1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31 //
32 // Tests for Google Test itself. This verifies that the basic constructs of
33 // Google Test work.
34
35 #include "gtest/gtest.h"
36
37 // Verifies that the command line flag variables can be accessed
38 // in code once <gtest/gtest.h> has been #included.
39 // Do not move it after other #includes.
TEST(CommandLineFlagsTest,CanBeAccessedInCodeOnceGTestHIsIncluded)40 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
41 bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
42 || testing::GTEST_FLAG(break_on_failure)
43 || testing::GTEST_FLAG(catch_exceptions)
44 || testing::GTEST_FLAG(color) != "unknown"
45 || testing::GTEST_FLAG(filter) != "unknown"
46 || testing::GTEST_FLAG(list_tests)
47 || testing::GTEST_FLAG(output) != "unknown"
48 || testing::GTEST_FLAG(print_time)
49 || testing::GTEST_FLAG(random_seed)
50 || testing::GTEST_FLAG(repeat) > 0
51 || testing::GTEST_FLAG(show_internal_stack_frames)
52 || testing::GTEST_FLAG(shuffle)
53 || testing::GTEST_FLAG(stack_trace_depth) > 0
54 || testing::GTEST_FLAG(stream_result_to) != "unknown"
55 || testing::GTEST_FLAG(throw_on_failure);
56 EXPECT_TRUE(dummy || !dummy); // Suppresses warning that dummy is unused.
57 }
58
59 #include <limits.h> // For INT_MAX.
60 #include <stdlib.h>
61 #include <string.h>
62 #include <time.h>
63
64 #include <map>
65 #include <vector>
66 #include <ostream>
67
68 #include "gtest/gtest-spi.h"
69
70 // Indicates that this translation unit is part of Google Test's
71 // implementation. It must come before gtest-internal-inl.h is
72 // included, or there will be a compiler error. This trick is to
73 // prevent a user from accidentally including gtest-internal-inl.h in
74 // his code.
75 #define GTEST_IMPLEMENTATION_ 1
76 #include "src/gtest-internal-inl.h"
77 #undef GTEST_IMPLEMENTATION_
78
79 namespace testing {
80 namespace internal {
81
82 #if GTEST_CAN_STREAM_RESULTS_
83
84 class StreamingListenerTest : public Test {
85 public:
86 class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
87 public:
88 // Sends a string to the socket.
Send(const string & message)89 virtual void Send(const string& message) { output_ += message; }
90
91 string output_;
92 };
93
StreamingListenerTest()94 StreamingListenerTest()
95 : fake_sock_writer_(new FakeSocketWriter),
96 streamer_(fake_sock_writer_),
97 test_info_obj_("FooTest", "Bar", NULL, NULL, 0, NULL) {}
98
99 protected:
output()100 string* output() { return &(fake_sock_writer_->output_); }
101
102 FakeSocketWriter* const fake_sock_writer_;
103 StreamingListener streamer_;
104 UnitTest unit_test_;
105 TestInfo test_info_obj_; // The name test_info_ was taken by testing::Test.
106 };
107
TEST_F(StreamingListenerTest,OnTestProgramEnd)108 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
109 *output() = "";
110 streamer_.OnTestProgramEnd(unit_test_);
111 EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
112 }
113
TEST_F(StreamingListenerTest,OnTestIterationEnd)114 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
115 *output() = "";
116 streamer_.OnTestIterationEnd(unit_test_, 42);
117 EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
118 }
119
TEST_F(StreamingListenerTest,OnTestCaseStart)120 TEST_F(StreamingListenerTest, OnTestCaseStart) {
121 *output() = "";
122 streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", NULL, NULL));
123 EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
124 }
125
TEST_F(StreamingListenerTest,OnTestCaseEnd)126 TEST_F(StreamingListenerTest, OnTestCaseEnd) {
127 *output() = "";
128 streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", NULL, NULL));
129 EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
130 }
131
TEST_F(StreamingListenerTest,OnTestStart)132 TEST_F(StreamingListenerTest, OnTestStart) {
133 *output() = "";
134 streamer_.OnTestStart(test_info_obj_);
135 EXPECT_EQ("event=TestStart&name=Bar\n", *output());
136 }
137
TEST_F(StreamingListenerTest,OnTestEnd)138 TEST_F(StreamingListenerTest, OnTestEnd) {
139 *output() = "";
140 streamer_.OnTestEnd(test_info_obj_);
141 EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
142 }
143
TEST_F(StreamingListenerTest,OnTestPartResult)144 TEST_F(StreamingListenerTest, OnTestPartResult) {
145 *output() = "";
146 streamer_.OnTestPartResult(TestPartResult(
147 TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
148
149 // Meta characters in the failure message should be properly escaped.
150 EXPECT_EQ(
151 "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
152 *output());
153 }
154
155 #endif // GTEST_CAN_STREAM_RESULTS_
156
157 // Provides access to otherwise private parts of the TestEventListeners class
158 // that are needed to test it.
159 class TestEventListenersAccessor {
160 public:
GetRepeater(TestEventListeners * listeners)161 static TestEventListener* GetRepeater(TestEventListeners* listeners) {
162 return listeners->repeater();
163 }
164
SetDefaultResultPrinter(TestEventListeners * listeners,TestEventListener * listener)165 static void SetDefaultResultPrinter(TestEventListeners* listeners,
166 TestEventListener* listener) {
167 listeners->SetDefaultResultPrinter(listener);
168 }
SetDefaultXmlGenerator(TestEventListeners * listeners,TestEventListener * listener)169 static void SetDefaultXmlGenerator(TestEventListeners* listeners,
170 TestEventListener* listener) {
171 listeners->SetDefaultXmlGenerator(listener);
172 }
173
EventForwardingEnabled(const TestEventListeners & listeners)174 static bool EventForwardingEnabled(const TestEventListeners& listeners) {
175 return listeners.EventForwardingEnabled();
176 }
177
SuppressEventForwarding(TestEventListeners * listeners)178 static void SuppressEventForwarding(TestEventListeners* listeners) {
179 listeners->SuppressEventForwarding();
180 }
181 };
182
183 class UnitTestRecordPropertyTestHelper : public Test {
184 protected:
UnitTestRecordPropertyTestHelper()185 UnitTestRecordPropertyTestHelper() {}
186
187 // Forwards to UnitTest::RecordProperty() to bypass access controls.
