
184 /// \brief The personality function referenced by the LandingPadInsts.
185 /// All LandingPadInsts within the same function must use the same
186 /// personality function.
187 const Value *PersonalityFn;
188
189 /// \brief Whether we've seen a call to @llvm.frameescape in this function
190 /// already.
191 bool SawFrameEscape;
192
193 /// Stores the count of how many objects were passed to llvm.frameescape for a
194 /// given function and the largest index passed to llvm.framerecover.
195 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
196
197 public:
Verifier(raw_ostream & OS)198 explicit Verifier(raw_ostream &OS)
199 : VerifierSupport(OS), Context(nullptr), PersonalityFn(nullptr),
200 SawFrameEscape(false) {}
201
verify(const Function & F)202 bool verify(const Function &F) {
203 M = F.getParent();
204 Context = &M->getContext();
205
206 // First ensure the function is well-enough formed to compute dominance
207 // information.
208 if (F.empty()) {
209 OS << "Function '" << F.getName()
210 << "' does not contain an entry block!\n";
211 return false;
212 }
213 for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
214 if (I->empty() || !I->back().isTerminator()) {
215 OS << "Basic Block in function '" << F.getName()
216 << "' does not have terminator!\n";
217 I->printAsOperand(OS, true);
218 OS << "\n";
219 return false;
220 }
221 }
222
223 // Now directly compute a dominance tree. We don't rely on the pass
224 // manager to provide this as it isolates us from a potentially
225 // out-of-date dominator tree and makes it significantly more complex to
226 // run this code outside of a pass manager.
227 // FIXME: It's really gross that we have to cast away constness here.
228 DT.recalculate(const_cast<Function &>(F));
229
230 Broken = false;
231 // FIXME: We strip const here because the inst visitor strips const.
232 visit(const_cast<Function &>(F));
233 InstsInThisBlock.clear();
234 PersonalityFn = nullptr;
235 SawFrameEscape = false;
236
237 return !Broken;
238 }
239
verify(const Module & M)240 bool verify(const Module &M) {
241 this->M = &M;
242 Context = &M.getContext();
243 Broken = false;
244
245 // Scan through, checking all of the external function's linkage now...
246 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
247 visitGlobalValue(*I);
248
249 // Check to make sure function prototypes are okay.
250 if (I->isDeclaration())
251 visitFunction(*I);
252 }
253
254 // Now that we've visited every function, verify that we never asked to
255 // recover a frame index that wasn't escaped.
256 verifyFrameRecoverIndices();
257
258 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
259 I != E; ++I)
260 visitGlobalVariable(*I);
261
262 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
263 I != E; ++I)
264 visitGlobalAlias(*I);
265
266 for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
267 E = M.named_metadata_end();
268 I != E; ++I)
269 visitNamedMDNode(*I);
270
271 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
272 visitComdat(SMEC.getValue());
273
274 visitModuleFlags(M);
275 visitModuleIdents(M);
276
277 // Verify type referneces last.
278 verifyTypeRefs();
279
280 return !Broken;
281 }
282
283 private:
284 // Verification methods...
285 void visitGlobalValue(const GlobalValue &GV);
286 void visitGlobalVariable(const GlobalVariable &GV);
287 void visitGlobalAlias(const GlobalAlias &GA);
288 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
289 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
290 const GlobalAlias &A, const Constant &C);
291 void visitNamedMDNode(const NamedMDNode &NMD);
292 void visitMDNode(const MDNode &MD);
293 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
294 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
295 void visitComdat(const Comdat &C);
296 void visitModuleIdents(const Module &M);
297 void visitModuleFlags(const Module &M);
298 void visitModuleFlag(const MDNode *Op,
299 DenseMap<const MDString *, const MDNode *> &SeenIDs,
300 SmallVectorImpl<const MDNode *> &Requirements);
301 void visitFunction(const Function &F);
302 void visitBasicBlock(BasicBlock &BB);
303 void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
304
305 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
306 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
307 #include "llvm/IR/Metadata.def"
308 void visitMDScope(const MDScope &N);
309 void visitMDDerivedTypeBase(const MDDerivedTypeBase &N);
310 void visitMDVariable(const MDVariable &N);
311 void visitMDLexicalBlockBase(const MDLexicalBlockBase &N);
312 void visitMDTemplateParameter(const MDTemplateParameter &N);
313
314 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
315
316 /// \brief Check for a valid string-based type reference.
317 ///
318 /// Checks if \c MD is a string-based type reference. If it is, keeps track
319 /// of it (and its user, \c N) for error messages later.
320 bool isValidUUID(const MDNode &N, const Metadata *MD);
321
322 /// \brief Check for a valid type reference.
323 ///
324 /// Checks for subclasses of \a MDType, or \a isValidUUID().
325 bool isTypeRef(const MDNode &N, const Metadata *MD);
326
327 /// \brief Check for a valid scope reference.
328 ///
329 /// Checks for subclasses of \a MDScope, or \a isValidUUID().
330 bool isScopeRef(const MDNode &N, const Metadata *MD);
331
332 /// \brief Check for a valid debug info reference.
333 ///
334 /// Checks for subclasses of \a DebugNode, or \a isValidUUID().
335 bool isDIRef(const MDNode &N, const Metadata *MD);
336
337 // InstVisitor overrides...
338 using InstVisitor<Verifier>::visit;
339 void visit(Instruction &I);
340
341 void visitTruncInst(TruncInst &I);
342 void visitZExtInst(ZExtInst &I);
343 void visitSExtInst(SExtInst &I);
344 void visitFPTruncInst(FPTruncInst &I);
345 void visitFPExtInst(FPExtInst &I);
346 void visitFPToUIInst(FPToUIInst &I);
347 void visitFPToSIInst(FPToSIInst &I);
348 void visitUIToFPInst(UIToFPInst &I);
349 void visitSIToFPInst(SIToFPInst &I);
350 void visitIntToPtrInst(IntToPtrInst &I);
351 void visitPtrToIntInst(PtrToIntInst &I);
352 void visitBitCastInst(BitCastInst &I);
353 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
354 void visitPHINode(PHINode &PN);
355 void visitBinaryOperator(BinaryOperator &B);
356 void visitICmpInst(ICmpInst &IC);
357 void visitFCmpInst(FCmpInst &FC);
358 void visitExtractElementInst(ExtractElementInst &EI);
359 void visitInsertElementInst(InsertElementInst &EI);
360 void visitShuffleVectorInst(ShuffleVectorInst &EI);
visitVAArgInst(VAArgInst & VAA)361 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
362 void visitCallInst(CallInst &CI);
363 void visitInvokeInst(InvokeInst &II);
364 void visitGetElementPtrInst(GetElementPtrInst &GEP);
365 void visitLoadInst(LoadInst &LI);
366 void visitStoreInst(StoreInst &SI);
367 void verifyDominatesUse(Instruction &I, unsigned i);
368 void visitInstruction(Instruction &I);
369 void visitTerminatorInst(TerminatorInst &I);
370 void visitBranchInst(BranchInst &BI);
371 void visitReturnInst(ReturnInst &RI);
372 void visitSwitchInst(SwitchInst &SI);
373 void visitIndirectBrInst(IndirectBrInst &BI);
374 void visitSelectInst(SelectInst &SI);
375 void visitUserOp1(Instruction &I);
visitUserOp2(Instruction & I)376 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
377 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
378 template <class DbgIntrinsicTy>
379 void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
380 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
381 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
382 void visitFenceInst(FenceInst &FI);
383 void visitAllocaInst(AllocaInst &AI);
384 void visitExtractValueInst(ExtractValueInst &EVI);
385 void visitInsertValueInst(InsertValueInst &IVI);
386 void visitLandingPadInst(LandingPadInst &LPI);
387
388 void VerifyCallSite(CallSite CS);
389 void verifyMustTailCall(CallInst &CI);
390 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
391 unsigned ArgNo, std::string &Suffix);
392 bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
393 SmallVectorImpl<Type *> &ArgTys);
394 bool VerifyIntrinsicIsVarArg(bool isVarArg,
395 ArrayRef<Intrinsic::IITDescriptor> &Infos);
396 bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
397 void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
398 const Value *V);
399 void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
400 bool isReturnValue, const Value *V);
401 void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
402 const Value *V);
403
404 void VerifyConstantExprBitcastType(const ConstantExpr *CE);
405 void VerifyStatepoint(ImmutableCallSite CS);
406 void verifyFrameRecoverIndices();
407
408 // Module-level debug info verification...
409 void verifyTypeRefs();
410 template <class MapTy>
411 void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
412 const MapTy &TypeRefs);
413 void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
414 };
415 } // End anonymous namespace
416
417 // Assert - We know that cond should be true, if not print an error message.
418 #define Assert(C, ...) \
419 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
420
visit(Instruction & I)421 void Verifier::visit(Instruction &I) {
422 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
423 Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
424 InstVisitor<Verifier>::visit(I);
425 }
426
427
visitGlobalValue(const GlobalValue & GV)428 void Verifier::visitGlobalValue(const GlobalValue &GV) {
429 Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
430 GV.hasExternalWeakLinkage(),
431 "Global is external, but doesn't have external or weak linkage!", &GV);
432
433 Assert(GV.getAlignment() <= Value::MaximumAlignment,
434 "huge alignment values are unsupported", &GV);
435 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
436 "Only global variables can have appending linkage!", &GV);
437
438 if (GV.hasAppendingLinkage()) {
439 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
440 Assert(GVar && GVar->getType()->getElementType()->isArrayTy(),
441 "Only global arrays can have appending linkage!", GVar);
442 }
443 }
444
visitGlobalVariable(const GlobalVariable & GV)445 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
446 if (GV.hasInitializer()) {
447 Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),
448 "Global variable initializer type does not match global "
449 "variable type!",
450 &GV);
451
452 // If the global has common linkage, it must have a zero initializer and
453 // cannot be constant.
454 if (GV.hasCommonLinkage()) {
455 Assert(GV.getInitializer()->isNullValue(),
456 "'common' global must have a zero initializer!", &GV);
457 Assert(!GV.isConstant(), "'common' global may not be marked constant!",
458 &GV);
459 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
460 }
461 } else {
462 Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
463 "invalid linkage type for global declaration", &GV);
464 }
465
466 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
467 GV.getName() == "llvm.global_dtors")) {
468 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
469 "invalid linkage for intrinsic global variable", &GV);
470 // Don't worry about emitting an error for it not being an array,
471 // visitGlobalValue will complain on appending non-array.
472 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType()->getElementType())) {
473 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
474 PointerType *FuncPtrTy =
475 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
476 // FIXME: Reject the 2-field form in LLVM 4.0.
477 Assert(STy &&
478 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
479 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
480 STy->getTypeAtIndex(1) == FuncPtrTy,
481 "wrong type for intrinsic global variable", &GV);
482 if (STy->getNumElements() == 3) {
483 Type *ETy = STy->getTypeAtIndex(2);
484 Assert(ETy->isPointerTy() &&
485 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
486 "wrong type for intrinsic global variable", &GV);
487 }
488 }
489 }
490
491 if (GV.hasName() && (GV.getName() == "llvm.used" ||
492 GV.getName() == "llvm.compiler.used")) {
493 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
494 "invalid linkage for intrinsic global variable", &GV);
495 Type *GVType = GV.getType()->getElementType();
496 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
497 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
498 Assert(PTy, "wrong type for intrinsic global variable", &GV);
499 if (GV.hasInitializer()) {
500 const Constant *Init = GV.getInitializer();
501 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
502 Assert(InitArray, "wrong initalizer for intrinsic global variable",
503 Init);
504 for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
505 Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
506 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
507 isa<GlobalAlias>(V),
508 "invalid llvm.used member", V);
509 Assert(V->hasName(), "members of llvm.used must be named", V);
510 }
511 }
512 }
513 }
514
515 Assert(!GV.hasDLLImportStorageClass() ||
516 (GV.isDeclaration() && GV.hasExternalLinkage()) ||
517 GV.hasAvailableExternallyLinkage(),
518 "Global is marked as dllimport, but not external", &GV);
519
520 if (!GV.hasInitializer()) {
521 visitGlobalValue(GV);
522 return;
523 }
524
525 // Walk any aggregate initializers looking for bitcasts between address spaces
526 SmallPtrSet<const Value *, 4> Visited;
527 SmallVector<const Value *, 4> WorkStack;
528 WorkStack.push_back(cast<Value>(GV.getInitializer()));
529
530 while (!WorkStack.empty()) {
531 const Value *V = WorkStack.pop_back_val();
532 if (!Visited.insert(V).second)
533 continue;
534
535 if (const User *U = dyn_cast<User>(V)) {
536 WorkStack.append(U->op_begin(), U->op_end());
537 }
538
539 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
540 VerifyConstantExprBitcastType(CE);
541 if (Broken)
542 return;
543 }
544 }
545
546 visitGlobalValue(GV);
547 }
548
visitAliaseeSubExpr(const GlobalAlias & GA,const Constant & C)549 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
550 SmallPtrSet<const GlobalAlias*, 4> Visited;
551 Visited.insert(&GA);
552 visitAliaseeSubExpr(Visited, GA, C);
553 }
554
visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias * > & Visited,const GlobalAlias & GA,const Constant & C)555 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
556 const GlobalAlias &GA, const Constant &C) {
557 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
558 Assert(!GV->isDeclaration(), "Alias must point to a definition", &GA);
559
560 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
561 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
562
563 Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
564 &GA);
565 } else {
566 // Only continue verifying subexpressions of GlobalAliases.
567 // Do not recurse into global initializers.
568 return;
569 }
570 }
571
572 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
573 VerifyConstantExprBitcastType(CE);
574
575 for (const Use &U : C.operands()) {
576 Value *V = &*U;
577 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
578 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
579 else if (const auto *C2 = dyn_cast<Constant>(V))
580 visitAliaseeSubExpr(Visited, GA, *C2);
581 }
582 }
583
visitGlobalAlias(const GlobalAlias & GA)584 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
585 Assert(!GA.getName().empty(), "Alias name cannot be empty!", &GA);
586 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
587 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
588 "weak_odr, or external linkage!",
589 &GA);
590 const Constant *Aliasee = GA.getAliasee();
591 Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
592 Assert(GA.getType() == Aliasee->getType(),
593 "Alias and aliasee types should match!", &GA);
594
595 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
596 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
597
598 visitAliaseeSubExpr(GA, *Aliasee);
599
600 visitGlobalValue(GA);
601 }
602
visitNamedMDNode(const NamedMDNode & NMD)603 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
604 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
605 MDNode *MD = NMD.getOperand(i);
606
607 if (NMD.getName() == "llvm.dbg.cu") {
608 Assert(MD && isa<MDCompileUnit>(MD), "invalid compile unit", &NMD, MD);
609 }
610
611 if (!MD)
612 continue;
613
614 visitMDNode(*MD);
615 }
616 }
617
visitMDNode(const MDNode & MD)618 void Verifier::visitMDNode(const MDNode &MD) {
619 // Only visit each node once. Metadata can be mutually recursive, so this
620 // avoids infinite recursion here, as well as being an optimization.
621 if (!MDNodes.insert(&MD).second)
622 return;
623
624 switch (MD.getMetadataID()) {
625 default:
626 llvm_unreachable("Invalid MDNode subclass");
627 case Metadata::MDTupleKind:
628 break;
629 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
630 case Metadata::CLASS##Kind: \
631 visit##CLASS(cast<CLASS>(MD)); \
632 break;
633 #include "llvm/IR/Metadata.def"
634 }
635
636 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
637 Metadata *Op = MD.getOperand(i);
638 if (!Op)
639 continue;
640 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
641 &MD, Op);
642 if (auto *N = dyn_cast<MDNode>(Op)) {
643 visitMDNode(*N);
644 continue;
645 }
646 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
647 visitValueAsMetadata(*V, nullptr);
648 continue;
649 }
650 }
651
652 // Check these last, so we diagnose problems in operands first.