UnitTestRecordProperty(const char * key,const std::string & value)188 void UnitTestRecordProperty(const char* key, const std::string& value) {
189 unit_test_.RecordProperty(key, value);
190 }
191
192 UnitTest unit_test_;
193 };
194
195 } // namespace internal
196 } // namespace testing
197
198 using testing::AssertionFailure;
199 using testing::AssertionResult;
200 using testing::AssertionSuccess;
201 using testing::DoubleLE;
202 using testing::EmptyTestEventListener;
203 using testing::Environment;
204 using testing::FloatLE;
205 using testing::GTEST_FLAG(also_run_disabled_tests);
206 using testing::GTEST_FLAG(break_on_failure);
207 using testing::GTEST_FLAG(catch_exceptions);
208 using testing::GTEST_FLAG(color);
209 using testing::GTEST_FLAG(death_test_use_fork);
210 using testing::GTEST_FLAG(filter);
211 using testing::GTEST_FLAG(list_tests);
212 using testing::GTEST_FLAG(output);
213 using testing::GTEST_FLAG(print_time);
214 using testing::GTEST_FLAG(random_seed);
215 using testing::GTEST_FLAG(repeat);
216 using testing::GTEST_FLAG(show_internal_stack_frames);
217 using testing::GTEST_FLAG(shuffle);
218 using testing::GTEST_FLAG(stack_trace_depth);
219 using testing::GTEST_FLAG(stream_result_to);
220 using testing::GTEST_FLAG(throw_on_failure);
221 using testing::IsNotSubstring;
222 using testing::IsSubstring;
223 using testing::Message;
224 using testing::ScopedFakeTestPartResultReporter;
225 using testing::StaticAssertTypeEq;
226 using testing::Test;
227 using testing::TestCase;
228 using testing::TestEventListeners;
229 using testing::TestInfo;
230 using testing::TestPartResult;
231 using testing::TestPartResultArray;
232 using testing::TestProperty;
233 using testing::TestResult;
234 using testing::TimeInMillis;
235 using testing::UnitTest;
236 using testing::kMaxStackTraceDepth;
237 using testing::internal::AddReference;
238 using testing::internal::AlwaysFalse;
239 using testing::internal::AlwaysTrue;
240 using testing::internal::AppendUserMessage;
241 using testing::internal::ArrayAwareFind;
242 using testing::internal::ArrayEq;
243 using testing::internal::CodePointToUtf8;
244 using testing::internal::CompileAssertTypesEqual;
245 using testing::internal::CopyArray;
246 using testing::internal::CountIf;
247 using testing::internal::EqFailure;
248 using testing::internal::FloatingPoint;
249 using testing::internal::ForEach;
250 using testing::internal::FormatEpochTimeInMillisAsIso8601;
251 using testing::internal::FormatTimeInMillisAsSeconds;
252 using testing::internal::GTestFlagSaver;
253 using testing::internal::GetCurrentOsStackTraceExceptTop;
254 using testing::internal::GetElementOr;
255 using testing::internal::GetNextRandomSeed;
256 using testing::internal::GetRandomSeedFromFlag;
257 using testing::internal::GetTestTypeId;
258 using testing::internal::GetTimeInMillis;
259 using testing::internal::GetTypeId;
260 using testing::internal::GetUnitTestImpl;
261 using testing::internal::ImplicitlyConvertible;
262 using testing::internal::Int32;
263 using testing::internal::Int32FromEnvOrDie;
264 using testing::internal::IsAProtocolMessage;
265 using testing::internal::IsContainer;
266 using testing::internal::IsContainerTest;
267 using testing::internal::IsNotContainer;
268 using testing::internal::NativeArray;
269 using testing::internal::ParseInt32Flag;
270 using testing::internal::RemoveConst;
271 using testing::internal::RemoveReference;
272 using testing::internal::ShouldRunTestOnShard;
273 using testing::internal::ShouldShard;
274 using testing::internal::ShouldUseColor;
275 using testing::internal::Shuffle;
276 using testing::internal::ShuffleRange;
277 using testing::internal::SkipPrefix;
278 using testing::internal::StreamableToString;
279 using testing::internal::String;
280 using testing::internal::TestEventListenersAccessor;
281 using testing::internal::TestResultAccessor;
282 using testing::internal::UInt32;
283 using testing::internal::WideStringToUtf8;
284 using testing::internal::kCopy;
285 using testing::internal::kMaxRandomSeed;
286 using testing::internal::kReference;
287 using testing::internal::kTestTypeIdInGoogleTest;
288 using testing::internal::scoped_ptr;
289
290 #if GTEST_HAS_STREAM_REDIRECTION
291 using testing::internal::CaptureStdout;
292 using testing::internal::GetCapturedStdout;
293 #endif
294
295 #if GTEST_IS_THREADSAFE
296 using testing::internal::ThreadWithParam;
297 #endif
298
299 class TestingVector : public std::vector<int> {
300 };
301
operator <<(::std::ostream & os,const TestingVector & vector)302 ::std::ostream& operator<<(::std::ostream& os,
303 const TestingVector& vector) {
304 os << "{ ";
305 for (size_t i = 0; i < vector.size(); i++) {
306 os << vector[i] << " ";
307 }
308 os << "}";
309 return os;
310 }
311
312 // This line tests that we can define tests in an unnamed namespace.
313 namespace {
314
TEST(GetRandomSeedFromFlagTest,HandlesZero)315 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
316 const int seed = GetRandomSeedFromFlag(0);
317 EXPECT_LE(1, seed);
318 EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
319 }
320
TEST(GetRandomSeedFromFlagTest,PreservesValidSeed)321 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
322 EXPECT_EQ(1, GetRandomSeedFromFlag(1));
323 EXPECT_EQ(2, GetRandomSeedFromFlag(2));
324 EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
325 EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
326 GetRandomSeedFromFlag(kMaxRandomSeed));
327 }
328
TEST(GetRandomSeedFromFlagTest,NormalizesInvalidSeed)329 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
330 const int seed1 = GetRandomSeedFromFlag(-1);
331 EXPECT_LE(1, seed1);
332 EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
333
334 const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
335 EXPECT_LE(1, seed2);
336 EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
337 }
338
TEST(GetNextRandomSeedTest,WorksForValidInput)339 TEST(GetNextRandomSeedTest, WorksForValidInput) {
340 EXPECT_EQ(2, GetNextRandomSeed(1));
341 EXPECT_EQ(3, GetNextRandomSeed(2));
342 EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
343 GetNextRandomSeed(kMaxRandomSeed - 1));
344 EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
345
346 // We deliberately don't test GetNextRandomSeed() with invalid
347 // inputs, as that requires death tests, which are expensive. This
348 // is fine as GetNextRandomSeed() is internal and has a
349 // straightforward definition.
350 }
351
ClearCurrentTestPartResults()352 static void ClearCurrentTestPartResults() {
353 TestResultAccessor::ClearTestPartResults(
354 GetUnitTestImpl()->current_test_result());
355 }
356
357 // Tests GetTypeId.
358
TEST(GetTypeIdTest,ReturnsSameValueForSameType)359 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
360 EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
361 EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
362 }
363
364 class SubClassOfTest : public Test {};
365 class AnotherSubClassOfTest : public Test {};
366
TEST(GetTypeIdTest,ReturnsDifferentValuesForDifferentTypes)367 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
368 EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
369 EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
370 EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
371 EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
372 EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
373 EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
374 }
375
376 // Verifies that GetTestTypeId() returns the same value, no matter it
377 // is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest,ReturnsTheSameValueInsideOrOutsideOfGoogleTest)378 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
379 EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
380 }
381
382 // Tests FormatTimeInMillisAsSeconds().
383
TEST(FormatTimeInMillisAsSecondsTest,FormatsZero)384 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
385 EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
386 }
387
TEST(FormatTimeInMillisAsSecondsTest,FormatsPositiveNumber)388 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
389 EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
390 EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
391 EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
392 EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
393 EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
394 }
395
TEST(FormatTimeInMillisAsSecondsTest,FormatsNegativeNumber)396 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
397 EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
398 EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
399 EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
400 EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
401 EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
402 }
403
404 // Tests FormatEpochTimeInMillisAsIso8601(). The correctness of conversion
405 // for particular dates below was verified in Python using
406 // datetime.datetime.fromutctimestamp(<timetamp>/1000).
407
408 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
409 // have to set up a particular timezone to obtain predictable results.
410 class FormatEpochTimeInMillisAsIso8601Test : public Test {
411 public:
412 // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
413 // 32 bits, even when 64-bit integer types are available. We have to
414 // force the constants to have a 64-bit type here.
415 static const TimeInMillis kMillisPerSec = 1000;
416
417 private:
SetUp()418 virtual void SetUp() {
419 saved_tz_ = NULL;
420 #if _MSC_VER
421 # pragma warning(push) // Saves the current warning state.
422 # pragma warning(disable:4996) // Temporarily disables warning 4996
423 // (function or variable may be unsafe
424 // for getenv, function is deprecated for
425 // strdup).
426 if (getenv("TZ"))
427 saved_tz_ = strdup(getenv("TZ"));
428 # pragma warning(pop) // Restores the warning state again.
429 #else
430 if (getenv("TZ"))
431 saved_tz_ = strdup(getenv("TZ"));
432 #endif
433
434 // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use. We
435 // cannot use the local time zone because the function's output depends
436 // on the time zone.
437 SetTimeZone("UTC+00");
438 }
439
TearDown()440 virtual void TearDown() {
441 SetTimeZone(saved_tz_);
442 free(const_cast<char*>(saved_tz_));
443 saved_tz_ = NULL;
444 }
445
SetTimeZone(const char * time_zone)446 static void SetTimeZone(const char* time_zone) {
447 // tzset() distinguishes between the TZ variable being present and empty
448 // and not being present, so we have to consider the case of time_zone
449 // being NULL.
450 #if _MSC_VER
451 // ...Unless it's MSVC, whose standard library's _putenv doesn't
452 // distinguish between an empty and a missing variable.
453 const std::string env_var =
454 std::string("TZ=") + (time_zone ? time_zone : "");
455 _putenv(env_var.c_str());
456 # pragma warning(push) // Saves the current warning state.
457 # pragma warning(disable:4996) // Temporarily disables warning 4996
458 // (function is deprecated).
459 tzset();
460 # pragma warning(pop) // Restores the warning state again.
461 #else
462 if (time_zone) {
463 setenv(("TZ"), time_zone, 1);
464 } else {
465 unsetenv("TZ");
466 }
467 tzset();
468 #endif
469 }
470
471 const char* saved_tz_;
472 };
473
474 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
475
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsTwoDigitSegments)476 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
477 EXPECT_EQ("2011-10-31T18:52:42",
478 FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
479 }
480
TEST_F(FormatEpochTimeInMillisAsIso8601Test,MillisecondsDoNotAffectResult)481 TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
482 EXPECT_EQ(
483 "2011-10-31T18:52:42",
484 FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
485 }
486
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsLeadingZeroes)487 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
488 EXPECT_EQ("2011-09-03T05:07:02",
489 FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
490 }
491
TEST_F(FormatEpochTimeInMillisAsIso8601Test,Prints24HourTime)492 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
493 EXPECT_EQ("2011-09-28T17:08:22",
494 FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
495 }
496
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsEpochStart)497 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
498 EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
499 }
500
501 #if GTEST_CAN_COMPARE_NULL
502
503 # ifdef __BORLANDC__
504 // Silences warnings: "Condition is always true", "Unreachable code"
505 # pragma option push -w-ccc -w-rch
506 # endif
507
508 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
509 // pointer literal.
TEST(NullLiteralTest,IsTrueForNullLiterals)510 TEST(NullLiteralTest, IsTrueForNullLiterals) {
511 EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
512 EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
513 EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
514 EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
515
516 # ifndef __BORLANDC__
517
518 // Some compilers may fail to detect some null pointer literals;
519 // as long as users of the framework don't use such literals, this
520 // is harmless.
521 EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(1 - 1));
522
523 # endif
524 }
525
526 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
527 // pointer literal.
TEST(NullLiteralTest,IsFalseForNonNullLiterals)528 TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
529 EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
530 EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
531 EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
532 EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
533 }
534
535 # ifdef __BORLANDC__
536 // Restores warnings after previous "#pragma option push" suppressed them.
537 # pragma option pop
538 # endif
539
540 #endif // GTEST_CAN_COMPARE_NULL
541 //
542 // Tests CodePointToUtf8().
543
544 // Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeNul)545 TEST(CodePointToUtf8Test, CanEncodeNul) {
546 EXPECT_EQ("", CodePointToUtf8(L'\0'));
547 }
548
549 // Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeAscii)550 TEST(CodePointToUtf8Test, CanEncodeAscii) {
551 EXPECT_EQ("a", CodePointToUtf8(L'a'));
552 EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
553 EXPECT_EQ("&", CodePointToUtf8(L'&'));
554 EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
555 }
556
557 // Tests that Unicode code-points that have 8 to 11 bits are encoded
558 // as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode8To11Bits)559 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
560 // 000 1101 0011 => 110-00011 10-010011
561 EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
562
563 // 101 0111 0110 => 110-10101 10-110110
564 // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
565 // in wide strings and wide chars. In order to accomodate them, we have to
566 // introduce such character constants as integers.
567 EXPECT_EQ("\xD5\xB6",
568 CodePointToUtf8(static_cast<wchar_t>(0x576)));
569 }
570
571 // Tests that Unicode code-points that have 12 to 16 bits are encoded
572 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode12To16Bits)573 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
574 // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
575 EXPECT_EQ("\xE0\xA3\x93",
576 CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
577
578 // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
579 EXPECT_EQ("\xEC\x9D\x8D",
580 CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
581 }
582
583 #if !GTEST_WIDE_STRING_USES_UTF16_
584 // Tests in this group require a wchar_t to hold > 16 bits, and thus
585 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
586 // 16-bit wide. This code may not compile on those systems.
587
588 // Tests that Unicode code-points that have 17 to 21 bits are encoded
589 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode17To21Bits)590 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
591 // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
592 EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
593
594 // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
595 EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
596
597 // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
598 EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
599 }
600
601 // Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test,CanEncodeInvalidCodePoint)602 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
603 EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
604 }
605
606 #endif // !GTEST_WIDE_STRING_USES_UTF16_
607
608 // Tests WideStringToUtf8().
609
610 // Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeNul)611 TEST(WideStringToUtf8Test, CanEncodeNul) {
612 EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
613 EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
614 }
615
616 // Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeAscii)617 TEST(WideStringToUtf8Test, CanEncodeAscii) {
618 EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
619 EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
620 EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
621 EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
622 }
623
624 // Tests that Unicode code-points that have 8 to 11 bits are encoded
625 // as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode8To11Bits)626 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
627 // 000 1101 0011 => 110-00011 10-010011
628 EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
629 EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
630
631 // 101 0111 0110 => 110-10101 10-110110
632 const wchar_t s[] = { 0x576, '\0' };
633 EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
634 EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
635 }
636
637 // Tests that Unicode code-points that have 12 to 16 bits are encoded
638 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode12To16Bits)639 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
640 // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
641 const wchar_t s1[] = { 0x8D3, '\0' };
642 EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
643 EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
644
645 // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
646 const wchar_t s2[] = { 0xC74D, '\0' };
647 EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
648 EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
649 }
650
651 // Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test,StopsOnNulCharacter)652 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
653 EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
654 }
655
656 // Tests that the conversion stops when the function reaches the limit
657 // specified by the 'length' parameter.
TEST(WideStringToUtf8Test,StopsWhenLengthLimitReached)658 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
659 EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
660 }
661
662 #if !GTEST_WIDE_STRING_USES_UTF16_
663 // Tests that Unicode code-points that have 17 to 21 bits are encoded
664 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
665 // on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test,CanEncode17To21Bits)666 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
667 // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
668 EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
669 EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
670
671 // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
672 EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
673 EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
674 }
675
676 // Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidCodePoint)677 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
678 EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
679 WideStringToUtf8(L"\xABCDFF", -1).c_str());
680 }
681 #else // !GTEST_WIDE_STRING_USES_UTF16_
682 // Tests that surrogate pairs are encoded correctly on the systems using
683 // UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test,CanEncodeValidUtf16SUrrogatePairs)684 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
685 const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
686 EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
687 }
688
689 // Tests that encoding an invalid UTF-16 surrogate pair
690 // generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidUtf16SurrogatePair)691 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
692 // Leading surrogate is at the end of the string.
693 const wchar_t s1[] = { 0xD800, '\0' };
694 EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
695 // Leading surrogate is not followed by the trailing surrogate.
696 const wchar_t s2[] = { 0xD800, 'M', '\0' };
697 EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
698 // Trailing surrogate appearas without a leading surrogate.
699 const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
700 EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
701 }
702 #endif // !GTEST_WIDE_STRING_USES_UTF16_
703
704 // Tests that codepoint concatenation works correctly.