653 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
654 Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
655 }
656
visitValueAsMetadata(const ValueAsMetadata & MD,Function * F)657 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
658 Assert(MD.getValue(), "Expected valid value", &MD);
659 Assert(!MD.getValue()->getType()->isMetadataTy(),
660 "Unexpected metadata round-trip through values", &MD, MD.getValue());
661
662 auto *L = dyn_cast<LocalAsMetadata>(&MD);
663 if (!L)
664 return;
665
666 Assert(F, "function-local metadata used outside a function", L);
667
668 // If this was an instruction, bb, or argument, verify that it is in the
669 // function that we expect.
670 Function *ActualF = nullptr;
671 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
672 Assert(I->getParent(), "function-local metadata not in basic block", L, I);
673 ActualF = I->getParent()->getParent();
674 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
675 ActualF = BB->getParent();
676 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
677 ActualF = A->getParent();
678 assert(ActualF && "Unimplemented function local metadata case!");
679
680 Assert(ActualF == F, "function-local metadata used in wrong function", L);
681 }
682
visitMetadataAsValue(const MetadataAsValue & MDV,Function * F)683 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
684 Metadata *MD = MDV.getMetadata();
685 if (auto *N = dyn_cast<MDNode>(MD)) {
686 visitMDNode(*N);
687 return;
688 }
689
690 // Only visit each node once. Metadata can be mutually recursive, so this
691 // avoids infinite recursion here, as well as being an optimization.
692 if (!MDNodes.insert(MD).second)
693 return;
694
695 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
696 visitValueAsMetadata(*V, F);
697 }
698
isValidUUID(const MDNode & N,const Metadata * MD)699 bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
700 auto *S = dyn_cast<MDString>(MD);
701 if (!S)
702 return false;
703 if (S->getString().empty())
704 return false;
705
706 // Keep track of names of types referenced via UUID so we can check that they
707 // actually exist.
708 UnresolvedTypeRefs.insert(std::make_pair(S, &N));
709 return true;
710 }
711
712 /// \brief Check if a value can be a reference to a type.
isTypeRef(const MDNode & N,const Metadata * MD)713 bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
714 return !MD || isValidUUID(N, MD) || isa<MDType>(MD);
715 }
716
717 /// \brief Check if a value can be a ScopeRef.
isScopeRef(const MDNode & N,const Metadata * MD)718 bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
719 return !MD || isValidUUID(N, MD) || isa<MDScope>(MD);
720 }
721
722 /// \brief Check if a value can be a debug info ref.
isDIRef(const MDNode & N,const Metadata * MD)723 bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
724 return !MD || isValidUUID(N, MD) || isa<DebugNode>(MD);
725 }
726
727 template <class Ty>
isValidMetadataArrayImpl(const MDTuple & N,bool AllowNull)728 bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
729 for (Metadata *MD : N.operands()) {
730 if (MD) {
731 if (!isa<Ty>(MD))
732 return false;
733 } else {
734 if (!AllowNull)
735 return false;
736 }
737 }
738 return true;
739 }
740
741 template <class Ty>
isValidMetadataArray(const MDTuple & N)742 bool isValidMetadataArray(const MDTuple &N) {
743 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
744 }
745
746 template <class Ty>
isValidMetadataNullArray(const MDTuple & N)747 bool isValidMetadataNullArray(const MDTuple &N) {
748 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
749 }
750
visitMDLocation(const MDLocation & N)751 void Verifier::visitMDLocation(const MDLocation &N) {
752 Assert(N.getRawScope() && isa<MDLocalScope>(N.getRawScope()),
753 "location requires a valid scope", &N, N.getRawScope());
754 if (auto *IA = N.getRawInlinedAt())
755 Assert(isa<MDLocation>(IA), "inlined-at should be a location", &N, IA);
756 }
757
visitGenericDebugNode(const GenericDebugNode & N)758 void Verifier::visitGenericDebugNode(const GenericDebugNode &N) {
759 Assert(N.getTag(), "invalid tag", &N);
760 }
761
visitMDScope(const MDScope & N)762 void Verifier::visitMDScope(const MDScope &N) {
763 if (auto *F = N.getRawFile())
764 Assert(isa<MDFile>(F), "invalid file", &N, F);
765 }
766
visitMDSubrange(const MDSubrange & N)767 void Verifier::visitMDSubrange(const MDSubrange &N) {
768 Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
769 Assert(N.getCount() >= -1, "invalid subrange count", &N);
770 }
771
visitMDEnumerator(const MDEnumerator & N)772 void Verifier::visitMDEnumerator(const MDEnumerator &N) {
773 Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
774 }
775
visitMDBasicType(const MDBasicType & N)776 void Verifier::visitMDBasicType(const MDBasicType &N) {
777 Assert(N.getTag() == dwarf::DW_TAG_base_type ||
778 N.getTag() == dwarf::DW_TAG_unspecified_type,
779 "invalid tag", &N);
780 }
781
visitMDDerivedTypeBase(const MDDerivedTypeBase & N)782 void Verifier::visitMDDerivedTypeBase(const MDDerivedTypeBase &N) {
783 // Common scope checks.
784 visitMDScope(N);
785
786 Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
787 Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
788 N.getBaseType());
789
790 // FIXME: Sink this into the subclass verifies.
791 if (!N.getFile() || N.getFile()->getFilename().empty()) {
792 // Check whether the filename is allowed to be empty.
793 uint16_t Tag = N.getTag();
794 Assert(
795 Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
796 Tag == dwarf::DW_TAG_pointer_type ||
797 Tag == dwarf::DW_TAG_ptr_to_member_type ||
798 Tag == dwarf::DW_TAG_reference_type ||
799 Tag == dwarf::DW_TAG_rvalue_reference_type ||
800 Tag == dwarf::DW_TAG_restrict_type ||
801 Tag == dwarf::DW_TAG_array_type ||
802 Tag == dwarf::DW_TAG_enumeration_type ||
803 Tag == dwarf::DW_TAG_subroutine_type ||
804 Tag == dwarf::DW_TAG_inheritance || Tag == dwarf::DW_TAG_friend ||
805 Tag == dwarf::DW_TAG_structure_type ||
806 Tag == dwarf::DW_TAG_member || Tag == dwarf::DW_TAG_typedef,
807 "derived/composite type requires a filename", &N, N.getFile());
808 }
809 }
810
visitMDDerivedType(const MDDerivedType & N)811 void Verifier::visitMDDerivedType(const MDDerivedType &N) {
812 // Common derived type checks.
813 visitMDDerivedTypeBase(N);
814
815 Assert(N.getTag() == dwarf::DW_TAG_typedef ||
816 N.getTag() == dwarf::DW_TAG_pointer_type ||
817 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
818 N.getTag() == dwarf::DW_TAG_reference_type ||
819 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
820 N.getTag() == dwarf::DW_TAG_const_type ||
821 N.getTag() == dwarf::DW_TAG_volatile_type ||
822 N.getTag() == dwarf::DW_TAG_restrict_type ||
823 N.getTag() == dwarf::DW_TAG_member ||
824 N.getTag() == dwarf::DW_TAG_inheritance ||
825 N.getTag() == dwarf::DW_TAG_friend,
826 "invalid tag", &N);
827 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
828 Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
829 N.getExtraData());
830 }
831 }
832
hasConflictingReferenceFlags(unsigned Flags)833 static bool hasConflictingReferenceFlags(unsigned Flags) {
834 return (Flags & DebugNode::FlagLValueReference) &&
835 (Flags & DebugNode::FlagRValueReference);
836 }
837
visitTemplateParams(const MDNode & N,const Metadata & RawParams)838 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
839 auto *Params = dyn_cast<MDTuple>(&RawParams);
840 Assert(Params, "invalid template params", &N, &RawParams);
841 for (Metadata *Op : Params->operands()) {
842 Assert(Op && isa<MDTemplateParameter>(Op), "invalid template parameter", &N,
843 Params, Op);
844 }
845 }
846
visitMDCompositeType(const MDCompositeType & N)847 void Verifier::visitMDCompositeType(const MDCompositeType &N) {
848 // Common derived type checks.
849 visitMDDerivedTypeBase(N);
850
851 Assert(N.getTag() == dwarf::DW_TAG_array_type ||
852 N.getTag() == dwarf::DW_TAG_structure_type ||
853 N.getTag() == dwarf::DW_TAG_union_type ||
854 N.getTag() == dwarf::DW_TAG_enumeration_type ||
855 N.getTag() == dwarf::DW_TAG_subroutine_type ||
856 N.getTag() == dwarf::DW_TAG_class_type,
857 "invalid tag", &N);
858
859 Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
860 "invalid composite elements", &N, N.getRawElements());
861 Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
862 N.getRawVTableHolder());
863 Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
864 "invalid composite elements", &N, N.getRawElements());
865 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
866 &N);
867 if (auto *Params = N.getRawTemplateParams())
868 visitTemplateParams(N, *Params);
869 }
870
visitMDSubroutineType(const MDSubroutineType & N)871 void Verifier::visitMDSubroutineType(const MDSubroutineType &N) {
872 Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
873 if (auto *Types = N.getRawTypeArray()) {
874 Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
875 for (Metadata *Ty : N.getTypeArray()->operands()) {
876 Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
877 }
878 }
879 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
880 &N);
881 }
882
visitMDFile(const MDFile & N)883 void Verifier::visitMDFile(const MDFile &N) {
884 Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
885 }
886
visitMDCompileUnit(const MDCompileUnit & N)887 void Verifier::visitMDCompileUnit(const MDCompileUnit &N) {
888 Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
889
890 // Don't bother verifying the compilation directory or producer string
891 // as those could be empty.
892 Assert(N.getRawFile() && isa<MDFile>(N.getRawFile()),
893 "invalid file", &N, N.getRawFile());
894 Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
895 N.getFile());
896
897 if (auto *Array = N.getRawEnumTypes()) {
898 Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
899 for (Metadata *Op : N.getEnumTypes()->operands()) {
900 auto *Enum = dyn_cast_or_null<MDCompositeType>(Op);
901 Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
902 "invalid enum type", &N, N.getEnumTypes(), Op);
903 }
904 }
905 if (auto *Array = N.getRawRetainedTypes()) {
906 Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
907 for (Metadata *Op : N.getRetainedTypes()->operands()) {
908 Assert(Op && isa<MDType>(Op), "invalid retained type", &N, Op);
909 }
910 }
911 if (auto *Array = N.getRawSubprograms()) {
912 Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
913 for (Metadata *Op : N.getSubprograms()->operands()) {
914 Assert(Op && isa<MDSubprogram>(Op), "invalid subprogram ref", &N, Op);
915 }
916 }
917 if (auto *Array = N.getRawGlobalVariables()) {
918 Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
919 for (Metadata *Op : N.getGlobalVariables()->operands()) {
920 Assert(Op && isa<MDGlobalVariable>(Op), "invalid global variable ref", &N,
921 Op);
922 }
923 }
924 if (auto *Array = N.getRawImportedEntities()) {
925 Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
926 for (Metadata *Op : N.getImportedEntities()->operands()) {
927 Assert(Op && isa<MDImportedEntity>(Op), "invalid imported entity ref", &N,
928 Op);
929 }
930 }
931 }
932
visitMDSubprogram(const MDSubprogram & N)933 void Verifier::visitMDSubprogram(const MDSubprogram &N) {
934 Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
935 Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
936 if (auto *T = N.getRawType())
937 Assert(isa<MDSubroutineType>(T), "invalid subroutine type", &N, T);
938 Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
939 N.getRawContainingType());
940 if (auto *RawF = N.getRawFunction()) {
941 auto *FMD = dyn_cast<ConstantAsMetadata>(RawF);
942 auto *F = FMD ? FMD->getValue() : nullptr;
943 auto *FT = F ? dyn_cast<PointerType>(F->getType()) : nullptr;
944 Assert(F && FT && isa<FunctionType>(FT->getElementType()),
945 "invalid function", &N, F, FT);
946 }
947 if (auto *Params = N.getRawTemplateParams())
948 visitTemplateParams(N, *Params);
949 if (auto *S = N.getRawDeclaration()) {
950 Assert(isa<MDSubprogram>(S) && !cast<MDSubprogram>(S)->isDefinition(),
951 "invalid subprogram declaration", &N, S);
952 }
953 if (auto *RawVars = N.getRawVariables()) {
954 auto *Vars = dyn_cast<MDTuple>(RawVars);
955 Assert(Vars, "invalid variable list", &N, RawVars);
956 for (Metadata *Op : Vars->operands()) {
957 Assert(Op && isa<MDLocalVariable>(Op), "invalid local variable", &N, Vars,
958 Op);
959 }
960 }
961 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
962 &N);
963
964 auto *F = N.getFunction();
965 if (!F)
966 return;
967
968 // Check that all !dbg attachments lead to back to N (or, at least, another
969 // subprogram that describes the same function).
970 //
971 // FIXME: Check this incrementally while visiting !dbg attachments.
972 // FIXME: Only check when N is the canonical subprogram for F.
973 SmallPtrSet<const MDNode *, 32> Seen;
974 for (auto &BB : *F)
975 for (auto &I : BB) {
976 // Be careful about using MDLocation here since we might be dealing with
977 // broken code (this is the Verifier after all).
978 MDLocation *DL =
979 dyn_cast_or_null<MDLocation>(I.getDebugLoc().getAsMDNode());
980 if (!DL)
981 continue;
982 if (!Seen.insert(DL).second)
983 continue;
984
985 MDLocalScope *Scope = DL->getInlinedAtScope();
986 if (Scope && !Seen.insert(Scope).second)
987 continue;
988
989 MDSubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
990 if (SP && !Seen.insert(SP).second)
991 continue;
992
993 // FIXME: Once N is canonical, check "SP == &N".
994 Assert(SP->describes(F),
995 "!dbg attachment points at wrong subprogram for function", &N, F,
996 &I, DL, Scope, SP);
997 }
998 }
999
visitMDLexicalBlockBase(const MDLexicalBlockBase & N)1000 void Verifier::visitMDLexicalBlockBase(const MDLexicalBlockBase &N) {
1001 Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1002 Assert(N.getRawScope() && isa<MDLocalScope>(N.getRawScope()),
1003 "invalid local scope", &N, N.getRawScope());
1004 }
1005
visitMDLexicalBlock(const MDLexicalBlock & N)1006 void Verifier::visitMDLexicalBlock(const MDLexicalBlock &N) {
1007 visitMDLexicalBlockBase(N);
1008
1009 Assert(N.getLine() || !N.getColumn(),
1010 "cannot have column info without line info", &N);
1011 }
1012
visitMDLexicalBlockFile(const MDLexicalBlockFile & N)1013 void Verifier::visitMDLexicalBlockFile(const MDLexicalBlockFile &N) {
1014 visitMDLexicalBlockBase(N);
1015 }
1016
visitMDNamespace(const MDNamespace & N)1017 void Verifier::visitMDNamespace(const MDNamespace &N) {
1018 Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1019 if (auto *S = N.getRawScope())
1020 Assert(isa<MDScope>(S), "invalid scope ref", &N, S);
1021 }
1022
visitMDTemplateParameter(const MDTemplateParameter & N)1023 void Verifier::visitMDTemplateParameter(const MDTemplateParameter &N) {
1024 Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
1025 }
1026
visitMDTemplateTypeParameter(const MDTemplateTypeParameter & N)1027 void Verifier::visitMDTemplateTypeParameter(const MDTemplateTypeParameter &N) {
1028 visitMDTemplateParameter(N);
1029
1030 Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1031 &N);
1032 }
1033
visitMDTemplateValueParameter(const MDTemplateValueParameter & N)1034 void Verifier::visitMDTemplateValueParameter(
1035 const MDTemplateValueParameter &N) {
1036 visitMDTemplateParameter(N);
1037
1038 Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1039 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1040 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1041 "invalid tag", &N);
1042 }
1043
visitMDVariable(const MDVariable & N)1044 void Verifier::visitMDVariable(const MDVariable &N) {
1045 if (auto *S = N.getRawScope())
1046 Assert(isa<MDScope>(S), "invalid scope", &N, S);
1047 Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
1048 if (auto *F = N.getRawFile())
1049 Assert(isa<MDFile>(F), "invalid file", &N, F);
1050 }
1051
visitMDGlobalVariable(const MDGlobalVariable & N)1052 void Verifier::visitMDGlobalVariable(const MDGlobalVariable &N) {
1053 // Checks common to all variables.