705 #if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)706 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
707 const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
708 EXPECT_STREQ(
709 "\xF4\x88\x98\xB4"
710 "\xEC\x9D\x8D"
711 "\n"
712 "\xD5\xB6"
713 "\xE0\xA3\x93"
714 "\xF4\x88\x98\xB4",
715 WideStringToUtf8(s, -1).c_str());
716 }
717 #else
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)718 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
719 const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
720 EXPECT_STREQ(
721 "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
722 WideStringToUtf8(s, -1).c_str());
723 }
724 #endif // !GTEST_WIDE_STRING_USES_UTF16_
725
726 // Tests the Random class.
727
TEST(RandomDeathTest,GeneratesCrashesOnInvalidRange)728 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
729 testing::internal::Random random(42);
730 EXPECT_DEATH_IF_SUPPORTED(
731 random.Generate(0),
732 "Cannot generate a number in the range \\[0, 0\\)");
733 EXPECT_DEATH_IF_SUPPORTED(
734 random.Generate(testing::internal::Random::kMaxRange + 1),
735 "Generation of a number in \\[0, 2147483649\\) was requested, "
736 "but this can only generate numbers in \\[0, 2147483648\\)");
737 }
738
TEST(RandomTest,GeneratesNumbersWithinRange)739 TEST(RandomTest, GeneratesNumbersWithinRange) {
740 const UInt32 kRange = 10000;
741 testing::internal::Random random(12345);
742 for (int i = 0; i < 10; i++) {
743 EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
744 }
745
746 testing::internal::Random random2(testing::internal::Random::kMaxRange);
747 for (int i = 0; i < 10; i++) {
748 EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
749 }
750 }
751
TEST(RandomTest,RepeatsWhenReseeded)752 TEST(RandomTest, RepeatsWhenReseeded) {
753 const int kSeed = 123;
754 const int kArraySize = 10;
755 const UInt32 kRange = 10000;
756 UInt32 values[kArraySize];
757
758 testing::internal::Random random(kSeed);
759 for (int i = 0; i < kArraySize; i++) {
760 values[i] = random.Generate(kRange);
761 }
762
763 random.Reseed(kSeed);
764 for (int i = 0; i < kArraySize; i++) {
765 EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
766 }
767 }
768
769 // Tests STL container utilities.
770
771 // Tests CountIf().
772
IsPositive(int n)773 static bool IsPositive(int n) { return n > 0; }
774
TEST(ContainerUtilityTest,CountIf)775 TEST(ContainerUtilityTest, CountIf) {
776 std::vector<int> v;
777 EXPECT_EQ(0, CountIf(v, IsPositive)); // Works for an empty container.
778
779 v.push_back(-1);
780 v.push_back(0);
781 EXPECT_EQ(0, CountIf(v, IsPositive)); // Works when no value satisfies.
782
783 v.push_back(2);
784 v.push_back(-10);
785 v.push_back(10);
786 EXPECT_EQ(2, CountIf(v, IsPositive));
787 }
788
789 // Tests ForEach().
790
791 static int g_sum = 0;
Accumulate(int n)792 static void Accumulate(int n) { g_sum += n; }
793
TEST(ContainerUtilityTest,ForEach)794 TEST(ContainerUtilityTest, ForEach) {
795 std::vector<int> v;
796 g_sum = 0;
797 ForEach(v, Accumulate);
798 EXPECT_EQ(0, g_sum); // Works for an empty container;
799
800 g_sum = 0;
801 v.push_back(1);
802 ForEach(v, Accumulate);
803 EXPECT_EQ(1, g_sum); // Works for a container with one element.
804
805 g_sum = 0;
806 v.push_back(20);
807 v.push_back(300);
808 ForEach(v, Accumulate);
809 EXPECT_EQ(321, g_sum);
810 }
811
812 // Tests GetElementOr().
TEST(ContainerUtilityTest,GetElementOr)813 TEST(ContainerUtilityTest, GetElementOr) {
814 std::vector<char> a;
815 EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
816
817 a.push_back('a');
818 a.push_back('b');
819 EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
820 EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
821 EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
822 EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
823 }
824
TEST(ContainerUtilityDeathTest,ShuffleRange)825 TEST(ContainerUtilityDeathTest, ShuffleRange) {
826 std::vector<int> a;
827 a.push_back(0);
828 a.push_back(1);
829 a.push_back(2);
830 testing::internal::Random random(1);
831
832 EXPECT_DEATH_IF_SUPPORTED(
833 ShuffleRange(&random, -1, 1, &a),
834 "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
835 EXPECT_DEATH_IF_SUPPORTED(
836 ShuffleRange(&random, 4, 4, &a),
837 "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
838 EXPECT_DEATH_IF_SUPPORTED(
839 ShuffleRange(&random, 3, 2, &a),
840 "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
841 EXPECT_DEATH_IF_SUPPORTED(
842 ShuffleRange(&random, 3, 4, &a),
843 "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
844 }
845
846 class VectorShuffleTest : public Test {
847 protected:
848 static const int kVectorSize = 20;
849
VectorShuffleTest()850 VectorShuffleTest() : random_(1) {
851 for (int i = 0; i < kVectorSize; i++) {
852 vector_.push_back(i);
853 }
854 }
855
VectorIsCorrupt(const TestingVector & vector)856 static bool VectorIsCorrupt(const TestingVector& vector) {
857 if (kVectorSize != static_cast<int>(vector.size())) {
858 return true;
859 }
860
861 bool found_in_vector[kVectorSize] = { false };
862 for (size_t i = 0; i < vector.size(); i++) {
863 const int e = vector[i];
864 if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
865 return true;
866 }
867 found_in_vector[e] = true;
868 }
869
870 // Vector size is correct, elements' range is correct, no
871 // duplicate elements. Therefore no corruption has occurred.
872 return false;
873 }
874
VectorIsNotCorrupt(const TestingVector & vector)875 static bool VectorIsNotCorrupt(const TestingVector& vector) {
876 return !VectorIsCorrupt(vector);
877 }
878
RangeIsShuffled(const TestingVector & vector,int begin,int end)879 static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
880 for (int i = begin; i < end; i++) {
881 if (i != vector[i]) {
882 return true;
883 }
884 }
885 return false;
886 }
887
RangeIsUnshuffled(const TestingVector & vector,int begin,int end)888 static bool RangeIsUnshuffled(
889 const TestingVector& vector, int begin, int end) {
890 return !RangeIsShuffled(vector, begin, end);
891 }
892
VectorIsShuffled(const TestingVector & vector)893 static bool VectorIsShuffled(const TestingVector& vector) {
894 return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
895 }
896
VectorIsUnshuffled(const TestingVector & vector)897 static bool VectorIsUnshuffled(const TestingVector& vector) {
898 return !VectorIsShuffled(vector);
899 }
900
901 testing::internal::Random random_;
902 TestingVector vector_;
903 }; // class VectorShuffleTest
904
905 const int VectorShuffleTest::kVectorSize;
906
TEST_F(VectorShuffleTest,HandlesEmptyRange)907 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
908 // Tests an empty range at the beginning...
909 ShuffleRange(&random_, 0, 0, &vector_);
910 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
911 ASSERT_PRED1(VectorIsUnshuffled, vector_);
912
913 // ...in the middle...
914 ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
915 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
916 ASSERT_PRED1(VectorIsUnshuffled, vector_);
917
918 // ...at the end...
919 ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
920 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
921 ASSERT_PRED1(VectorIsUnshuffled, vector_);
922
923 // ...and past the end.
924 ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
925 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
926 ASSERT_PRED1(VectorIsUnshuffled, vector_);
927 }
928
TEST_F(VectorShuffleTest,HandlesRangeOfSizeOne)929 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
930 // Tests a size one range at the beginning...
931 ShuffleRange(&random_, 0, 1, &vector_);
932 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
933 ASSERT_PRED1(VectorIsUnshuffled, vector_);
934
935 // ...in the middle...
936 ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
937 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
938 ASSERT_PRED1(VectorIsUnshuffled, vector_);
939
940 // ...and at the end.
941 ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
942 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
943 ASSERT_PRED1(VectorIsUnshuffled, vector_);
944 }
945
946 // Because we use our own random number generator and a fixed seed,
947 // we can guarantee that the following "random" tests will succeed.
948
TEST_F(VectorShuffleTest,ShufflesEntireVector)949 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
950 Shuffle(&random_, &vector_);
951 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
952 EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
953
954 // Tests the first and last elements in particular to ensure that
955 // there are no off-by-one problems in our shuffle algorithm.
956 EXPECT_NE(0, vector_[0]);
957 EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
958 }
959
TEST_F(VectorShuffleTest,ShufflesStartOfVector)960 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
961 const int kRangeSize = kVectorSize/2;
962
963 ShuffleRange(&random_, 0, kRangeSize, &vector_);
964
965 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
966 EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
967 EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
968 }
969
TEST_F(VectorShuffleTest,ShufflesEndOfVector)970 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
971 const int kRangeSize = kVectorSize / 2;
972 ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
973
974 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
975 EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
976 EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
977 }
978
TEST_F(VectorShuffleTest,ShufflesMiddleOfVector)979 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
980 int kRangeSize = kVectorSize/3;
981 ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
982
983 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
984 EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
985 EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
986 EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
987 }
988
TEST_F(VectorShuffleTest,ShufflesRepeatably)989 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
990 TestingVector vector2;
991 for (int i = 0; i < kVectorSize; i++) {
992 vector2.push_back(i);
993 }
994
995 random_.Reseed(1234);
996 Shuffle(&random_, &vector_);
997 random_.Reseed(1234);
998 Shuffle(&random_, &vector2);
999
1000 ASSERT_PRED1(VectorIsNotCorrupt, vector_);
1001 ASSERT_PRED1(VectorIsNotCorrupt, vector2);
1002
1003 for (int i = 0; i < kVectorSize; i++) {
1004 EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
1005 }
1006 }
1007
1008 // Tests the size of the AssertHelper class.
1009
TEST(AssertHelperTest,AssertHelperIsSmall)1010 TEST(AssertHelperTest, AssertHelperIsSmall) {
1011 // To avoid breaking clients that use lots of assertions in one
1012 // function, we cannot grow the size of AssertHelper.
1013 EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
1014 }
1015
1016 // Tests String::EndsWithCaseInsensitive().
TEST(StringTest,EndsWithCaseInsensitive)1017 TEST(StringTest, EndsWithCaseInsensitive) {
1018 EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1019 EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1020 EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1021 EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1022
1023 EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1024 EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1025 EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1026 }
1027
1028 // C++Builder's preprocessor is buggy; it fails to expand macros that
1029 // appear in macro parameters after wide char literals. Provide an alias
1030 // for NULL as a workaround.
1031 static const wchar_t* const kNull = NULL;
1032
1033 // Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest,CaseInsensitiveWideCStringEquals)1034 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1035 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
1036 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1037 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1038 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1039 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1040 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1041 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1042 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1043 }
1044
1045 #if GTEST_OS_WINDOWS
1046
1047 // Tests String::ShowWideCString().
TEST(StringTest,ShowWideCString)1048 TEST(StringTest, ShowWideCString) {
1049 EXPECT_STREQ("(null)",
1050 String::ShowWideCString(NULL).c_str());
1051 EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1052 EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1053 }
1054
1055 # if GTEST_OS_WINDOWS_MOBILE
TEST(StringTest,AnsiAndUtf16Null)1056 TEST(StringTest, AnsiAndUtf16Null) {
1057 EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1058 EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1059 }
1060
TEST(StringTest,AnsiAndUtf16ConvertBasic)1061 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1062 const char* ansi = String::Utf16ToAnsi(L"str");
1063 EXPECT_STREQ("str", ansi);
1064 delete [] ansi;
1065 const WCHAR* utf16 = String::AnsiToUtf16("str");
1066 EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1067 delete [] utf16;
1068 }
1069
TEST(StringTest,AnsiAndUtf16ConvertPathChars)1070 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1071 const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1072 EXPECT_STREQ(".:\\ \"*?", ansi);
1073 delete [] ansi;
1074 const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1075 EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1076 delete [] utf16;
1077 }
1078 # endif // GTEST_OS_WINDOWS_MOBILE
1079
1080 #endif // GTEST_OS_WINDOWS
1081
1082 // Tests TestProperty construction.
TEST(TestPropertyTest,StringValue)1083 TEST(TestPropertyTest, StringValue) {
1084 TestProperty property("key", "1");
1085 EXPECT_STREQ("key", property.key());
1086 EXPECT_STREQ("1", property.value());
1087 }
1088
1089 // Tests TestProperty replacing a value.
TEST(TestPropertyTest,ReplaceStringValue)1090 TEST(TestPropertyTest, ReplaceStringValue) {
1091 TestProperty property("key", "1");
1092 EXPECT_STREQ("1", property.value());
1093 property.SetValue("2");
1094 EXPECT_STREQ("2", property.value());
1095 }
1096
1097 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1098 // functions (i.e. their definitions cannot be inlined at the call
1099 // sites), or C++Builder won't compile the code.
AddFatalFailure()1100 static void AddFatalFailure() {
1101 FAIL() << "Expected fatal failure.";
1102 }
1103
AddNonfatalFailure()1104 static void AddNonfatalFailure() {
1105 ADD_FAILURE() << "Expected non-fatal failure.";
1106 }
1107
1108 class ScopedFakeTestPartResultReporterTest : public Test {
1109 public: // Must be public and not protected due to a bug in g++ 3.4.2.
1110 enum FailureMode {
1111 FATAL_FAILURE,
1112 NONFATAL_FAILURE
1113 };
AddFailure(FailureMode failure)1114 static void AddFailure(FailureMode failure) {
1115 if (failure == FATAL_FAILURE) {
1116 AddFatalFailure();
1117 } else {
1118 AddNonfatalFailure();
1119 }
1120 }
1121 };
1122
1123 // Tests that ScopedFakeTestPartResultReporter intercepts test
1124 // failures.
TEST_F(ScopedFakeTestPartResultReporterTest,InterceptsTestFailures)1125 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1126 TestPartResultArray results;
1127 {
1128 ScopedFakeTestPartResultReporter reporter(
1129 ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1130 &results);
1131 AddFailure(NONFATAL_FAILURE);
1132 AddFailure(FATAL_FAILURE);
1133 }
1134
1135 EXPECT_EQ(2, results.size());
1136 EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1137 EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1138 }
1139
TEST_F(ScopedFakeTestPartResultReporterTest,DeprecatedConstructor)1140 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1141 TestPartResultArray results;
1142 {
1143 // Tests, that the deprecated constructor still works.
1144 ScopedFakeTestPartResultReporter reporter(&results);
1145 AddFailure(NONFATAL_FAILURE);
1146 }
1147 EXPECT_EQ(1, results.size());
1148 }
1149
1150 #if GTEST_IS_THREADSAFE
1151
1152 class ScopedFakeTestPartResultReporterWithThreadsTest
1153 : public ScopedFakeTestPartResultReporterTest {
1154 protected:
AddFailureInOtherThread(FailureMode failure)1155 static void AddFailureInOtherThread(FailureMode failure) {
1156 ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
1157 thread.Join();
1158 }
1159 };
1160
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,InterceptsTestFailuresInAllThreads)1161 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1162 InterceptsTestFailuresInAllThreads) {
1163 TestPartResultArray results;
1164 {
1165 ScopedFakeTestPartResultReporter reporter(
1166 ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1167 AddFailure(NONFATAL_FAILURE);
1168 AddFailure(FATAL_FAILURE);
1169 AddFailureInOtherThread(NONFATAL_FAILURE);
1170 AddFailureInOtherThread(FATAL_FAILURE);
1171 }
1172
1173 EXPECT_EQ(4, results.size());
1174 EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1175 EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1176 EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1177 EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1178 }
1179
1180 #endif // GTEST_IS_THREADSAFE
1181
1182 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}. Makes sure that they
1183 // work even if the failure is generated in a called function rather than
1184 // the current context.