1054 visitMDVariable(N);
1055
1056 Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1057 Assert(!N.getName().empty(), "missing global variable name", &N);
1058 if (auto *V = N.getRawVariable()) {
1059 Assert(isa<ConstantAsMetadata>(V) &&
1060 !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
1061 "invalid global varaible ref", &N, V);
1062 }
1063 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1064 Assert(isa<MDDerivedType>(Member), "invalid static data member declaration",
1065 &N, Member);
1066 }
1067 }
1068
visitMDLocalVariable(const MDLocalVariable & N)1069 void Verifier::visitMDLocalVariable(const MDLocalVariable &N) {
1070 // Checks common to all variables.
1071 visitMDVariable(N);
1072
1073 Assert(N.getTag() == dwarf::DW_TAG_auto_variable ||
1074 N.getTag() == dwarf::DW_TAG_arg_variable,
1075 "invalid tag", &N);
1076 Assert(N.getRawScope() && isa<MDLocalScope>(N.getRawScope()),
1077 "local variable requires a valid scope", &N, N.getRawScope());
1078 }
1079
visitMDExpression(const MDExpression & N)1080 void Verifier::visitMDExpression(const MDExpression &N) {
1081 Assert(N.isValid(), "invalid expression", &N);
1082 }
1083
visitMDObjCProperty(const MDObjCProperty & N)1084 void Verifier::visitMDObjCProperty(const MDObjCProperty &N) {
1085 Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1086 if (auto *T = N.getRawType())
1087 Assert(isa<MDType>(T), "invalid type ref", &N, T);
1088 if (auto *F = N.getRawFile())
1089 Assert(isa<MDFile>(F), "invalid file", &N, F);
1090 }
1091
visitMDImportedEntity(const MDImportedEntity & N)1092 void Verifier::visitMDImportedEntity(const MDImportedEntity &N) {
1093 Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
1094 N.getTag() == dwarf::DW_TAG_imported_declaration,
1095 "invalid tag", &N);
1096 if (auto *S = N.getRawScope())
1097 Assert(isa<MDScope>(S), "invalid scope for imported entity", &N, S);
1098 Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
1099 N.getEntity());
1100 }
1101
visitComdat(const Comdat & C)1102 void Verifier::visitComdat(const Comdat &C) {
1103 // The Module is invalid if the GlobalValue has private linkage. Entities
1104 // with private linkage don't have entries in the symbol table.
1105 if (const GlobalValue *GV = M->getNamedValue(C.getName()))
1106 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1107 GV);
1108 }
1109
visitModuleIdents(const Module & M)1110 void Verifier::visitModuleIdents(const Module &M) {
1111 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1112 if (!Idents)
1113 return;
1114
1115 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1116 // Scan each llvm.ident entry and make sure that this requirement is met.
1117 for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
1118 const MDNode *N = Idents->getOperand(i);
1119 Assert(N->getNumOperands() == 1,
1120 "incorrect number of operands in llvm.ident metadata", N);
1121 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1122 ("invalid value for llvm.ident metadata entry operand"
1123 "(the operand should be a string)"),
1124 N->getOperand(0));
1125 }
1126 }
1127
visitModuleFlags(const Module & M)1128 void Verifier::visitModuleFlags(const Module &M) {
1129 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1130 if (!Flags) return;
1131
1132 // Scan each flag, and track the flags and requirements.
1133 DenseMap<const MDString*, const MDNode*> SeenIDs;
1134 SmallVector<const MDNode*, 16> Requirements;
1135 for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
1136 visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
1137 }
1138
1139 // Validate that the requirements in the module are valid.
1140 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1141 const MDNode *Requirement = Requirements[I];
1142 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1143 const Metadata *ReqValue = Requirement->getOperand(1);
1144
1145 const MDNode *Op = SeenIDs.lookup(Flag);
1146 if (!Op) {
1147 CheckFailed("invalid requirement on flag, flag is not present in module",
1148 Flag);
1149 continue;
1150 }
1151
1152 if (Op->getOperand(2) != ReqValue) {
1153 CheckFailed(("invalid requirement on flag, "
1154 "flag does not have the required value"),
1155 Flag);
1156 continue;
1157 }
1158 }
1159 }
1160
1161 void
visitModuleFlag(const MDNode * Op,DenseMap<const MDString *,const MDNode * > & SeenIDs,SmallVectorImpl<const MDNode * > & Requirements)1162 Verifier::visitModuleFlag(const MDNode *Op,
1163 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1164 SmallVectorImpl<const MDNode *> &Requirements) {
1165 // Each module flag should have three arguments, the merge behavior (a
1166 // constant int), the flag ID (an MDString), and the value.
1167 Assert(Op->getNumOperands() == 3,
1168 "incorrect number of operands in module flag", Op);
1169 Module::ModFlagBehavior MFB;
1170 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1171 Assert(
1172 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1173 "invalid behavior operand in module flag (expected constant integer)",
1174 Op->getOperand(0));
1175 Assert(false,
1176 "invalid behavior operand in module flag (unexpected constant)",
1177 Op->getOperand(0));
1178 }
1179 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1180 Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1181 Op->getOperand(1));
1182
1183 // Sanity check the values for behaviors with additional requirements.
1184 switch (MFB) {
1185 case Module::Error:
1186 case Module::Warning:
1187 case Module::Override:
1188 // These behavior types accept any value.
1189 break;
1190
1191 case Module::Require: {
1192 // The value should itself be an MDNode with two operands, a flag ID (an
1193 // MDString), and a value.
1194 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1195 Assert(Value && Value->getNumOperands() == 2,
1196 "invalid value for 'require' module flag (expected metadata pair)",
1197 Op->getOperand(2));
1198 Assert(isa<MDString>(Value->getOperand(0)),
1199 ("invalid value for 'require' module flag "
1200 "(first value operand should be a string)"),
1201 Value->getOperand(0));
1202
1203 // Append it to the list of requirements, to check once all module flags are
1204 // scanned.
1205 Requirements.push_back(Value);
1206 break;
1207 }
1208
1209 case Module::Append:
1210 case Module::AppendUnique: {
1211 // These behavior types require the operand be an MDNode.
1212 Assert(isa<MDNode>(Op->getOperand(2)),
1213 "invalid value for 'append'-type module flag "
1214 "(expected a metadata node)",
1215 Op->getOperand(2));
1216 break;
1217 }
1218 }
1219
1220 // Unless this is a "requires" flag, check the ID is unique.
1221 if (MFB != Module::Require) {
1222 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1223 Assert(Inserted,
1224 "module flag identifiers must be unique (or of 'require' type)", ID);
1225 }
1226 }
1227
VerifyAttributeTypes(AttributeSet Attrs,unsigned Idx,bool isFunction,const Value * V)1228 void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1229 bool isFunction, const Value *V) {
1230 unsigned Slot = ~0U;
1231 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1232 if (Attrs.getSlotIndex(I) == Idx) {
1233 Slot = I;
1234 break;
1235 }
1236
1237 assert(Slot != ~0U && "Attribute set inconsistency!");
1238
1239 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1240 I != E; ++I) {
1241 if (I->isStringAttribute())
1242 continue;
1243
1244 if (I->getKindAsEnum() == Attribute::NoReturn ||
1245 I->getKindAsEnum() == Attribute::NoUnwind ||
1246 I->getKindAsEnum() == Attribute::NoInline ||
1247 I->getKindAsEnum() == Attribute::AlwaysInline ||
1248 I->getKindAsEnum() == Attribute::OptimizeForSize ||
1249 I->getKindAsEnum() == Attribute::StackProtect ||
1250 I->getKindAsEnum() == Attribute::StackProtectReq ||
1251 I->getKindAsEnum() == Attribute::StackProtectStrong ||
1252 I->getKindAsEnum() == Attribute::NoRedZone ||
1253 I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1254 I->getKindAsEnum() == Attribute::Naked ||
1255 I->getKindAsEnum() == Attribute::InlineHint ||
1256 I->getKindAsEnum() == Attribute::StackAlignment ||
1257 I->getKindAsEnum() == Attribute::UWTable ||
1258 I->getKindAsEnum() == Attribute::NonLazyBind ||
1259 I->getKindAsEnum() == Attribute::ReturnsTwice ||
1260 I->getKindAsEnum() == Attribute::SanitizeAddress ||
1261 I->getKindAsEnum() == Attribute::SanitizeThread ||
1262 I->getKindAsEnum() == Attribute::SanitizeMemory ||
1263 I->getKindAsEnum() == Attribute::MinSize ||
1264 I->getKindAsEnum() == Attribute::NoDuplicate ||
1265 I->getKindAsEnum() == Attribute::Builtin ||
1266 I->getKindAsEnum() == Attribute::NoBuiltin ||
1267 I->getKindAsEnum() == Attribute::Cold ||
1268 I->getKindAsEnum() == Attribute::OptimizeNone ||
1269 I->getKindAsEnum() == Attribute::JumpTable) {
1270 if (!isFunction) {
1271 CheckFailed("Attribute '" + I->getAsString() +
1272 "' only applies to functions!", V);
1273 return;
1274 }
1275 } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1276 I->getKindAsEnum() == Attribute::ReadNone) {
1277 if (Idx == 0) {
1278 CheckFailed("Attribute '" + I->getAsString() +
1279 "' does not apply to function returns");
1280 return;
1281 }
1282 } else if (isFunction) {
1283 CheckFailed("Attribute '" + I->getAsString() +
1284 "' does not apply to functions!", V);
1285 return;
1286 }
1287 }
1288 }
1289
1290 // VerifyParameterAttrs - Check the given attributes for an argument or return
1291 // value of the specified type. The value V is printed in error messages.
VerifyParameterAttrs(AttributeSet Attrs,unsigned Idx,Type * Ty,bool isReturnValue,const Value * V)1292 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1293 bool isReturnValue, const Value *V) {
1294 if (!Attrs.hasAttributes(Idx))
1295 return;
1296
1297 VerifyAttributeTypes(Attrs, Idx, false, V);
1298
1299 if (isReturnValue)
1300 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1301 !Attrs.hasAttribute(Idx, Attribute::Nest) &&
1302 !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1303 !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
1304 !Attrs.hasAttribute(Idx, Attribute::Returned) &&
1305 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1306 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
1307 "'returned' do not apply to return values!",
1308 V);
1309
1310 // Check for mutually incompatible attributes. Only inreg is compatible with
1311 // sret.
1312 unsigned AttrCount = 0;
1313 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1314 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1315 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1316 Attrs.hasAttribute(Idx, Attribute::InReg);
1317 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1318 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1319 "and 'sret' are incompatible!",
1320 V);
1321
1322 Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1323 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1324 "Attributes "
1325 "'inalloca and readonly' are incompatible!",
1326 V);
1327
1328 Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1329 Attrs.hasAttribute(Idx, Attribute::Returned)),
1330 "Attributes "
1331 "'sret and returned' are incompatible!",
1332 V);
1333
1334 Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
1335 Attrs.hasAttribute(Idx, Attribute::SExt)),
1336 "Attributes "
1337 "'zeroext and signext' are incompatible!",
1338 V);
1339
1340 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1341 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1342 "Attributes "
1343 "'readnone and readonly' are incompatible!",
1344 V);
1345
1346 Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
1347 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
1348 "Attributes "
1349 "'noinline and alwaysinline' are incompatible!",
1350 V);
1351
1352 Assert(!AttrBuilder(Attrs, Idx)
1353 .hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
1354 "Wrong types for attribute: " +
1355 AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx),
1356 V);
1357
1358 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1359 SmallPtrSet<const Type*, 4> Visited;
1360 if (!PTy->getElementType()->isSized(&Visited)) {
1361 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1362 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1363 "Attributes 'byval' and 'inalloca' do not support unsized types!",
1364 V);
1365 }
1366 } else {
1367 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
1368 "Attribute 'byval' only applies to parameters with pointer type!",
1369 V);
1370 }
1371 }
1372
1373 // VerifyFunctionAttrs - Check parameter attributes against a function type.
1374 // The value V is printed in error messages.
VerifyFunctionAttrs(FunctionType * FT,AttributeSet Attrs,const Value * V)1375 void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1376 const Value *V) {
1377 if (Attrs.isEmpty())
1378 return;
1379
1380 bool SawNest = false;
1381 bool SawReturned = false;
1382 bool SawSRet = false;
1383
1384 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1385 unsigned Idx = Attrs.getSlotIndex(i);
1386
1387 Type *Ty;
1388 if (Idx == 0)
1389 Ty = FT->getReturnType();
1390 else if (Idx-1 < FT->getNumParams())
1391 Ty = FT->getParamType(Idx-1);
1392 else
1393 break; // VarArgs attributes, verified elsewhere.
1394
1395 VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1396
1397 if (Idx == 0)
1398 continue;
1399
1400 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1401 Assert(!SawNest, "More than one parameter has attribute nest!", V);
1402 SawNest = true;
1403 }
1404
1405 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1406 Assert(!SawReturned, "More than one parameter has attribute returned!",
1407 V);
1408 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1409 "Incompatible "
1410 "argument and return types for 'returned' attribute",
1411 V);
1412 SawReturned = true;
1413 }
1414
1415 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1416 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1417 Assert(Idx == 1 || Idx == 2,
1418 "Attribute 'sret' is not on first or second parameter!", V);
1419 SawSRet = true;
1420 }
1421
1422 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1423 Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
1424 V);
1425 }
1426 }
1427
1428 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1429 return;
1430
1431 VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1432
1433 Assert(
1434 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1435 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
1436 "Attributes 'readnone and readonly' are incompatible!", V);
1437
1438 Assert(
1439 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
1440 Attrs.hasAttribute(AttributeSet::FunctionIndex,
1441 Attribute::AlwaysInline)),
1442 "Attributes 'noinline and alwaysinline' are incompatible!", V);
1443
1444 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1445 Attribute::OptimizeNone)) {
1446 Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
1447 "Attribute 'optnone' requires 'noinline'!", V);
1448
1449 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
1450 Attribute::OptimizeForSize),
1451 "Attributes 'optsize and optnone' are incompatible!", V);
1452
1453 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
1454 "Attributes 'minsize and optnone' are incompatible!", V);
1455 }
1456
1457 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1458 Attribute::JumpTable)) {
1459 const GlobalValue *GV = cast<GlobalValue>(V);
1460 Assert(GV->hasUnnamedAddr(),
1461 "Attribute 'jumptable' requires 'unnamed_addr'", V);
1462 }
1463 }
1464
VerifyConstantExprBitcastType(const ConstantExpr * CE)1465 void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
1466 if (CE->getOpcode() != Instruction::BitCast)
1467 return;
1468
1469 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1470 CE->getType()),
1471 "Invalid bitcast", CE);
1472 }
1473
VerifyAttributeCount(AttributeSet Attrs,unsigned Params)1474 bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1475 if (Attrs.getNumSlots() == 0)
1476 return true;
1477
1478 unsigned LastSlot = Attrs.getNumSlots() - 1;
1479 unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1480 if (LastIndex <= Params
1481 || (LastIndex == AttributeSet::FunctionIndex
1482 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1483 return true;
1484
1485 return false;
1486 }
1487
1488 /// \brief Verify that statepoint intrinsic is well formed.
VerifyStatepoint(ImmutableCallSite CS)1489 void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
1490 assert(CS.getCalledFunction() &&
1491 CS.getCalledFunction()->getIntrinsicID() ==
1492 Intrinsic::experimental_gc_statepoint);
1493
1494 const Instruction &CI = *CS.getInstruction();
1495
1496 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory(),
1497 "gc.statepoint must read and write memory to preserve "
1498 "reordering restrictions required by safepoint semantics",
1499 &CI);
1500
1501 const Value *Target = CS.getArgument(0);
1502 const PointerType *PT = dyn_cast<PointerType>(Target->getType());
1503 Assert(PT && PT->getElementType()->isFunctionTy(),
1504 "gc.statepoint callee must be of function pointer type", &CI, Target);
1505 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1506
1507 const Value *NumCallArgsV = CS.getArgument(1);
1508 Assert(isa<ConstantInt>(NumCallArgsV),
1509 "gc.statepoint number of arguments to underlying call "
1510 "must be constant integer",
1511 &CI);
1512 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1513 Assert(NumCallArgs >= 0,
1514 "gc.statepoint number of arguments to underlying call "
1515 "must be positive",
1516 &CI);
1517 const int NumParams = (int)TargetFuncType->getNumParams();
1518 if (TargetFuncType->isVarArg()) {
1519 Assert(NumCallArgs >= NumParams,
1520 "gc.statepoint mismatch in number of vararg call args", &CI);
1521
1522 // TODO: Remove this limitation
1523 Assert(TargetFuncType->getReturnType()->isVoidTy(),
1524 "gc.statepoint doesn't support wrapping non-void "
1525 "vararg functions yet",
1526 &CI);
1527 } else
1528 Assert(NumCallArgs == NumParams,
1529 "gc.statepoint mismatch in number of call args", &CI);
1530
1531 const Value *Unused = CS.getArgument(2);
1532 Assert(isa<ConstantInt>(Unused) && cast<ConstantInt>(Unused)->isNullValue(),
1533 "gc.statepoint parameter #3 must be zero", &CI);
1534
1535 // Verify that the types of the call parameter arguments match
1536 // the type of the wrapped callee.
1537 for (int i = 0; i < NumParams; i++) {
1538 Type *ParamType = TargetFuncType->getParamType(i);
1539 Type *ArgType = CS.getArgument(3+i)->getType();
1540 Assert(ArgType == ParamType,
1541 "gc.statepoint call argument does not match wrapped "
1542 "function type",
1543 &CI);
1544 }
1545 const int EndCallArgsInx = 2+NumCallArgs;
1546 const Value *NumDeoptArgsV = CS.getArgument(EndCallArgsInx+1);
1547 Assert(isa<ConstantInt>(NumDeoptArgsV),
1548 "gc.statepoint number of deoptimization arguments "
1549 "must be constant integer",
1550 &CI);
1551 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1552 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1553 "must be positive",
1554 &CI);
1555
1556 Assert(4 + NumCallArgs + NumDeoptArgs <= (int)CS.arg_size(),
1557 "gc.statepoint too few arguments according to length fields", &CI);
1558
1559 // Check that the only uses of this gc.statepoint are gc.result or
1560 // gc.relocate calls which are tied to this statepoint and thus part
1561 // of the same statepoint sequence
1562 for (const User *U : CI.users()) {
1563 const CallInst *Call = dyn_cast<const CallInst>(U);
1564 Assert(Call, "illegal use of statepoint token", &CI, U);
1565 if (!Call) continue;
1566 Assert(isGCRelocate(Call) || isGCResult(Call),
1567 "gc.result or gc.relocate are the only value uses"
1568 "of a gc.statepoint",
1569 &CI, U);
1570 if (isGCResult(Call)) {
1571 Assert(Call->getArgOperand(0) == &CI,
1572 "gc.result connected to wrong gc.statepoint", &CI, Call);
1573 } else if (isGCRelocate(Call)) {
1574 Assert(Call->getArgOperand(0) == &CI,
1575 "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1576 }
1577 }
1578
1579 // Note: It is legal for a single derived pointer to be listed multiple
1580 // times. It's non-optimal, but it is legal. It can also happen after
1581 // insertion if we strip a bitcast away.
1582 // Note: It is really tempting to check that each base is relocated and
1583 // that a derived pointer is never reused as a base pointer. This turns
1584 // out to be problematic since optimizations run after safepoint insertion
1585 // can recognize equality properties that the insertion logic doesn't know
1586 // about. See example statepoint.ll in the verifier subdirectory
1587 }
1588
verifyFrameRecoverIndices()1589 void Verifier::verifyFrameRecoverIndices() {
1590 for (auto &Counts : FrameEscapeInfo) {
1591 Function *F = Counts.first;
1592 unsigned EscapedObjectCount = Counts.second.first;
1593 unsigned MaxRecoveredIndex = Counts.second.second;
1594 Assert(MaxRecoveredIndex <= EscapedObjectCount,
1595 "all indices passed to llvm.framerecover must be less than the "
1596 "number of arguments passed ot llvm.frameescape in the parent "
1597 "function",
1598 F);
1599 }
1600 }
1601
1602 // visitFunction - Verify that a function is ok.
1603 //
visitFunction(const Function & F)1604 void Verifier::visitFunction(const Function &F) {
1605 // Check function arguments.
1606 FunctionType *FT = F.getFunctionType();
1607 unsigned NumArgs = F.arg_size();
1608
1609 Assert(Context == &F.getContext(),
1610 "Function context does not match Module context!", &F);
1611
1612 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1613 Assert(FT->getNumParams() == NumArgs,
1614 "# formal arguments must match # of arguments for function type!", &F,
1615 FT);
1616 Assert(F.getReturnType()->isFirstClassType() ||
1617 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
1618 "Functions cannot return aggregate values!", &F);
1619
1620 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1621 "Invalid struct return type!", &F);
1622
1623 AttributeSet Attrs = F.getAttributes();
1624
1625 Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
1626 "Attribute after last parameter!", &F);
1627
1628 // Check function attributes.
1629 VerifyFunctionAttrs(FT, Attrs, &F);
1630
1631 // On function declarations/definitions, we do not support the builtin
1632 // attribute. We do not check this in VerifyFunctionAttrs since that is
1633 // checking for Attributes that can/can not ever be on functions.
1634 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
1635 "Attribute 'builtin' can only be applied to a callsite.", &F);
1636
1637 // Check that this function meets the restrictions on this calling convention.
1638 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1639 // restrictions can be lifted.
1640 switch (F.getCallingConv()) {
1641 default:
1642 case CallingConv::C:
1643 break;
1644 case CallingConv::Fast:
1645 case CallingConv::Cold:
1646 case CallingConv::Intel_OCL_BI:
1647 case CallingConv::PTX_Kernel:
1648 case CallingConv::PTX_Device:
1649 Assert(!F.isVarArg(), "Calling convention does not support varargs or "
1650 "perfect forwarding!",
1651 &F);
1652 break;
1653 }
1654
1655 bool isLLVMdotName = F.getName().size() >= 5 &&
1656 F.getName().substr(0, 5) == "llvm.";
1657
1658 // Check that the argument values match the function type for this function...
1659 unsigned i = 0;
1660 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
1661 ++I, ++i) {
1662 Assert(I->getType() == FT->getParamType(i),
1663 "Argument value does not match function argument type!", I,
1664 FT->getParamType(i));
1665 Assert(I->getType()->isFirstClassType(),
1666 "Function arguments must have first-class types!", I);
1667 if (!isLLVMdotName)
1668 Assert(!I->getType()->isMetadataTy(),
1669 "Function takes metadata but isn't an intrinsic", I, &F);
1670 }
1671
1672 if (F.isMaterializable()) {
1673 // Function has a body somewhere we can't see.
1674 } else if (F.isDeclaration()) {
1675 Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
1676 "invalid linkage type for function declaration", &F);
1677 } else {
1678 // Verify that this function (which has a body) is not named "llvm.*". It
1679 // is not legal to define intrinsics.
1680 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1681
1682 // Check the entry node
1683 const BasicBlock *Entry = &F.getEntryBlock();
1684 Assert(pred_empty(Entry),
1685 "Entry block to function must not have predecessors!", Entry);
1686
1687 // The address of the entry block cannot be taken, unless it is dead.
1688 if (Entry->hasAddressTaken()) {
1689 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
1690 "blockaddress may not be used with the entry block!", Entry);
1691 }
1692 }
1693
1694 // If this function is actually an intrinsic, verify that it is only used in
1695 // direct call/invokes, never having its "address taken".
1696 if (F.getIntrinsicID()) {
1697 const User *U;
1698 if (F.hasAddressTaken(&U))
1699 Assert(0, "Invalid user of intrinsic instruction!", U);
1700 }
1701
1702 Assert(!F.hasDLLImportStorageClass() ||
1703 (F.isDeclaration() && F.hasExternalLinkage()) ||
1704 F.hasAvailableExternallyLinkage(),
1705 "Function is marked as dllimport, but not external.", &F);
1706 }
1707
1708 // verifyBasicBlock - Verify that a basic block is well formed...
1709 //
visitBasicBlock(BasicBlock & BB)1710 void Verifier::visitBasicBlock(BasicBlock &BB) {
1711 InstsInThisBlock.clear();
1712
1713 // Ensure that basic blocks have terminators!
1714 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
1715
1716 // Check constraints that this basic block imposes on all of the PHI nodes in
1717 // it.
1718 if (isa<PHINode>(BB.front())) {
1719 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
1720 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
1721 std::sort(Preds.begin(), Preds.end());
1722 PHINode *PN;
1723 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
1724 // Ensure that PHI nodes have at least one entry!
1725 Assert(PN->getNumIncomingValues() != 0,
1726 "PHI nodes must have at least one entry. If the block is dead, "
1727 "the PHI should be removed!",
1728 PN);
1729 Assert(PN->getNumIncomingValues() == Preds.size(),
1730 "PHINode should have one entry for each predecessor of its "
1731 "parent basic block!",
1732 PN);
1733
1734 // Get and sort all incoming values in the PHI node...
1735 Values.clear();
1736 Values.reserve(PN->getNumIncomingValues());
1737 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1738 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
1739 PN->getIncomingValue(i)));
1740 std::sort(Values.begin(), Values.end());
1741
1742 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1743 // Check to make sure that if there is more than one entry for a
1744 // particular basic block in this PHI node, that the incoming values are
1745 // all identical.
1746 //
1747 Assert(i == 0 || Values[i].first != Values[i - 1].first ||
1748 Values[i].second == Values[i - 1].second,
1749 "PHI node has multiple entries for the same basic block with "
1750 "different incoming values!",
1751 PN, Values[i].first, Values[i].second, Values[i - 1].second);
1752
1753 // Check to make sure that the predecessors and PHI node entries are
1754 // matched up.
1755 Assert(Values[i].first == Preds[i],
1756 "PHI node entries do not match predecessors!", PN,
1757 Values[i].first, Preds[i]);
1758 }
1759 }
1760 }
1761
1762 // Check that all instructions have their parent pointers set up correctly.
1763 for (auto &I : BB)
1764 {
1765 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
1766 }
1767 }
1768
visitTerminatorInst(TerminatorInst & I)1769 void Verifier::visitTerminatorInst(TerminatorInst &I) {
1770 // Ensure that terminators only exist at the end of the basic block.
1771 Assert(&I == I.getParent()->getTerminator(),
1772 "Terminator found in the middle of a basic block!", I.getParent());
1773 visitInstruction(I);
1774 }
1775
visitBranchInst(BranchInst & BI)1776 void Verifier::visitBranchInst(BranchInst &BI) {
1777 if (BI.isConditional()) {
1778 Assert(BI.getCondition()->getType()->isIntegerTy(1),
1779 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
1780 }
1781 visitTerminatorInst(BI);
1782 }
1783
visitReturnInst(ReturnInst & RI)1784 void Verifier::visitReturnInst(ReturnInst &RI) {
1785 Function *F = RI.getParent()->getParent();
1786 unsigned N = RI.getNumOperands();
1787 if (F->getReturnType()->isVoidTy())
1788 Assert(N == 0,
1789 "Found return instr that returns non-void in Function of void "
1790 "return type!",
1791 &RI, F->getReturnType());
1792 else
1793 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
1794 "Function return type does not match operand "
1795 "type of return inst!",
1796 &RI, F->getReturnType());
1797
1798 // Check to make sure that the return value has necessary properties for
1799 // terminators...
1800 visitTerminatorInst(RI);
1801 }
1802
visitSwitchInst(SwitchInst & SI)1803 void Verifier::visitSwitchInst(SwitchInst &SI) {
1804 // Check to make sure that all of the constants in the switch instruction
1805 // have the same type as the switched-on value.
1806 Type *SwitchTy = SI.getCondition()->getType();
1807 SmallPtrSet<ConstantInt*, 32> Constants;
1808 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
1809 Assert(i.getCaseValue()->getType() == SwitchTy,
1810 "Switch constants must all be same type as switch value!", &SI);
1811 Assert(Constants.insert(i.getCaseValue()).second,
1812 "Duplicate integer as switch case", &SI, i.getCaseValue());
1813 }
1814
1815 visitTerminatorInst(SI);
1816 }
1817
visitIndirectBrInst(IndirectBrInst & BI)1818 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
1819 Assert(BI.getAddress()->getType()->isPointerTy(),
1820 "Indirectbr operand must have pointer type!", &BI);
1821 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
1822 Assert(BI.getDestination(i)->getType()->isLabelTy(),
1823 "Indirectbr destinations must all have pointer type!", &BI);
1824
1825 visitTerminatorInst(BI);
1826 }
1827
visitSelectInst(SelectInst & SI)1828 void Verifier::visitSelectInst(SelectInst &SI) {
1829 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
1830 SI.getOperand(2)),
1831 "Invalid operands for select instruction!", &SI);
1832
1833 Assert(SI.getTrueValue()->getType() == SI.getType(),
1834 "Select values must have same type as select instruction!", &SI);
1835 visitInstruction(SI);
1836 }
1837
1838 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
1839 /// a pass, if any exist, it's an error.