1185
1186 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1187
TEST_F(ExpectFatalFailureTest,CatchesFatalFaliure)1188 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1189 EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1190 }
1191
1192 #if GTEST_HAS_GLOBAL_STRING
TEST_F(ExpectFatalFailureTest,AcceptsStringObject)1193 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
1194 EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
1195 }
1196 #endif
1197
TEST_F(ExpectFatalFailureTest,AcceptsStdStringObject)1198 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1199 EXPECT_FATAL_FAILURE(AddFatalFailure(),
1200 ::std::string("Expected fatal failure."));
1201 }
1202
TEST_F(ExpectFatalFailureTest,CatchesFatalFailureOnAllThreads)1203 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1204 // We have another test below to verify that the macro catches fatal
1205 // failures generated on another thread.
1206 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1207 "Expected fatal failure.");
1208 }
1209
1210 #ifdef __BORLANDC__
1211 // Silences warnings: "Condition is always true"
1212 # pragma option push -w-ccc
1213 #endif
1214
1215 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1216 // function even when the statement in it contains ASSERT_*.
1217
NonVoidFunction()1218 int NonVoidFunction() {
1219 EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1220 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1221 return 0;
1222 }
1223
TEST_F(ExpectFatalFailureTest,CanBeUsedInNonVoidFunction)1224 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1225 NonVoidFunction();
1226 }
1227
1228 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1229 // current function even though 'statement' generates a fatal failure.
1230
DoesNotAbortHelper(bool * aborted)1231 void DoesNotAbortHelper(bool* aborted) {
1232 EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1233 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1234
1235 *aborted = false;
1236 }
1237
1238 #ifdef __BORLANDC__
1239 // Restores warnings after previous "#pragma option push" suppressed them.
1240 # pragma option pop
1241 #endif
1242
TEST_F(ExpectFatalFailureTest,DoesNotAbort)1243 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1244 bool aborted = true;
1245 DoesNotAbortHelper(&aborted);
1246 EXPECT_FALSE(aborted);
1247 }
1248
1249 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1250 // statement that contains a macro which expands to code containing an
1251 // unprotected comma.
1252
1253 static int global_var = 0;
1254 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1255
TEST_F(ExpectFatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1256 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1257 #ifndef __BORLANDC__
1258 // ICE's in C++Builder.
1259 EXPECT_FATAL_FAILURE({
1260 GTEST_USE_UNPROTECTED_COMMA_;
1261 AddFatalFailure();
1262 }, "");
1263 #endif
1264
1265 EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
1266 GTEST_USE_UNPROTECTED_COMMA_;
1267 AddFatalFailure();
1268 }, "");
1269 }
1270
1271 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1272
1273 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1274
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailure)1275 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1276 EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1277 "Expected non-fatal failure.");
1278 }
1279
1280 #if GTEST_HAS_GLOBAL_STRING
TEST_F(ExpectNonfatalFailureTest,AcceptsStringObject)1281 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
1282 EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1283 ::string("Expected non-fatal failure."));
1284 }
1285 #endif
1286
TEST_F(ExpectNonfatalFailureTest,AcceptsStdStringObject)1287 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1288 EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1289 ::std::string("Expected non-fatal failure."));
1290 }
1291
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailureOnAllThreads)1292 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1293 // We have another test below to verify that the macro catches
1294 // non-fatal failures generated on another thread.
1295 EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1296 "Expected non-fatal failure.");
1297 }
1298
1299 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1300 // statement that contains a macro which expands to code containing an
1301 // unprotected comma.
TEST_F(ExpectNonfatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1302 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1303 EXPECT_NONFATAL_FAILURE({
1304 GTEST_USE_UNPROTECTED_COMMA_;
1305 AddNonfatalFailure();
1306 }, "");
1307
1308 EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
1309 GTEST_USE_UNPROTECTED_COMMA_;
1310 AddNonfatalFailure();
1311 }, "");
1312 }
1313
1314 #if GTEST_IS_THREADSAFE
1315
1316 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1317 ExpectFailureWithThreadsTest;
1318
TEST_F(ExpectFailureWithThreadsTest,ExpectFatalFailureOnAllThreads)1319 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1320 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1321 "Expected fatal failure.");
1322 }
1323
TEST_F(ExpectFailureWithThreadsTest,ExpectNonFatalFailureOnAllThreads)1324 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1325 EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1326 AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1327 }
1328
1329 #endif // GTEST_IS_THREADSAFE
1330
1331 // Tests the TestProperty class.
1332
TEST(TestPropertyTest,ConstructorWorks)1333 TEST(TestPropertyTest, ConstructorWorks) {
1334 const TestProperty property("key", "value");
1335 EXPECT_STREQ("key", property.key());
1336 EXPECT_STREQ("value", property.value());
1337 }
1338
TEST(TestPropertyTest,SetValue)1339 TEST(TestPropertyTest, SetValue) {
1340 TestProperty property("key", "value_1");
1341 EXPECT_STREQ("key", property.key());
1342 property.SetValue("value_2");
1343 EXPECT_STREQ("key", property.key());
1344 EXPECT_STREQ("value_2", property.value());
1345 }
1346
1347 // Tests the TestResult class
1348
1349 // The test fixture for testing TestResult.
1350 class TestResultTest : public Test {
1351 protected:
1352 typedef std::vector<TestPartResult> TPRVector;
1353
1354 // We make use of 2 TestPartResult objects,
1355 TestPartResult * pr1, * pr2;
1356
1357 // ... and 3 TestResult objects.
1358 TestResult * r0, * r1, * r2;
1359
SetUp()1360 virtual void SetUp() {
1361 // pr1 is for success.
1362 pr1 = new TestPartResult(TestPartResult::kSuccess,
1363 "foo/bar.cc",
1364 10,
1365 "Success!");
1366
1367 // pr2 is for fatal failure.
1368 pr2 = new TestPartResult(TestPartResult::kFatalFailure,
1369 "foo/bar.cc",
1370 -1, // This line number means "unknown"
1371 "Failure!");
1372
1373 // Creates the TestResult objects.
1374 r0 = new TestResult();
1375 r1 = new TestResult();
1376 r2 = new TestResult();
1377
1378 // In order to test TestResult, we need to modify its internal
1379 // state, in particular the TestPartResult vector it holds.
1380 // test_part_results() returns a const reference to this vector.
1381 // We cast it to a non-const object s.t. it can be modified (yes,
1382 // this is a hack).
1383 TPRVector* results1 = const_cast<TPRVector*>(
1384 &TestResultAccessor::test_part_results(*r1));
1385 TPRVector* results2 = const_cast<TPRVector*>(
1386 &TestResultAccessor::test_part_results(*r2));
1387
1388 // r0 is an empty TestResult.
1389
1390 // r1 contains a single SUCCESS TestPartResult.
1391 results1->push_back(*pr1);
1392
1393 // r2 contains a SUCCESS, and a FAILURE.
1394 results2->push_back(*pr1);
1395 results2->push_back(*pr2);
1396 }
1397
TearDown()1398 virtual void TearDown() {
1399 delete pr1;
1400 delete pr2;
1401
1402 delete r0;
1403 delete r1;
1404 delete r2;
1405 }
1406
1407 // Helper that compares two two TestPartResults.
CompareTestPartResult(const TestPartResult & expected,const TestPartResult & actual)1408 static void CompareTestPartResult(const TestPartResult& expected,
1409 const TestPartResult& actual) {
1410 EXPECT_EQ(expected.type(), actual.type());
1411 EXPECT_STREQ(expected.file_name(), actual.file_name());
1412 EXPECT_EQ(expected.line_number(), actual.line_number());
1413 EXPECT_STREQ(expected.summary(), actual.summary());
1414 EXPECT_STREQ(expected.message(), actual.message());
1415 EXPECT_EQ(expected.passed(), actual.passed());
1416 EXPECT_EQ(expected.failed(), actual.failed());
1417 EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1418 EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1419 }
1420 };
1421
1422 // Tests TestResult::total_part_count().