1840 ///
visitUserOp1(Instruction & I)1841 void Verifier::visitUserOp1(Instruction &I) {
1842 Assert(0, "User-defined operators should not live outside of a pass!", &I);
1843 }
1844
visitTruncInst(TruncInst & I)1845 void Verifier::visitTruncInst(TruncInst &I) {
1846 // Get the source and destination types
1847 Type *SrcTy = I.getOperand(0)->getType();
1848 Type *DestTy = I.getType();
1849
1850 // Get the size of the types in bits, we'll need this later
1851 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1852 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1853
1854 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
1855 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
1856 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1857 "trunc source and destination must both be a vector or neither", &I);
1858 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
1859
1860 visitInstruction(I);
1861 }
1862
visitZExtInst(ZExtInst & I)1863 void Verifier::visitZExtInst(ZExtInst &I) {
1864 // Get the source and destination types
1865 Type *SrcTy = I.getOperand(0)->getType();
1866 Type *DestTy = I.getType();
1867
1868 // Get the size of the types in bits, we'll need this later
1869 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
1870 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
1871 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1872 "zext source and destination must both be a vector or neither", &I);
1873 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1874 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1875
1876 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
1877
1878 visitInstruction(I);
1879 }
1880
visitSExtInst(SExtInst & I)1881 void Verifier::visitSExtInst(SExtInst &I) {
1882 // Get the source and destination types
1883 Type *SrcTy = I.getOperand(0)->getType();
1884 Type *DestTy = I.getType();
1885
1886 // Get the size of the types in bits, we'll need this later
1887 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1888 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1889
1890 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
1891 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
1892 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1893 "sext source and destination must both be a vector or neither", &I);
1894 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
1895
1896 visitInstruction(I);
1897 }
1898
visitFPTruncInst(FPTruncInst & I)1899 void Verifier::visitFPTruncInst(FPTruncInst &I) {
1900 // Get the source and destination types
1901 Type *SrcTy = I.getOperand(0)->getType();
1902 Type *DestTy = I.getType();
1903 // Get the size of the types in bits, we'll need this later
1904 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1905 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1906
1907 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
1908 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
1909 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1910 "fptrunc source and destination must both be a vector or neither", &I);
1911 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
1912
1913 visitInstruction(I);
1914 }
1915
visitFPExtInst(FPExtInst & I)1916 void Verifier::visitFPExtInst(FPExtInst &I) {
1917 // Get the source and destination types
1918 Type *SrcTy = I.getOperand(0)->getType();
1919 Type *DestTy = I.getType();
1920
1921 // Get the size of the types in bits, we'll need this later
1922 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1923 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1924
1925 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
1926 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
1927 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1928 "fpext source and destination must both be a vector or neither", &I);
1929 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
1930
1931 visitInstruction(I);
1932 }
1933
visitUIToFPInst(UIToFPInst & I)1934 void Verifier::visitUIToFPInst(UIToFPInst &I) {
1935 // Get the source and destination types
1936 Type *SrcTy = I.getOperand(0)->getType();
1937 Type *DestTy = I.getType();
1938
1939 bool SrcVec = SrcTy->isVectorTy();
1940 bool DstVec = DestTy->isVectorTy();
1941
1942 Assert(SrcVec == DstVec,
1943 "UIToFP source and dest must both be vector or scalar", &I);
1944 Assert(SrcTy->isIntOrIntVectorTy(),
1945 "UIToFP source must be integer or integer vector", &I);
1946 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
1947 &I);
1948
1949 if (SrcVec && DstVec)
1950 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
1951 cast<VectorType>(DestTy)->getNumElements(),
1952 "UIToFP source and dest vector length mismatch", &I);
1953
1954 visitInstruction(I);
1955 }
1956
visitSIToFPInst(SIToFPInst & I)1957 void Verifier::visitSIToFPInst(SIToFPInst &I) {
1958 // Get the source and destination types
1959 Type *SrcTy = I.getOperand(0)->getType();
1960 Type *DestTy = I.getType();
1961
1962 bool SrcVec = SrcTy->isVectorTy();
1963 bool DstVec = DestTy->isVectorTy();
1964
1965 Assert(SrcVec == DstVec,
1966 "SIToFP source and dest must both be vector or scalar", &I);
1967 Assert(SrcTy->isIntOrIntVectorTy(),
1968 "SIToFP source must be integer or integer vector", &I);
1969 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
1970 &I);
1971
1972 if (SrcVec && DstVec)
1973 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
1974 cast<VectorType>(DestTy)->getNumElements(),
1975 "SIToFP source and dest vector length mismatch", &I);
1976
1977 visitInstruction(I);
1978 }
1979
visitFPToUIInst(FPToUIInst & I)1980 void Verifier::visitFPToUIInst(FPToUIInst &I) {
1981 // Get the source and destination types
1982 Type *SrcTy = I.getOperand(0)->getType();
1983 Type *DestTy = I.getType();
1984
1985 bool SrcVec = SrcTy->isVectorTy();
1986 bool DstVec = DestTy->isVectorTy();
1987
1988 Assert(SrcVec == DstVec,
1989 "FPToUI source and dest must both be vector or scalar", &I);
1990 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1991 &I);
1992 Assert(DestTy->isIntOrIntVectorTy(),
1993 "FPToUI result must be integer or integer vector", &I);
1994
1995 if (SrcVec && DstVec)
1996 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
1997 cast<VectorType>(DestTy)->getNumElements(),
1998 "FPToUI source and dest vector length mismatch", &I);
1999
2000 visitInstruction(I);
2001 }
2002
visitFPToSIInst(FPToSIInst & I)2003 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2004 // Get the source and destination types
2005 Type *SrcTy = I.getOperand(0)->getType();
2006 Type *DestTy = I.getType();
2007
2008 bool SrcVec = SrcTy->isVectorTy();
2009 bool DstVec = DestTy->isVectorTy();
2010
2011 Assert(SrcVec == DstVec,
2012 "FPToSI source and dest must both be vector or scalar", &I);
2013 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2014 &I);
2015 Assert(DestTy->isIntOrIntVectorTy(),
2016 "FPToSI result must be integer or integer vector", &I);
2017
2018 if (SrcVec && DstVec)
2019 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2020 cast<VectorType>(DestTy)->getNumElements(),
2021 "FPToSI source and dest vector length mismatch", &I);
2022
2023 visitInstruction(I);
2024 }
2025
visitPtrToIntInst(PtrToIntInst & I)2026 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2027 // Get the source and destination types
2028 Type *SrcTy = I.getOperand(0)->getType();
2029 Type *DestTy = I.getType();
2030
2031 Assert(SrcTy->getScalarType()->isPointerTy(),
2032 "PtrToInt source must be pointer", &I);
2033 Assert(DestTy->getScalarType()->isIntegerTy(),
2034 "PtrToInt result must be integral", &I);
2035 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2036 &I);
2037
2038 if (SrcTy->isVectorTy()) {
2039 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2040 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2041 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2042 "PtrToInt Vector width mismatch", &I);
2043 }
2044
2045 visitInstruction(I);
2046 }
2047
visitIntToPtrInst(IntToPtrInst & I)2048 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2049 // Get the source and destination types
2050 Type *SrcTy = I.getOperand(0)->getType();
2051 Type *DestTy = I.getType();
2052
2053 Assert(SrcTy->getScalarType()->isIntegerTy(),
2054 "IntToPtr source must be an integral", &I);
2055 Assert(DestTy->getScalarType()->isPointerTy(),
2056 "IntToPtr result must be a pointer", &I);
2057 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2058 &I);
2059 if (SrcTy->isVectorTy()) {
2060 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2061 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2062 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2063 "IntToPtr Vector width mismatch", &I);
2064 }
2065 visitInstruction(I);
2066 }
2067
visitBitCastInst(BitCastInst & I)2068 void Verifier::visitBitCastInst(BitCastInst &I) {
2069 Assert(
2070 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2071 "Invalid bitcast", &I);
2072 visitInstruction(I);
2073 }
2074
visitAddrSpaceCastInst(AddrSpaceCastInst & I)2075 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2076 Type *SrcTy = I.getOperand(0)->getType();
2077 Type *DestTy = I.getType();
2078
2079 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2080 &I);
2081 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2082 &I);
2083 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2084 "AddrSpaceCast must be between different address spaces", &I);
2085 if (SrcTy->isVectorTy())
2086 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2087 "AddrSpaceCast vector pointer number of elements mismatch", &I);
2088 visitInstruction(I);
2089 }
2090
2091 /// visitPHINode - Ensure that a PHI node is well formed.
2092 ///
visitPHINode(PHINode & PN)2093 void Verifier::visitPHINode(PHINode &PN) {
2094 // Ensure that the PHI nodes are all grouped together at the top of the block.
2095 // This can be tested by checking whether the instruction before this is
2096 // either nonexistent (because this is begin()) or is a PHI node. If not,
2097 // then there is some other instruction before a PHI.
2098 Assert(&PN == &PN.getParent()->front() ||
2099 isa<PHINode>(--BasicBlock::iterator(&PN)),
2100 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2101
2102 // Check that all of the values of the PHI node have the same type as the
2103 // result, and that the incoming blocks are really basic blocks.
2104 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2105 Assert(PN.getType() == PN.getIncomingValue(i)->getType(),
2106 "PHI node operands are not the same type as the result!", &PN);
2107 }
2108
2109 // All other PHI node constraints are checked in the visitBasicBlock method.
2110
2111 visitInstruction(PN);
2112 }
2113
VerifyCallSite(CallSite CS)2114 void Verifier::VerifyCallSite(CallSite CS) {
2115 Instruction *I = CS.getInstruction();
2116
2117 Assert(CS.getCalledValue()->getType()->isPointerTy(),
2118 "Called function must be a pointer!", I);
2119 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2120
2121 Assert(FPTy->getElementType()->isFunctionTy(),
2122 "Called function is not pointer to function type!", I);
2123 FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
2124
2125 // Verify that the correct number of arguments are being passed
2126 if (FTy->isVarArg())
2127 Assert(CS.arg_size() >= FTy->getNumParams(),
2128 "Called function requires more parameters than were provided!", I);
2129 else
2130 Assert(CS.arg_size() == FTy->getNumParams(),
2131 "Incorrect number of arguments passed to called function!", I);
2132
2133 // Verify that all arguments to the call match the function type.
2134 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2135 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2136 "Call parameter type does not match function signature!",
2137 CS.getArgument(i), FTy->getParamType(i), I);
2138
2139 AttributeSet Attrs = CS.getAttributes();
2140
2141 Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
2142 "Attribute after last parameter!", I);
2143
2144 // Verify call attributes.
2145 VerifyFunctionAttrs(FTy, Attrs, I);
2146
2147 // Conservatively check the inalloca argument.
2148 // We have a bug if we can find that there is an underlying alloca without
2149 // inalloca.
2150 if (CS.hasInAllocaArgument()) {
2151 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2152 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2153 Assert(AI->isUsedWithInAlloca(),
2154 "inalloca argument for call has mismatched alloca", AI, I);
2155 }
2156
2157 if (FTy->isVarArg()) {
2158 // FIXME? is 'nest' even legal here?
2159 bool SawNest = false;
2160 bool SawReturned = false;
2161
2162 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2163 if (Attrs.hasAttribute(Idx, Attribute::Nest))
2164 SawNest = true;
2165 if (Attrs.hasAttribute(Idx, Attribute::Returned))
2166 SawReturned = true;
2167 }
2168
2169 // Check attributes on the varargs part.
2170 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2171 Type *Ty = CS.getArgument(Idx-1)->getType();
2172 VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
2173
2174 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2175 Assert(!SawNest, "More than one parameter has attribute nest!", I);
2176 SawNest = true;
2177 }
2178
2179 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2180 Assert(!SawReturned, "More than one parameter has attribute returned!",
2181 I);
2182 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2183 "Incompatible argument and return types for 'returned' "
2184 "attribute",
2185 I);
2186 SawReturned = true;
2187 }
2188
2189 Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
2190 "Attribute 'sret' cannot be used for vararg call arguments!", I);
2191
2192 if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2193 Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
2194 }
2195 }
2196
2197 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2198 if (CS.getCalledFunction() == nullptr ||
2199 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2200 for (FunctionType::param_iterator PI = FTy->param_begin(),
2201 PE = FTy->param_end(); PI != PE; ++PI)
2202 Assert(!(*PI)->isMetadataTy(),
2203 "Function has metadata parameter but isn't an intrinsic", I);
2204 }
2205
2206 visitInstruction(*I);
2207 }
2208
2209 /// Two types are "congruent" if they are identical, or if they are both pointer
2210 /// types with different pointee types and the same address space.
isTypeCongruent(Type * L,Type * R)2211 static bool isTypeCongruent(Type *L, Type *R) {
2212 if (L == R)
2213 return true;
2214 PointerType *PL = dyn_cast<PointerType>(L);
2215 PointerType *PR = dyn_cast<PointerType>(R);
2216 if (!PL || !PR)
2217 return false;
2218 return PL->getAddressSpace() == PR->getAddressSpace();
2219 }
2220
getParameterABIAttributes(int I,AttributeSet Attrs)2221 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2222 static const Attribute::AttrKind ABIAttrs[] = {
2223 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2224 Attribute::InReg, Attribute::Returned};
2225 AttrBuilder Copy;
2226 for (auto AK : ABIAttrs) {
2227 if (Attrs.hasAttribute(I + 1, AK))
2228 Copy.addAttribute(AK);
2229 }
2230 if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2231 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2232 return Copy;
2233 }
2234
verifyMustTailCall(CallInst & CI)2235 void Verifier::verifyMustTailCall(CallInst &CI) {
2236 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2237
2238 // - The caller and callee prototypes must match. Pointer types of
2239 // parameters or return types may differ in pointee type, but not
2240 // address space.
2241 Function *F = CI.getParent()->getParent();
2242 auto GetFnTy = [](Value *V) {
2243 return cast<FunctionType>(
2244 cast<PointerType>(V->getType())->getElementType());
2245 };
2246 FunctionType *CallerTy = GetFnTy(F);
2247 FunctionType *CalleeTy = GetFnTy(CI.getCalledValue());
2248 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2249 "cannot guarantee tail call due to mismatched parameter counts", &CI);
2250 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2251 "cannot guarantee tail call due to mismatched varargs", &CI);
2252 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2253 "cannot guarantee tail call due to mismatched return types", &CI);
2254 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2255 Assert(
2256 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2257 "cannot guarantee tail call due to mismatched parameter types", &CI);
2258 }
2259
2260 // - The calling conventions of the caller and callee must match.
2261 Assert(F->getCallingConv() == CI.getCallingConv(),
2262 "cannot guarantee tail call due to mismatched calling conv", &CI);
2263
2264 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2265 // returned, and inalloca, must match.
2266 AttributeSet CallerAttrs = F->getAttributes();
2267 AttributeSet CalleeAttrs = CI.getAttributes();
2268 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2269 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2270 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2271 Assert(CallerABIAttrs == CalleeABIAttrs,
2272 "cannot guarantee tail call due to mismatched ABI impacting "
2273 "function attributes",
2274 &CI, CI.getOperand(I));
2275 }
2276
2277 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2278 // or a pointer bitcast followed by a ret instruction.
2279 // - The ret instruction must return the (possibly bitcasted) value
2280 // produced by the call or void.
2281 Value *RetVal = &CI;
2282 Instruction *Next = CI.getNextNode();
2283
2284 // Handle the optional bitcast.
2285 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2286 Assert(BI->getOperand(0) == RetVal,
2287 "bitcast following musttail call must use the call", BI);
2288 RetVal = BI;
2289 Next = BI->getNextNode();
2290 }
2291
2292 // Check the return.
2293 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2294 Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
2295 &CI);
2296 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2297 "musttail call result must be returned", Ret);
2298 }
2299
visitCallInst(CallInst & CI)2300 void Verifier::visitCallInst(CallInst &CI) {
2301 VerifyCallSite(&CI);
2302
2303 if (CI.isMustTailCall())
2304 verifyMustTailCall(CI);
2305
2306 if (Function *F = CI.getCalledFunction())
2307 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2308 visitIntrinsicFunctionCall(ID, CI);
2309 }
2310
visitInvokeInst(InvokeInst & II)2311 void Verifier::visitInvokeInst(InvokeInst &II) {
2312 VerifyCallSite(&II);
2313
2314 // Verify that there is a landingpad instruction as the first non-PHI
2315 // instruction of the 'unwind' destination.
2316 Assert(II.getUnwindDest()->isLandingPad(),
2317 "The unwind destination does not have a landingpad instruction!", &II);
2318
2319 if (Function *F = II.getCalledFunction())
2320 // TODO: Ideally we should use visitIntrinsicFunction here. But it uses
2321 // CallInst as an input parameter. It not woth updating this whole
2322 // function only to support statepoint verification.
2323 if (F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint)
2324 VerifyStatepoint(ImmutableCallSite(&II));
2325
2326 visitTerminatorInst(II);
2327 }
2328
2329 /// visitBinaryOperator - Check that both arguments to the binary operator are
2330 /// of the same type!
2331 ///
visitBinaryOperator(BinaryOperator & B)2332 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2333 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2334 "Both operands to a binary operator are not of the same type!", &B);
2335
2336 switch (B.getOpcode()) {
2337 // Check that integer arithmetic operators are only used with
2338 // integral operands.
2339 case Instruction::Add:
2340 case Instruction::Sub:
2341 case Instruction::Mul:
2342 case Instruction::SDiv:
2343 case Instruction::UDiv:
2344 case Instruction::SRem:
2345 case Instruction::URem:
2346 Assert(B.getType()->isIntOrIntVectorTy(),
2347 "Integer arithmetic operators only work with integral types!", &B);
2348 Assert(B.getType() == B.getOperand(0)->getType(),
2349 "Integer arithmetic operators must have same type "
2350 "for operands and result!",
2351 &B);
2352 break;
2353 // Check that floating-point arithmetic operators are only used with
2354 // floating-point operands.
2355 case Instruction::FAdd:
2356 case Instruction::FSub:
2357 case Instruction::FMul:
2358 case Instruction::FDiv:
2359 case Instruction::FRem:
2360 Assert(B.getType()->isFPOrFPVectorTy(),
2361 "Floating-point arithmetic operators only work with "
2362 "floating-point types!",
2363 &B);
2364 Assert(B.getType() == B.getOperand(0)->getType(),
2365 "Floating-point arithmetic operators must have same type "
2366 "for operands and result!",
2367 &B);
2368 break;
2369 // Check that logical operators are only used with integral operands.
2370 case Instruction::And:
2371 case Instruction::Or:
2372 case Instruction::Xor:
2373 Assert(B.getType()->isIntOrIntVectorTy(),
2374 "Logical operators only work with integral types!", &B);
2375 Assert(B.getType() == B.getOperand(0)->getType(),
2376 "Logical operators must have same type for operands and result!",
2377 &B);
2378 break;
2379 case Instruction::Shl:
2380 case Instruction::LShr:
2381 case Instruction::AShr:
2382 Assert(B.getType()->isIntOrIntVectorTy(),
2383 "Shifts only work with integral types!", &B);
2384 Assert(B.getType() == B.getOperand(0)->getType(),
2385 "Shift return type must be same as operands!", &B);
2386 break;
2387 default:
2388 llvm_unreachable("Unknown BinaryOperator opcode!");
2389 }
2390
2391 visitInstruction(B);
2392 }
2393
visitICmpInst(ICmpInst & IC)2394 void Verifier::visitICmpInst(ICmpInst &IC) {
2395 // Check that the operands are the same type
2396 Type *Op0Ty = IC.getOperand(0)->getType();
2397 Type *Op1Ty = IC.getOperand(1)->getType();
2398 Assert(Op0Ty == Op1Ty,
2399 "Both operands to ICmp instruction are not of the same type!", &IC);
2400 // Check that the operands are the right type
2401 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
2402 "Invalid operand types for ICmp instruction", &IC);
2403 // Check that the predicate is valid.
2404 Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
2405 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
2406 "Invalid predicate in ICmp instruction!", &IC);
2407
2408 visitInstruction(IC);
2409 }
2410
visitFCmpInst(FCmpInst & FC)2411 void Verifier::visitFCmpInst(FCmpInst &FC) {
2412 // Check that the operands are the same type
2413 Type *Op0Ty = FC.getOperand(0)->getType();
2414 Type *Op1Ty = FC.getOperand(1)->getType();
2415 Assert(Op0Ty == Op1Ty,
2416 "Both operands to FCmp instruction are not of the same type!", &FC);
2417 // Check that the operands are the right type
2418 Assert(Op0Ty->isFPOrFPVectorTy(),
2419 "Invalid operand types for FCmp instruction", &FC);
2420 // Check that the predicate is valid.
2421 Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
2422 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
2423 "Invalid predicate in FCmp instruction!", &FC);
2424
2425 visitInstruction(FC);
2426 }
2427
visitExtractElementInst(ExtractElementInst & EI)2428 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2429 Assert(
2430 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
2431 "Invalid extractelement operands!", &EI);
2432 visitInstruction(EI);
2433 }
2434
visitInsertElementInst(InsertElementInst & IE)2435 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2436 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
2437 IE.getOperand(2)),
2438 "Invalid insertelement operands!", &IE);
2439 visitInstruction(IE);
2440 }
2441
visitShuffleVectorInst(ShuffleVectorInst & SV)2442 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2443 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
2444 SV.getOperand(2)),
2445 "Invalid shufflevector operands!", &SV);
2446 visitInstruction(SV);
2447 }
2448
visitGetElementPtrInst(GetElementPtrInst & GEP)2449 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2450 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2451
2452 Assert(isa<PointerType>(TargetTy),
2453 "GEP base pointer is not a vector or a vector of pointers", &GEP);
2454 Assert(cast<PointerType>(TargetTy)->getElementType()->isSized(),
2455 "GEP into unsized type!", &GEP);
2456 Assert(GEP.getPointerOperandType()->isVectorTy() ==
2457 GEP.getType()->isVectorTy(),
2458 "Vector GEP must return a vector value", &GEP);
2459
2460 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2461 Type *ElTy =
2462 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2463 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
2464
2465 Assert(GEP.getType()->getScalarType()->isPointerTy() &&
2466 cast<PointerType>(GEP.getType()->getScalarType())
2467 ->getElementType() == ElTy,
2468 "GEP is not of right type for indices!", &GEP, ElTy);
2469
2470 if (GEP.getPointerOperandType()->isVectorTy()) {
2471 // Additional checks for vector GEPs.
2472 unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
2473 Assert(GepWidth == GEP.getType()->getVectorNumElements(),
2474 "Vector GEP result width doesn't match operand's", &GEP);
2475 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2476 Type *IndexTy = Idxs[i]->getType();
2477 Assert(IndexTy->isVectorTy(), "Vector GEP must have vector indices!",
2478 &GEP);
2479 unsigned IndexWidth = IndexTy->getVectorNumElements();
2480 Assert(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
2481 }
2482 }
2483 visitInstruction(GEP);
2484 }
2485
isContiguous(const ConstantRange & A,const ConstantRange & B)2486 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
2487 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
2488 }
2489
visitRangeMetadata(Instruction & I,MDNode * Range,Type * Ty)2490 void Verifier::visitRangeMetadata(Instruction& I,
2491 MDNode* Range, Type* Ty) {
2492 assert(Range &&
2493 Range == I.getMetadata(LLVMContext::MD_range) &&
2494 "precondition violation");
2495
2496 unsigned NumOperands = Range->getNumOperands();
2497 Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
2498 unsigned NumRanges = NumOperands / 2;
2499 Assert(NumRanges >= 1, "It should have at least one range!", Range);
2500
2501 ConstantRange LastRange(1); // Dummy initial value
2502 for (unsigned i = 0; i < NumRanges; ++i) {
2503 ConstantInt *Low =
2504 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
2505 Assert(Low, "The lower limit must be an integer!", Low);
2506 ConstantInt *High =
2507 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
2508 Assert(High, "The upper limit must be an integer!", High);
2509 Assert(High->getType() == Low->getType() && High->getType() == Ty,
2510 "Range types must match instruction type!", &I);
2511
2512 APInt HighV = High->getValue();
2513 APInt LowV = Low->getValue();
2514 ConstantRange CurRange(LowV, HighV);
2515 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
2516 "Range must not be empty!", Range);
2517 if (i != 0) {
2518 Assert(CurRange.intersectWith(LastRange).isEmptySet(),
2519 "Intervals are overlapping", Range);
2520 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
2521 Range);
2522 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
2523 Range);
2524 }
2525 LastRange = ConstantRange(LowV, HighV);
2526 }
2527 if (NumRanges > 2) {
2528 APInt FirstLow =
2529 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
2530 APInt FirstHigh =
2531 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
2532 ConstantRange FirstRange(FirstLow, FirstHigh);
2533 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
2534 "Intervals are overlapping", Range);
2535 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
2536 Range);
2537 }
2538 }
2539
visitLoadInst(LoadInst & LI)2540 void Verifier::visitLoadInst(LoadInst &LI) {
2541 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
2542 Assert(PTy, "Load operand must be a pointer.", &LI);
2543 Type *ElTy = LI.getType();
2544 Assert(LI.getAlignment() <= Value::MaximumAlignment,
2545 "huge alignment values are unsupported", &LI);
2546 if (LI.isAtomic()) {
2547 Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
2548 "Load cannot have Release ordering", &LI);
2549 Assert(LI.getAlignment() != 0,
2550 "Atomic load must specify explicit alignment", &LI);
2551 if (!ElTy->isPointerTy()) {
2552 Assert(ElTy->isIntegerTy(), "atomic load operand must have integer type!",
2553 &LI, ElTy);
2554 unsigned Size = ElTy->getPrimitiveSizeInBits();
2555 Assert(Size >= 8 && !(Size & (Size - 1)),
2556 "atomic load operand must be power-of-two byte-sized integer", &LI,
2557 ElTy);
2558 }
2559 } else {
2560 Assert(LI.getSynchScope() == CrossThread,
2561 "Non-atomic load cannot have SynchronizationScope specified", &LI);
2562 }
2563
2564 visitInstruction(LI);
2565 }
2566
visitStoreInst(StoreInst & SI)2567 void Verifier::visitStoreInst(StoreInst &SI) {
2568 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
2569 Assert(PTy, "Store operand must be a pointer.", &SI);
2570 Type *ElTy = PTy->getElementType();
2571 Assert(ElTy == SI.getOperand(0)->getType(),
2572 "Stored value type does not match pointer operand type!", &SI, ElTy);
2573 Assert(SI.getAlignment() <= Value::MaximumAlignment,
2574 "huge alignment values are unsupported", &SI);
2575 if (SI.isAtomic()) {
2576 Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
2577 "Store cannot have Acquire ordering", &SI);
2578 Assert(SI.getAlignment() != 0,
2579 "Atomic store must specify explicit alignment", &SI);
2580 if (!ElTy->isPointerTy()) {
2581 Assert(ElTy->isIntegerTy(),
2582 "atomic store operand must have integer type!", &SI, ElTy);
2583 unsigned Size = ElTy->getPrimitiveSizeInBits();
2584 Assert(Size >= 8 && !(Size & (Size - 1)),
2585 "atomic store operand must be power-of-two byte-sized integer",
2586 &SI, ElTy);
2587 }
2588 } else {
2589 Assert(SI.getSynchScope() == CrossThread,
2590 "Non-atomic store cannot have SynchronizationScope specified", &SI);
2591 }
2592 visitInstruction(SI);
2593 }
2594
visitAllocaInst(AllocaInst & AI)2595 void Verifier::visitAllocaInst(AllocaInst &AI) {
2596 SmallPtrSet<const Type*, 4> Visited;
2597 PointerType *PTy = AI.getType();
2598 Assert(PTy->getAddressSpace() == 0,
2599 "Allocation instruction pointer not in the generic address space!",
2600 &AI);
2601 Assert(PTy->getElementType()->isSized(&Visited),
2602 "Cannot allocate unsized type", &AI);
2603 Assert(AI.getArraySize()->getType()->isIntegerTy(),
2604 "Alloca array size must have integer type", &AI);
2605 Assert(AI.getAlignment() <= Value::MaximumAlignment,
2606 "huge alignment values are unsupported", &AI);
2607
2608 visitInstruction(AI);
2609 }
2610
visitAtomicCmpXchgInst(AtomicCmpXchgInst & CXI)2611 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
2612
2613 // FIXME: more conditions???
2614 Assert(CXI.getSuccessOrdering() != NotAtomic,
2615 "cmpxchg instructions must be atomic.", &CXI);
2616 Assert(CXI.getFailureOrdering() != NotAtomic,
2617 "cmpxchg instructions must be atomic.", &CXI);
2618 Assert(CXI.getSuccessOrdering() != Unordered,
2619 "cmpxchg instructions cannot be unordered.", &CXI);
2620 Assert(CXI.getFailureOrdering() != Unordered,
2621 "cmpxchg instructions cannot be unordered.", &CXI);
2622 Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
2623 "cmpxchg instructions be at least as constrained on success as fail",
2624 &CXI);
2625 Assert(CXI.getFailureOrdering() != Release &&
2626 CXI.getFailureOrdering() != AcquireRelease,
2627 "cmpxchg failure ordering cannot include release semantics", &CXI);
2628
2629 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
2630 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
2631 Type *ElTy = PTy->getElementType();
2632 Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
2633 ElTy);
2634 unsigned Size = ElTy->getPrimitiveSizeInBits();
2635 Assert(Size >= 8 && !(Size & (Size - 1)),
2636 "cmpxchg operand must be power-of-two byte-sized integer", &CXI, ElTy);
2637 Assert(ElTy == CXI.getOperand(1)->getType(),
2638 "Expected value type does not match pointer operand type!", &CXI,
2639 ElTy);
2640 Assert(ElTy == CXI.getOperand(2)->getType(),
2641 "Stored value type does not match pointer operand type!", &CXI, ElTy);
2642 visitInstruction(CXI);
2643 }
2644
visitAtomicRMWInst(AtomicRMWInst & RMWI)2645 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
2646 Assert(RMWI.getOrdering() != NotAtomic,
2647 "atomicrmw instructions must be atomic.", &RMWI);
2648 Assert(RMWI.getOrdering() != Unordered,
2649 "atomicrmw instructions cannot be unordered.", &RMWI);
2650 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
2651 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
2652 Type *ElTy = PTy->getElementType();
2653 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
2654 &RMWI, ElTy);
2655 unsigned Size = ElTy->getPrimitiveSizeInBits();
2656 Assert(Size >= 8 && !(Size & (Size - 1)),
2657 "atomicrmw operand must be power-of-two byte-sized integer", &RMWI,
2658 ElTy);
2659 Assert(ElTy == RMWI.getOperand(1)->getType(),
2660 "Argument value type does not match pointer operand type!", &RMWI,
2661 ElTy);
2662 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
2663 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
2664 "Invalid binary operation!", &RMWI);
2665 visitInstruction(RMWI);
2666 }
2667
visitFenceInst(FenceInst & FI)2668 void Verifier::visitFenceInst(FenceInst &FI) {
2669 const AtomicOrdering Ordering = FI.getOrdering();
2670 Assert(Ordering == Acquire || Ordering == Release ||
2671 Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
2672 "fence instructions may only have "
2673 "acquire, release, acq_rel, or seq_cst ordering.",
2674 &FI);
2675 visitInstruction(FI);
2676 }
2677
visitExtractValueInst(ExtractValueInst & EVI)2678 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
2679 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
2680 EVI.getIndices()) == EVI.getType(),
2681 "Invalid ExtractValueInst operands!", &EVI);
2682
2683 visitInstruction(EVI);
2684 }
2685
visitInsertValueInst(InsertValueInst & IVI)2686 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
2687 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
2688 IVI.getIndices()) ==
2689 IVI.getOperand(1)->getType(),
2690 "Invalid InsertValueInst operands!", &IVI);
2691
2692 visitInstruction(IVI);
2693 }
2694
visitLandingPadInst(LandingPadInst & LPI)2695 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
2696 BasicBlock *BB = LPI.getParent();
2697
2698 // The landingpad instruction is ill-formed if it doesn't have any clauses and
2699 // isn't a cleanup.
2700 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
2701 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
2702
2703 // The landingpad instruction defines its parent as a landing pad block. The
2704 // landing pad block may be branched to only by the unwind edge of an invoke.
2705 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
2706 const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
2707 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
2708 "Block containing LandingPadInst must be jumped to "
2709 "only by the unwind edge of an invoke.",
2710 &LPI);
2711 }
2712
2713 // The landingpad instruction must be the first non-PHI instruction in the
2714 // block.
2715 Assert(LPI.getParent()->getLandingPadInst() == &LPI,
2716 "LandingPadInst not the first non-PHI instruction in the block.",
2717 &LPI);
2718
2719 // The personality functions for all landingpad instructions within the same
2720 // function should match.
2721 if (PersonalityFn)
2722 Assert(LPI.getPersonalityFn() == PersonalityFn,
2723 "Personality function doesn't match others in function", &LPI);
2724 PersonalityFn = LPI.getPersonalityFn();
2725
2726 // All operands must be constants.
2727 Assert(isa<Constant>(PersonalityFn), "Personality function is not constant!",
2728 &LPI);
2729 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
2730 Constant *Clause = LPI.getClause(i);
2731 if (LPI.isCatch(i)) {
2732 Assert(isa<PointerType>(Clause->getType()),
2733 "Catch operand does not have pointer type!", &LPI);
2734 } else {
2735 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
2736 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
2737 "Filter operand is not an array of constants!", &LPI);
2738 }
2739 }
2740
2741 visitInstruction(LPI);
2742 }
2743
verifyDominatesUse(Instruction & I,unsigned i)2744 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
2745 Instruction *Op = cast<Instruction>(I.getOperand(i));
2746 // If the we have an invalid invoke, don't try to compute the dominance.
2747 // We already reject it in the invoke specific checks and the dominance
2748 // computation doesn't handle multiple edges.
2749 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
2750 if (II->getNormalDest() == II->getUnwindDest())
2751 return;
2752 }
2753
2754 const Use &U = I.getOperandUse(i);
2755 Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
2756 "Instruction does not dominate all uses!", Op, &I);
2757 }
2758
2759 /// verifyInstruction - Verify that an instruction is well formed.
2760 ///
visitInstruction(Instruction & I)2761 void Verifier::visitInstruction(Instruction &I) {
2762 BasicBlock *BB = I.getParent();
2763 Assert(BB, "Instruction not embedded in basic block!", &I);
2764
2765 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
2766 for (User *U : I.users()) {
2767 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
2768 "Only PHI nodes may reference their own value!", &I);
2769 }
2770 }
2771
2772 // Check that void typed values don't have names
2773 Assert(!I.getType()->isVoidTy() || !I.hasName(),
2774 "Instruction has a name, but provides a void value!", &I);
2775
2776 // Check that the return value of the instruction is either void or a legal
2777 // value type.
2778 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
2779 "Instruction returns a non-scalar type!", &I);
2780
2781 // Check that the instruction doesn't produce metadata. Calls are already
2782 // checked against the callee type.
2783 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
2784 "Invalid use of metadata!", &I);
2785
2786 // Check that all uses of the instruction, if they are instructions
2787 // themselves, actually have parent basic blocks. If the use is not an
2788 // instruction, it is an error!