TEST_F(TestResultTest,total_part_count)1423 TEST_F(TestResultTest, total_part_count) {
1424 ASSERT_EQ(0, r0->total_part_count());
1425 ASSERT_EQ(1, r1->total_part_count());
1426 ASSERT_EQ(2, r2->total_part_count());
1427 }
1428
1429 // Tests TestResult::Passed().
TEST_F(TestResultTest,Passed)1430 TEST_F(TestResultTest, Passed) {
1431 ASSERT_TRUE(r0->Passed());
1432 ASSERT_TRUE(r1->Passed());
1433 ASSERT_FALSE(r2->Passed());
1434 }
1435
1436 // Tests TestResult::Failed().
TEST_F(TestResultTest,Failed)1437 TEST_F(TestResultTest, Failed) {
1438 ASSERT_FALSE(r0->Failed());
1439 ASSERT_FALSE(r1->Failed());
1440 ASSERT_TRUE(r2->Failed());
1441 }
1442
1443 // Tests TestResult::GetTestPartResult().
1444
1445 typedef TestResultTest TestResultDeathTest;
1446
TEST_F(TestResultDeathTest,GetTestPartResult)1447 TEST_F(TestResultDeathTest, GetTestPartResult) {
1448 CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1449 CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1450 EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1451 EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1452 }
1453
1454 // Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest,NoPropertiesFoundWhenNoneAreAdded)1455 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1456 TestResult test_result;
1457 ASSERT_EQ(0, test_result.test_property_count());
1458 }
1459
1460 // Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest,OnePropertyFoundWhenAdded)1461 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1462 TestResult test_result;
1463 TestProperty property("key_1", "1");
1464 TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1465 ASSERT_EQ(1, test_result.test_property_count());
1466 const TestProperty& actual_property = test_result.GetTestProperty(0);
1467 EXPECT_STREQ("key_1", actual_property.key());
1468 EXPECT_STREQ("1", actual_property.value());
1469 }
1470
1471 // Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest,MultiplePropertiesFoundWhenAdded)1472 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1473 TestResult test_result;
1474 TestProperty property_1("key_1", "1");
1475 TestProperty property_2("key_2", "2");
1476 TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1477 TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1478 ASSERT_EQ(2, test_result.test_property_count());
1479 const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1480 EXPECT_STREQ("key_1", actual_property_1.key());
1481 EXPECT_STREQ("1", actual_property_1.value());
1482
1483 const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1484 EXPECT_STREQ("key_2", actual_property_2.key());
1485 EXPECT_STREQ("2", actual_property_2.value());
1486 }
1487
1488 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest,OverridesValuesForDuplicateKeys)1489 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1490 TestResult test_result;
1491 TestProperty property_1_1("key_1", "1");
1492 TestProperty property_2_1("key_2", "2");
1493 TestProperty property_1_2("key_1", "12");
1494 TestProperty property_2_2("key_2", "22");
1495 TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1496 TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1497 TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1498 TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1499
1500 ASSERT_EQ(2, test_result.test_property_count());
1501 const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1502 EXPECT_STREQ("key_1", actual_property_1.key());
1503 EXPECT_STREQ("12", actual_property_1.value());
1504
1505 const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1506 EXPECT_STREQ("key_2", actual_property_2.key());
1507 EXPECT_STREQ("22", actual_property_2.value());
1508 }
1509
1510 // Tests TestResult::GetTestProperty().
TEST(TestResultPropertyTest,GetTestProperty)1511 TEST(TestResultPropertyTest, GetTestProperty) {
1512 TestResult test_result;
1513 TestProperty property_1("key_1", "1");
1514 TestProperty property_2("key_2", "2");
1515 TestProperty property_3("key_3", "3");
1516 TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1517 TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1518 TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1519
1520 const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1521 const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1522 const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1523
1524 EXPECT_STREQ("key_1", fetched_property_1.key());
1525 EXPECT_STREQ("1", fetched_property_1.value());
1526
1527 EXPECT_STREQ("key_2", fetched_property_2.key());
1528 EXPECT_STREQ("2", fetched_property_2.value());
1529
1530 EXPECT_STREQ("key_3", fetched_property_3.key());
1531 EXPECT_STREQ("3", fetched_property_3.value());
1532
1533 EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1534 EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1535 }
1536
1537 // Tests that GTestFlagSaver works on Windows and Mac.
1538
1539 class GTestFlagSaverTest : public Test {
1540 protected:
1541 // Saves the Google Test flags such that we can restore them later, and
1542 // then sets them to their default values. This will be called
1543 // before the first test in this test case is run.
SetUpTestCase()1544 static void SetUpTestCase() {
1545 saver_ = new GTestFlagSaver;
1546
1547 GTEST_FLAG(also_run_disabled_tests) = false;
1548 GTEST_FLAG(break_on_failure) = false;
1549 GTEST_FLAG(catch_exceptions) = false;
1550 GTEST_FLAG(death_test_use_fork) = false;
1551 GTEST_FLAG(color) = "auto";
1552 GTEST_FLAG(filter) = "";
1553 GTEST_FLAG(list_tests) = false;
1554 GTEST_FLAG(output) = "";
1555 GTEST_FLAG(print_time) = true;
1556 GTEST_FLAG(random_seed) = 0;
1557 GTEST_FLAG(repeat) = 1;
1558 GTEST_FLAG(shuffle) = false;
1559 GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
1560 GTEST_FLAG(stream_result_to) = "";
1561 GTEST_FLAG(throw_on_failure) = false;
1562 }
1563
1564 // Restores the Google Test flags that the tests have modified. This will
1565 // be called after the last test in this test case is run.
TearDownTestCase()1566 static void TearDownTestCase() {
1567 delete saver_;
1568 saver_ = NULL;
1569 }
1570
1571 // Verifies that the Google Test flags have their default values, and then
1572 // modifies each of them.
VerifyAndModifyFlags()1573 void VerifyAndModifyFlags() {
1574 EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
1575 EXPECT_FALSE(GTEST_FLAG(break_on_failure));
1576 EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
1577 EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
1578 EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
1579 EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
1580 EXPECT_FALSE(GTEST_FLAG(list_tests));
1581 EXPECT_STREQ("", GTEST_FLAG(output).c_str());
1582 EXPECT_TRUE(GTEST_FLAG(print_time));
1583 EXPECT_EQ(0, GTEST_FLAG(random_seed));
1584 EXPECT_EQ(1, GTEST_FLAG(repeat));
1585 EXPECT_FALSE(GTEST_FLAG(shuffle));
1586 EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
1587 EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
1588 EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
1589
1590 GTEST_FLAG(also_run_disabled_tests) = true;
1591 GTEST_FLAG(break_on_failure) = true;
1592 GTEST_FLAG(catch_exceptions) = true;
1593 GTEST_FLAG(color) = "no";
1594 GTEST_FLAG(death_test_use_fork) = true;
1595 GTEST_FLAG(filter) = "abc";
1596 GTEST_FLAG(list_tests) = true;
1597 GTEST_FLAG(output) = "xml:foo.xml";
1598 GTEST_FLAG(print_time) = false;
1599 GTEST_FLAG(random_seed) = 1;
1600 GTEST_FLAG(repeat) = 100;
1601 GTEST_FLAG(shuffle) = true;
1602 GTEST_FLAG(stack_trace_depth) = 1;
1603 GTEST_FLAG(stream_result_to) = "localhost:1234";
1604 GTEST_FLAG(throw_on_failure) = true;
1605 }
1606
1607 private:
1608 // For saving Google Test flags during this test case.
1609 static GTestFlagSaver* saver_;
1610 };
1611
1612 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
1613
1614 // Google Test doesn't guarantee the order of tests. The following two
1615 // tests are designed to work regardless of their order.
1616
1617 // Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest,ModifyGTestFlags)1618 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
1619 VerifyAndModifyFlags();
1620 }
1621
1622 // Verifies that the Google Test flags in the body of the previous test were
1623 // restored to their original values.