2789 for (Use &U : I.uses()) {
2790 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
2791 Assert(Used->getParent() != nullptr,
2792 "Instruction referencing"
2793 " instruction not embedded in a basic block!",
2794 &I, Used);
2795 else {
2796 CheckFailed("Use of instruction is not an instruction!", U);
2797 return;
2798 }
2799 }
2800
2801 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2802 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
2803
2804 // Check to make sure that only first-class-values are operands to
2805 // instructions.
2806 if (!I.getOperand(i)->getType()->isFirstClassType()) {
2807 Assert(0, "Instruction operands must be first-class values!", &I);
2808 }
2809
2810 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
2811 // Check to make sure that the "address of" an intrinsic function is never
2812 // taken.
2813 Assert(
2814 !F->isIntrinsic() ||
2815 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
2816 "Cannot take the address of an intrinsic!", &I);
2817 Assert(
2818 !F->isIntrinsic() || isa<CallInst>(I) ||
2819 F->getIntrinsicID() == Intrinsic::donothing ||
2820 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
2821 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
2822 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
2823 "Cannot invoke an intrinsinc other than"
2824 " donothing or patchpoint",
2825 &I);
2826 Assert(F->getParent() == M, "Referencing function in another module!",
2827 &I);
2828 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
2829 Assert(OpBB->getParent() == BB->getParent(),
2830 "Referring to a basic block in another function!", &I);
2831 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
2832 Assert(OpArg->getParent() == BB->getParent(),
2833 "Referring to an argument in another function!", &I);
2834 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
2835 Assert(GV->getParent() == M, "Referencing global in another module!", &I);
2836 } else if (isa<Instruction>(I.getOperand(i))) {
2837 verifyDominatesUse(I, i);
2838 } else if (isa<InlineAsm>(I.getOperand(i))) {
2839 Assert((i + 1 == e && isa<CallInst>(I)) ||
2840 (i + 3 == e && isa<InvokeInst>(I)),
2841 "Cannot take the address of an inline asm!", &I);
2842 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
2843 if (CE->getType()->isPtrOrPtrVectorTy()) {
2844 // If we have a ConstantExpr pointer, we need to see if it came from an
2845 // illegal bitcast (inttoptr <constant int> )
2846 SmallVector<const ConstantExpr *, 4> Stack;
2847 SmallPtrSet<const ConstantExpr *, 4> Visited;
2848 Stack.push_back(CE);
2849
2850 while (!Stack.empty()) {
2851 const ConstantExpr *V = Stack.pop_back_val();
2852 if (!Visited.insert(V).second)
2853 continue;
2854
2855 VerifyConstantExprBitcastType(V);
2856
2857 for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
2858 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
2859 Stack.push_back(Op);
2860 }
2861 }
2862 }
2863 }
2864 }
2865
2866 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
2867 Assert(I.getType()->isFPOrFPVectorTy(),
2868 "fpmath requires a floating point result!", &I);
2869 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
2870 if (ConstantFP *CFP0 =
2871 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
2872 APFloat Accuracy = CFP0->getValueAPF();
2873 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
2874 "fpmath accuracy not a positive number!", &I);
2875 } else {
2876 Assert(false, "invalid fpmath accuracy!", &I);
2877 }
2878 }
2879
2880 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
2881 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
2882 "Ranges are only for loads, calls and invokes!", &I);
2883 visitRangeMetadata(I, Range, I.getType());
2884 }
2885
2886 if (I.getMetadata(LLVMContext::MD_nonnull)) {
2887 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
2888 &I);
2889 Assert(isa<LoadInst>(I),
2890 "nonnull applies only to load instructions, use attributes"
2891 " for calls or invokes",
2892 &I);
2893 }
2894
2895 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
2896 Assert(isa<MDLocation>(N), "invalid !dbg metadata attachment", &I, N);
2897 visitMDNode(*N);
2898 }
2899
2900 InstsInThisBlock.insert(&I);
2901 }
2902
2903 /// VerifyIntrinsicType - Verify that the specified type (which comes from an
2904 /// intrinsic argument or return value) matches the type constraints specified
2905 /// by the .td file (e.g. an "any integer" argument really is an integer).
2906 ///
2907 /// This return true on error but does not print a message.
VerifyIntrinsicType(Type * Ty,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys)2908 bool Verifier::VerifyIntrinsicType(Type *Ty,
2909 ArrayRef<Intrinsic::IITDescriptor> &Infos,
2910 SmallVectorImpl<Type*> &ArgTys) {
2911 using namespace Intrinsic;
2912
2913 // If we ran out of descriptors, there are too many arguments.
2914 if (Infos.empty()) return true;
2915 IITDescriptor D = Infos.front();
2916 Infos = Infos.slice(1);
2917
2918 switch (D.Kind) {
2919 case IITDescriptor::Void: return !Ty->isVoidTy();
2920 case IITDescriptor::VarArg: return true;
2921 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
2922 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
2923 case IITDescriptor::Half: return !Ty->isHalfTy();
2924 case IITDescriptor::Float: return !Ty->isFloatTy();
2925 case IITDescriptor::Double: return !Ty->isDoubleTy();
2926 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
2927 case IITDescriptor::Vector: {
2928 VectorType *VT = dyn_cast<VectorType>(Ty);
2929 return !VT || VT->getNumElements() != D.Vector_Width ||
2930 VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
2931 }
2932 case IITDescriptor::Pointer: {
2933 PointerType *PT = dyn_cast<PointerType>(Ty);
2934 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
2935 VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
2936 }
2937
2938 case IITDescriptor::Struct: {
2939 StructType *ST = dyn_cast<StructType>(Ty);
2940 if (!ST || ST->getNumElements() != D.Struct_NumElements)
2941 return true;
2942
2943 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
2944 if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
2945 return true;
2946 return false;
2947 }
2948
2949 case IITDescriptor::Argument:
2950 // Two cases here - If this is the second occurrence of an argument, verify
2951 // that the later instance matches the previous instance.
2952 if (D.getArgumentNumber() < ArgTys.size())
2953 return Ty != ArgTys[D.getArgumentNumber()];
2954
2955 // Otherwise, if this is the first instance of an argument, record it and
2956 // verify the "Any" kind.
2957 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
2958 ArgTys.push_back(Ty);
2959
2960 switch (D.getArgumentKind()) {
2961 case IITDescriptor::AK_Any: return false; // Success
2962 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
2963 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
2964 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
2965 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
2966 }
2967 llvm_unreachable("all argument kinds not covered");
2968
2969 case IITDescriptor::ExtendArgument: {
2970 // This may only be used when referring to a previous vector argument.
2971 if (D.getArgumentNumber() >= ArgTys.size())
2972 return true;
2973
2974 Type *NewTy = ArgTys[D.getArgumentNumber()];
2975 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
2976 NewTy = VectorType::getExtendedElementVectorType(VTy);
2977 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
2978 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
2979 else
2980 return true;
2981
2982 return Ty != NewTy;
2983 }
2984 case IITDescriptor::TruncArgument: {
2985 // This may only be used when referring to a previous vector argument.
2986 if (D.getArgumentNumber() >= ArgTys.size())
2987 return true;
2988
2989 Type *NewTy = ArgTys[D.getArgumentNumber()];
2990 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
2991 NewTy = VectorType::getTruncatedElementVectorType(VTy);
2992 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
2993 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
2994 else
2995 return true;
2996
2997 return Ty != NewTy;
2998 }
2999 case IITDescriptor::HalfVecArgument:
3000 // This may only be used when referring to a previous vector argument.
3001 return D.getArgumentNumber() >= ArgTys.size() ||
3002 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
3003 VectorType::getHalfElementsVectorType(
3004 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
3005 case IITDescriptor::SameVecWidthArgument: {
3006 if (D.getArgumentNumber() >= ArgTys.size())
3007 return true;
3008 VectorType * ReferenceType =
3009 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
3010 VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
3011 if (!ThisArgType || !ReferenceType ||
3012 (ReferenceType->getVectorNumElements() !=
3013 ThisArgType->getVectorNumElements()))
3014 return true;
3015 return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
3016 Infos, ArgTys);
3017 }
3018 case IITDescriptor::PtrToArgument: {
3019 if (D.getArgumentNumber() >= ArgTys.size())
3020 return true;
3021 Type * ReferenceType = ArgTys[D.getArgumentNumber()];
3022 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
3023 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
3024 }
3025 case IITDescriptor::VecOfPtrsToElt: {
3026 if (D.getArgumentNumber() >= ArgTys.size())
3027 return true;
3028 VectorType * ReferenceType =
3029 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
3030 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
3031 if (!ThisArgVecTy || !ReferenceType ||
3032 (ReferenceType->getVectorNumElements() !=
3033 ThisArgVecTy->getVectorNumElements()))
3034 return true;
3035 PointerType *ThisArgEltTy =
3036 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
3037 if (!ThisArgEltTy)
3038 return true;
3039 return (!(ThisArgEltTy->getElementType() ==
3040 ReferenceType->getVectorElementType()));
3041 }
3042 }
3043 llvm_unreachable("unhandled");
3044 }
3045
3046 /// \brief Verify if the intrinsic has variable arguments.
3047 /// This method is intended to be called after all the fixed arguments have been
3048 /// verified first.
3049 ///
3050 /// This method returns true on error and does not print an error message.
3051 bool
VerifyIntrinsicIsVarArg(bool isVarArg,ArrayRef<Intrinsic::IITDescriptor> & Infos)3052 Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
3053 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
3054 using namespace Intrinsic;
3055
3056 // If there are no descriptors left, then it can't be a vararg.
3057 if (Infos.empty())
3058 return isVarArg;
3059
3060 // There should be only one descriptor remaining at this point.
3061 if (Infos.size() != 1)
3062 return true;
3063
3064 // Check and verify the descriptor.
3065 IITDescriptor D = Infos.front();
3066 Infos = Infos.slice(1);
3067 if (D.Kind == IITDescriptor::VarArg)
3068 return !isVarArg;
3069
3070 return true;
3071 }
3072
3073 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
3074 ///
visitIntrinsicFunctionCall(Intrinsic::ID ID,CallInst & CI)3075 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
3076 Function *IF = CI.getCalledFunction();
3077 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3078 IF);
3079
3080 // Verify that the intrinsic prototype lines up with what the .td files
3081 // describe.
3082 FunctionType *IFTy = IF->getFunctionType();
3083 bool IsVarArg = IFTy->isVarArg();
3084
3085 SmallVector<Intrinsic::IITDescriptor, 8> Table;
3086 getIntrinsicInfoTableEntries(ID, Table);
3087 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3088
3089 SmallVector<Type *, 4> ArgTys;
3090 Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
3091 "Intrinsic has incorrect return type!", IF);
3092 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3093 Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
3094 "Intrinsic has incorrect argument type!", IF);
3095
3096 // Verify if the intrinsic call matches the vararg property.
3097 if (IsVarArg)
3098 Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
3099 "Intrinsic was not defined with variable arguments!", IF);
3100 else
3101 Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
3102 "Callsite was not defined with variable arguments!", IF);
3103
3104 // All descriptors should be absorbed by now.
3105 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3106
3107 // Now that we have the intrinsic ID and the actual argument types (and we
3108 // know they are legal for the intrinsic!) get the intrinsic name through the
3109 // usual means. This allows us to verify the mangling of argument types into
3110 // the name.
3111 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3112 Assert(ExpectedName == IF->getName(),
3113 "Intrinsic name not mangled correctly for type arguments! "
3114 "Should be: " +
3115 ExpectedName,
3116 IF);
3117
3118 // If the intrinsic takes MDNode arguments, verify that they are either global
3119 // or are local to *this* function.
3120 for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
3121 if (auto *MD = dyn_cast<MetadataAsValue>(CI.getArgOperand(i)))
3122 visitMetadataAsValue(*MD, CI.getParent()->getParent());
3123
3124 switch (ID) {
3125 default:
3126 break;
3127 case Intrinsic::ctlz: // llvm.ctlz
3128 case Intrinsic::cttz: // llvm.cttz
3129 Assert(isa<ConstantInt>(CI.getArgOperand(1)),
3130 "is_zero_undef argument of bit counting intrinsics must be a "
3131 "constant int",
3132 &CI);
3133 break;
3134 case Intrinsic::dbg_declare: // llvm.dbg.declare
3135 Assert(isa<MetadataAsValue>(CI.getArgOperand(0)),
3136 "invalid llvm.dbg.declare intrinsic call 1", &CI);
3137 visitDbgIntrinsic("declare", cast<DbgDeclareInst>(CI));
3138 break;
3139 case Intrinsic::dbg_value: // llvm.dbg.value
3140 visitDbgIntrinsic("value", cast<DbgValueInst>(CI));
3141 break;
3142 case Intrinsic::memcpy:
3143 case Intrinsic::memmove:
3144 case Intrinsic::memset: {
3145 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CI.getArgOperand(3));
3146 Assert(AlignCI,
3147 "alignment argument of memory intrinsics must be a constant int",
3148 &CI);
3149 const APInt &AlignVal = AlignCI->getValue();
3150 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
3151 "alignment argument of memory intrinsics must be a power of 2", &CI);
3152 Assert(isa<ConstantInt>(CI.getArgOperand(4)),
3153 "isvolatile argument of memory intrinsics must be a constant int",
3154 &CI);
3155 break;
3156 }
3157 case Intrinsic::gcroot:
3158 case Intrinsic::gcwrite:
3159 case Intrinsic::gcread:
3160 if (ID == Intrinsic::gcroot) {
3161 AllocaInst *AI =
3162 dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
3163 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
3164 Assert(isa<Constant>(CI.getArgOperand(1)),
3165 "llvm.gcroot parameter #2 must be a constant.", &CI);
3166 if (!AI->getType()->getElementType()->isPointerTy()) {
3167 Assert(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
3168 "llvm.gcroot parameter #1 must either be a pointer alloca, "
3169 "or argument #2 must be a non-null constant.",
3170 &CI);
3171 }
3172 }
3173
3174 Assert(CI.getParent()->getParent()->hasGC(),
3175 "Enclosing function does not use GC.", &CI);
3176 break;
3177 case Intrinsic::init_trampoline:
3178 Assert(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
3179 "llvm.init_trampoline parameter #2 must resolve to a function.",
3180 &CI);
3181 break;
3182 case Intrinsic::prefetch:
3183 Assert(isa<ConstantInt>(CI.getArgOperand(1)) &&
3184 isa<ConstantInt>(CI.getArgOperand(2)) &&
3185 cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
3186 cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
3187 "invalid arguments to llvm.prefetch", &CI);
3188 break;
3189 case Intrinsic::stackprotector:
3190 Assert(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
3191 "llvm.stackprotector parameter #2 must resolve to an alloca.", &CI);
3192 break;
3193 case Intrinsic::lifetime_start:
3194 case Intrinsic::lifetime_end:
3195 case Intrinsic::invariant_start:
3196 Assert(isa<ConstantInt>(CI.getArgOperand(0)),
3197 "size argument of memory use markers must be a constant integer",
3198 &CI);
3199 break;
3200 case Intrinsic::invariant_end:
3201 Assert(isa<ConstantInt>(CI.getArgOperand(1)),
3202 "llvm.invariant.end parameter #2 must be a constant integer", &CI);
3203 break;
3204
3205 case Intrinsic::frameescape: {
3206 BasicBlock *BB = CI.getParent();
3207 Assert(BB == &BB->getParent()->front(),
3208 "llvm.frameescape used outside of entry block", &CI);
3209 Assert(!SawFrameEscape,
3210 "multiple calls to llvm.frameescape in one function", &CI);
3211 for (Value *Arg : CI.arg_operands()) {
3212 if (isa<ConstantPointerNull>(Arg))
3213 continue; // Null values are allowed as placeholders.
3214 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
3215 Assert(AI && AI->isStaticAlloca(),
3216 "llvm.frameescape only accepts static allocas", &CI);
3217 }
3218 FrameEscapeInfo[BB->getParent()].first = CI.getNumArgOperands();
3219 SawFrameEscape = true;
3220 break;
3221 }
3222 case Intrinsic::framerecover: {
3223 Value *FnArg = CI.getArgOperand(0)->stripPointerCasts();
3224 Function *Fn = dyn_cast<Function>(FnArg);
3225 Assert(Fn && !Fn->isDeclaration(),
3226 "llvm.framerecover first "
3227 "argument must be function defined in this module",
3228 &CI);
3229 auto *IdxArg = dyn_cast<ConstantInt>(CI.getArgOperand(2));
3230 Assert(IdxArg, "idx argument of llvm.framerecover must be a constant int",
3231 &CI);
3232 auto &Entry = FrameEscapeInfo[Fn];
3233 Entry.second = unsigned(
3234 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
3235 break;
3236 }
3237
3238 case Intrinsic::experimental_gc_statepoint:
3239 Assert(!CI.isInlineAsm(),
3240 "gc.statepoint support for inline assembly unimplemented", &CI);
3241 Assert(CI.getParent()->getParent()->hasGC(),
3242 "Enclosing function does not use GC.", &CI);
3243
3244 VerifyStatepoint(ImmutableCallSite(&CI));
3245 break;
3246 case Intrinsic::experimental_gc_result_int:
3247 case Intrinsic::experimental_gc_result_float:
3248 case Intrinsic::experimental_gc_result_ptr:
3249 case Intrinsic::experimental_gc_result: {
3250 Assert(CI.getParent()->getParent()->hasGC(),
3251 "Enclosing function does not use GC.", &CI);
3252 // Are we tied to a statepoint properly?
3253 CallSite StatepointCS(CI.getArgOperand(0));
3254 const Function *StatepointFn =
3255 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
3256 Assert(StatepointFn && StatepointFn->isDeclaration() &&
3257 StatepointFn->getIntrinsicID() ==
3258 Intrinsic::experimental_gc_statepoint,
3259 "gc.result operand #1 must be from a statepoint", &CI,
3260 CI.getArgOperand(0));
3261
3262 // Assert that result type matches wrapped callee.
3263 const Value *Target = StatepointCS.getArgument(0);
3264 const PointerType *PT = cast<PointerType>(Target->getType());
3265 const FunctionType *TargetFuncType =
3266 cast<FunctionType>(PT->getElementType());
3267 Assert(CI.getType() == TargetFuncType->getReturnType(),
3268 "gc.result result type does not match wrapped callee", &CI);
3269 break;
3270 }
3271 case Intrinsic::experimental_gc_relocate: {
3272 Assert(CI.getNumArgOperands() == 3, "wrong number of arguments", &CI);
3273
3274 // Check that this relocate is correctly tied to the statepoint
3275
3276 // This is case for relocate on the unwinding path of an invoke statepoint
3277 if (ExtractValueInst *ExtractValue =
3278 dyn_cast<ExtractValueInst>(CI.getArgOperand(0))) {
3279 Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),
3280 "gc relocate on unwind path incorrectly linked to the statepoint",
3281 &CI);
3282
3283 const BasicBlock *invokeBB =
3284 ExtractValue->getParent()->getUniquePredecessor();
3285
3286 // Landingpad relocates should have only one predecessor with invoke
3287 // statepoint terminator
3288 Assert(invokeBB, "safepoints should have unique landingpads",
3289 ExtractValue->getParent());
3290 Assert(invokeBB->getTerminator(), "safepoint block should be well formed",
3291 invokeBB);
3292 Assert(isStatepoint(invokeBB->getTerminator()),
3293 "gc relocate should be linked to a statepoint", invokeBB);
3294 }
3295 else {
3296 // In all other cases relocate should be tied to the statepoint directly.
3297 // This covers relocates on a normal return path of invoke statepoint and
3298 // relocates of a call statepoint
3299 auto Token = CI.getArgOperand(0);
3300 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
3301 "gc relocate is incorrectly tied to the statepoint", &CI, Token);
3302 }
3303
3304 // Verify rest of the relocate arguments
3305
3306 GCRelocateOperands ops(&CI);
3307 ImmutableCallSite StatepointCS(ops.statepoint());
3308
3309 // Both the base and derived must be piped through the safepoint
3310 Value* Base = CI.getArgOperand(1);
3311 Assert(isa<ConstantInt>(Base),
3312 "gc.relocate operand #2 must be integer offset", &CI);
3313
3314 Value* Derived = CI.getArgOperand(2);
3315 Assert(isa<ConstantInt>(Derived),
3316 "gc.relocate operand #3 must be integer offset", &CI);
3317
3318 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
3319 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
3320 // Check the bounds
3321 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
3322 "gc.relocate: statepoint base index out of bounds", &CI);
3323 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
3324 "gc.relocate: statepoint derived index out of bounds", &CI);
3325
3326 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
3327 // section of the statepoint's argument
3328 Assert(StatepointCS.arg_size() > 0,
3329 "gc.statepoint: insufficient arguments");
3330 Assert(isa<ConstantInt>(StatepointCS.getArgument(1)),
3331 "gc.statement: number of call arguments must be constant integer");
3332 const unsigned NumCallArgs =
3333 cast<ConstantInt>(StatepointCS.getArgument(1))->getZExtValue();
3334 Assert(StatepointCS.arg_size() > NumCallArgs+3,
3335 "gc.statepoint: mismatch in number of call arguments");
3336 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs+3)),
3337 "gc.statepoint: number of deoptimization arguments must be "
3338 "a constant integer");
3339 const int NumDeoptArgs =
3340 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 3))->getZExtValue();
3341 const int GCParamArgsStart = NumCallArgs + NumDeoptArgs + 4;
3342 const int GCParamArgsEnd = StatepointCS.arg_size();
3343 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
3344 "gc.relocate: statepoint base index doesn't fall within the "
3345 "'gc parameters' section of the statepoint call",
3346 &CI);
3347 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
3348 "gc.relocate: statepoint derived index doesn't fall within the "
3349 "'gc parameters' section of the statepoint call",
3350 &CI);
3351
3352 // Assert that the result type matches the type of the relocated pointer
3353 GCRelocateOperands Operands(&CI);
3354 Assert(Operands.derivedPtr()->getType() == CI.getType(),
3355 "gc.relocate: relocating a pointer shouldn't change its type", &CI);
3356 break;
3357 }
3358 };
3359 }
3360
3361 /// \brief Carefully grab the subprogram from a local scope.
3362 ///
3363 /// This carefully grabs the subprogram from a local scope, avoiding the
3364 /// built-in assertions that would typically fire.
getSubprogram(Metadata * LocalScope)3365 static MDSubprogram *getSubprogram(Metadata *LocalScope) {
3366 if (!LocalScope)
3367 return nullptr;
3368
3369 if (auto *SP = dyn_cast<MDSubprogram>(LocalScope))
3370 return SP;
3371
3372 if (auto *LB = dyn_cast<MDLexicalBlockBase>(LocalScope))
3373 return getSubprogram(LB->getRawScope());
3374
3375 // Just return null; broken scope chains are checked elsewhere.
3376 assert(!isa<MDLocalScope>(LocalScope) && "Unknown type of local scope");
3377 return nullptr;
3378 }
3379
3380 template <class DbgIntrinsicTy>
visitDbgIntrinsic(StringRef Kind,DbgIntrinsicTy & DII)3381 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
3382 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
3383 Assert(isa<ValueAsMetadata>(MD) ||
3384 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
3385 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
3386 Assert(isa<MDLocalVariable>(DII.getRawVariable()),
3387 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
3388 DII.getRawVariable());
3389 Assert(isa<MDExpression>(DII.getRawExpression()),
3390 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
3391 DII.getRawExpression());
3392
3393 // Ignore broken !dbg attachments; they're checked elsewhere.
3394 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
3395 if (!isa<MDLocation>(N))
3396 return;
3397
3398 BasicBlock *BB = DII.getParent();
3399 Function *F = BB ? BB->getParent() : nullptr;
3400
3401 // The scopes for variables and !dbg attachments must agree.
3402 MDLocalVariable *Var = DII.getVariable();
3403 MDLocation *Loc = DII.getDebugLoc();
3404 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
3405 &DII, BB, F);
3406
3407 MDSubprogram *VarSP = getSubprogram(Var->getRawScope());
3408 MDSubprogram *LocSP = getSubprogram(Loc->getRawScope());
3409 if (!VarSP || !LocSP)
3410 return; // Broken scope chains are checked elsewhere.
3411
3412 Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
3413 " variable and !dbg attachment",
3414 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
3415 Loc->getScope()->getSubprogram());
3416 }
3417
3418 template <class MapTy>
getVariableSize(const MDLocalVariable & V,const MapTy & Map)3419 static uint64_t getVariableSize(const MDLocalVariable &V, const MapTy &Map) {
3420 // Be careful of broken types (checked elsewhere).
3421 const Metadata *RawType = V.getRawType();
3422 while (RawType) {
3423 // Try to get the size directly.
3424 if (auto *T = dyn_cast<MDType>(RawType))
3425 if (uint64_t Size = T->getSizeInBits())
3426 return Size;
3427
3428 if (auto *DT = dyn_cast<MDDerivedType>(RawType)) {
3429 // Look at the base type.
3430 RawType = DT->getRawBaseType();
3431 continue;
3432 }
3433
3434 if (auto *S = dyn_cast<MDString>(RawType)) {
3435 // Don't error on missing types (checked elsewhere).
3436 RawType = Map.lookup(S);
3437 continue;
3438 }
3439
3440 // Missing type or size.
3441 break;
3442 }
3443
3444 // Fail gracefully.
3445 return 0;
3446 }
3447
3448 template <class MapTy>
verifyBitPieceExpression(const DbgInfoIntrinsic & I,const MapTy & TypeRefs)3449 void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I,
3450 const MapTy &TypeRefs) {
3451 MDLocalVariable *V;
3452 MDExpression *E;
3453 if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
3454 V = dyn_cast_or_null<MDLocalVariable>(DVI->getRawVariable());
3455 E = dyn_cast_or_null<MDExpression>(DVI->getRawExpression());
3456 } else {
3457 auto *DDI = cast<DbgDeclareInst>(&I);
3458 V = dyn_cast_or_null<MDLocalVariable>(DDI->getRawVariable());
3459 E = dyn_cast_or_null<MDExpression>(DDI->getRawExpression());
3460 }
3461
3462 // We don't know whether this intrinsic verified correctly.
3463 if (!V || !E || !E->isValid())
3464 return;
3465
3466 // Nothing to do if this isn't a bit piece expression.
3467 if (!E->isBitPiece())
3468 return;
3469
3470 // If there's no size, the type is broken, but that should be checked
3471 // elsewhere.
3472 uint64_t VarSize = getVariableSize(*V, TypeRefs);
3473 if (!VarSize)
3474 return;
3475
3476 unsigned PieceSize = E->getBitPieceSize();
3477 unsigned PieceOffset = E->getBitPieceOffset();
3478 Assert(PieceSize + PieceOffset <= VarSize,
3479 "piece is larger than or outside of variable", &I, V, E);
3480 Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
3481 }
3482
visitUnresolvedTypeRef(const MDString * S,const MDNode * N)3483 void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
3484 // This is in its own function so we get an error for each bad type ref (not
3485 // just the first).
3486 Assert(false, "unresolved type ref", S, N);
3487 }
3488
verifyTypeRefs()3489 void Verifier::verifyTypeRefs() {
3490 auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
3491 if (!CUs)
3492 return;
3493
3494 // Visit all the compile units again to map the type references.
3495 SmallDenseMap<const MDString *, const MDType *, 32> TypeRefs;
3496 for (auto *CU : CUs->operands())
3497 if (auto Ts = cast<MDCompileUnit>(CU)->getRetainedTypes())
3498 for (MDType *Op : Ts)
3499 if (auto *T = dyn_cast<MDCompositeType>(Op))
3500 if (auto *S = T->getRawIdentifier()) {
3501 UnresolvedTypeRefs.erase(S);
3502 TypeRefs.insert(std::make_pair(S, T));
3503 }
3504
3505 // Verify debug info intrinsic bit piece expressions. This needs a second
3506 // pass through the intructions, since we haven't built TypeRefs yet when
3507 // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate
3508 // later/now would queue up some that could be later deleted.
3509 for (const Function &F : *M)
3510 for (const BasicBlock &BB : F)
3511 for (const Instruction &I : BB)
3512 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3513 verifyBitPieceExpression(*DII, TypeRefs);
3514
3515 // Return early if all typerefs were resolved.
3516 if (UnresolvedTypeRefs.empty())
3517 return;
3518
3519 // Sort the unresolved references by name so the output is deterministic.
3520 typedef std::pair<const MDString *, const MDNode *> TypeRef;
3521 SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(),
3522 UnresolvedTypeRefs.end());
3523 std::sort(Unresolved.begin(), Unresolved.end(),
3524 [](const TypeRef &LHS, const TypeRef &RHS) {
3525 return LHS.first->getString() < RHS.first->getString();
3526 });
3527
3528 // Visit the unresolved refs (printing out the errors).
3529 for (const TypeRef &TR : Unresolved)
3530 visitUnresolvedTypeRef(TR.first, TR.second);
3531 }
3532
3533 //===----------------------------------------------------------------------===//
3534 // Implement the public interfaces to this file...
3535 //===----------------------------------------------------------------------===//
3536
verifyFunction(const Function & f,raw_ostream * OS)3537 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
3538 Function &F = const_cast<Function &>(f);
3539 assert(!F.isDeclaration() && "Cannot verify external functions");
3540
3541 raw_null_ostream NullStr;
3542 Verifier V(OS ? *OS : NullStr);
3543
3544 // Note that this function's return value is inverted from what you would
3545 // expect of a function called "verify".
3546 return !V.verify(F);
3547 }
3548
verifyModule(const Module & M,raw_ostream * OS)3549 bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
3550 raw_null_ostream NullStr;
3551 Verifier V(OS ? *OS : NullStr);
3552
3553 bool Broken = false;
3554 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
3555 if (!I->isDeclaration() && !I->isMaterializable())
3556 Broken |= !V.verify(*I);
3557
3558 // Note that this function's return value is inverted from what you would
3559 // expect of a function called "verify".
3560 return !V.verify(M) || Broken;
3561 }
3562
3563 namespace {
3564 struct VerifierLegacyPass : public FunctionPass {
3565 static char ID;
3566
3567 Verifier V;
3568 bool FatalErrors;
3569
VerifierLegacyPass__anon2bfcd1980411::VerifierLegacyPass3570 VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
3571 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
3572 }
VerifierLegacyPass__anon2bfcd1980411::VerifierLegacyPass3573 explicit VerifierLegacyPass(bool FatalErrors)
3574 : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
3575 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
3576 }
3577
runOnFunction__anon2bfcd1980411::VerifierLegacyPass3578 bool runOnFunction(Function &F) override {
3579 if (!V.verify(F) && FatalErrors)
3580 report_fatal_error("Broken function found, compilation aborted!");
3581
3582 return false;
3583 }
3584
doFinalization__anon2bfcd1980411::VerifierLegacyPass3585 bool doFinalization(Module &M) override {
3586 if (!V.verify(M) && FatalErrors)
3587 report_fatal_error("Broken module found, compilation aborted!");
3588
3589 return false;
3590 }
3591
getAnalysisUsage__anon2bfcd1980411::VerifierLegacyPass3592 void getAnalysisUsage(AnalysisUsage &AU) const override {
3593 AU.setPreservesAll();
3594 }
3595 };
3596 }
3597
3598 char VerifierLegacyPass::ID = 0;
3599 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
3600
createVerifierPass(bool FatalErrors)3601 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
3602 return new VerifierLegacyPass(FatalErrors);
3603 }
3604
run(Module & M)3605 PreservedAnalyses VerifierPass::run(Module &M) {
3606 if (verifyModule(M, &dbgs()) && FatalErrors)
3607 report_fatal_error("Broken module found, compilation aborted!");
3608
3609 return PreservedAnalyses::all();
3610 }
3611
run(Function & F)3612 PreservedAnalyses VerifierPass::run(Function &F) {
3613 if (verifyFunction(F, &dbgs()) && FatalErrors)
3614 report_fatal_error("Broken function found, compilation aborted!");
3615
3616 return PreservedAnalyses::all();
3617 }
3618