TEST_F(GTestFlagSaverTest,VerifyGTestFlags)1624 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
1625 VerifyAndModifyFlags();
1626 }
1627
1628 // Sets an environment variable with the given name to the given
1629 // value. If the value argument is "", unsets the environment
1630 // variable. The caller must ensure that both arguments are not NULL.
SetEnv(const char * name,const char * value)1631 static void SetEnv(const char* name, const char* value) {
1632 #if GTEST_OS_WINDOWS_MOBILE
1633 // Environment variables are not supported on Windows CE.
1634 return;
1635 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1636 // C++Builder's putenv only stores a pointer to its parameter; we have to
1637 // ensure that the string remains valid as long as it might be needed.
1638 // We use an std::map to do so.
1639 static std::map<std::string, std::string*> added_env;
1640
1641 // Because putenv stores a pointer to the string buffer, we can't delete the
1642 // previous string (if present) until after it's replaced.
1643 std::string *prev_env = NULL;
1644 if (added_env.find(name) != added_env.end()) {
1645 prev_env = added_env[name];
1646 }
1647 added_env[name] = new std::string(
1648 (Message() << name << "=" << value).GetString());
1649
1650 // The standard signature of putenv accepts a 'char*' argument. Other
1651 // implementations, like C++Builder's, accept a 'const char*'.
1652 // We cast away the 'const' since that would work for both variants.
1653 putenv(const_cast<char*>(added_env[name]->c_str()));
1654 delete prev_env;
1655 #elif GTEST_OS_WINDOWS // If we are on Windows proper.
1656 _putenv((Message() << name << "=" << value).GetString().c_str());
1657 #else
1658 if (*value == '\0') {
1659 unsetenv(name);
1660 } else {
1661 setenv(name, value, 1);
1662 }
1663 #endif // GTEST_OS_WINDOWS_MOBILE
1664 }
1665
1666 #if !GTEST_OS_WINDOWS_MOBILE
1667 // Environment variables are not supported on Windows CE.
1668
1669 using testing::internal::Int32FromGTestEnv;
1670
1671 // Tests Int32FromGTestEnv().
1672
1673 // Tests that Int32FromGTestEnv() returns the default value when the
1674 // environment variable is not set.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenVariableIsNotSet)1675 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1676 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1677 EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1678 }
1679
1680 // Tests that Int32FromGTestEnv() returns the default value when the
1681 // environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueOverflows)1682 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1683 printf("(expecting 2 warnings)\n");
1684
1685 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1686 EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1687
1688 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1689 EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1690 }
1691
1692 // Tests that Int32FromGTestEnv() returns the default value when the
1693 // environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueIsInvalid)1694 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1695 printf("(expecting 2 warnings)\n");
1696
1697 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1698 EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1699
1700 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1701 EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1702 }
1703
1704 // Tests that Int32FromGTestEnv() parses and returns the value of the
1705 // environment variable when it represents a valid decimal integer in
1706 // the range of an Int32.
TEST(Int32FromGTestEnvTest,ParsesAndReturnsValidValue)1707 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1708 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1709 EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1710
1711 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1712 EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1713 }
1714 #endif // !GTEST_OS_WINDOWS_MOBILE
1715
1716 // Tests ParseInt32Flag().
1717
1718 // Tests that ParseInt32Flag() returns false and doesn't change the
1719 // output value when the flag has wrong format
TEST(ParseInt32FlagTest,ReturnsFalseForInvalidFlag)1720 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1721 Int32 value = 123;
1722 EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
1723 EXPECT_EQ(123, value);
1724
1725 EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
1726 EXPECT_EQ(123, value);
1727 }
1728
1729 // Tests that ParseInt32Flag() returns false and doesn't change the
1730 // output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueOverflows)1731 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1732 printf("(expecting 2 warnings)\n");
1733
1734 Int32 value = 123;
1735 EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
1736 EXPECT_EQ(123, value);
1737
1738 EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
1739 EXPECT_EQ(123, value);
1740 }
1741
1742 // Tests that ParseInt32Flag() returns false and doesn't change the
1743 // output value when the flag does not represent a valid decimal
1744 // integer.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueIsInvalid)1745 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1746 printf("(expecting 2 warnings)\n");
1747
1748 Int32 value = 123;
1749 EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
1750 EXPECT_EQ(123, value);
1751
1752 EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
1753 EXPECT_EQ(123, value);
1754 }
1755
1756 // Tests that ParseInt32Flag() parses the value of the flag and
1757 // returns true when the flag represents a valid decimal integer in
1758 // the range of an Int32.
TEST(ParseInt32FlagTest,ParsesAndReturnsValidValue)1759 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1760 Int32 value = 123;
1761 EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1762 EXPECT_EQ(456, value);
1763
1764 EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
1765 "abc", &value));
1766 EXPECT_EQ(-789, value);
1767 }
1768
1769 // Tests that Int32FromEnvOrDie() parses the value of the var or
1770 // returns the correct default.
1771 // Environment variables are not supported on Windows CE.
1772 #if !GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest,ParsesAndReturnsValidValue)1773 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1774 EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1775 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1776 EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1777 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1778 EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1779 }
1780 #endif // !GTEST_OS_WINDOWS_MOBILE
1781
1782 // Tests that Int32FromEnvOrDie() aborts with an error message
1783 // if the variable is not an Int32.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnFailure)1784 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1785 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1786 EXPECT_DEATH_IF_SUPPORTED(
1787 Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1788 ".*");
1789 }
1790
1791 // Tests that Int32FromEnvOrDie() aborts with an error message
1792 // if the variable cannot be represnted by an Int32.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnInt32Overflow)1793 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1794 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1795 EXPECT_DEATH_IF_SUPPORTED(
1796 Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1797 ".*");
1798 }
1799
1800 // Tests that ShouldRunTestOnShard() selects all tests
1801 // where there is 1 shard.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereIsOneShard)1802 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1803 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1804 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1805 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1806 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1807 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1808 }
1809
1810 class ShouldShardTest : public testing::Test {
1811 protected:
SetUp()1812 virtual void SetUp() {
1813 index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1814 total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1815 }
1816
TearDown()1817 virtual void TearDown() {
1818 SetEnv(index_var_, "");
1819 SetEnv(total_var_, "");
1820 }
1821
1822 const char* index_var_;
1823 const char* total_var_;
1824 };
1825
1826 // Tests that sharding is disabled if neither of the environment variables
1827 // are set.
TEST_F(ShouldShardTest,ReturnsFalseWhenNeitherEnvVarIsSet)1828 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1829 SetEnv(index_var_, "");
1830 SetEnv(total_var_, "");
1831
1832 EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1833 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1834 }
1835
1836 // Tests that sharding is not enabled if total_shards == 1.
TEST_F(ShouldShardTest,ReturnsFalseWhenTotalShardIsOne)1837 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1838 SetEnv(index_var_, "0");
1839 SetEnv(total_var_, "1");
1840 EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1841 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1842 }
1843
1844 // Tests that sharding is enabled if total_shards > 1 and
1845 // we are not in a death test subprocess.
1846 // Environment variables are not supported on Windows CE.
1847 #if !GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest,WorksWhenShardEnvVarsAreValid)1848 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1849 SetEnv(index_var_, "4");
1850 SetEnv(total_var_, "22");
1851 EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1852 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1853
1854 SetEnv(index_var_, "8");
1855 SetEnv(total_var_, "9");
1856 EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1857 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1858
1859 SetEnv(index_var_, "0");
1860 SetEnv(total_var_, "9");
1861 EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1862 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1863 }
1864 #endif // !GTEST_OS_WINDOWS_MOBILE
1865
1866 // Tests that we exit in error if the sharding values are not valid.
1867
1868 typedef ShouldShardTest ShouldShardDeathTest;
1869
TEST_F(ShouldShardDeathTest,AbortsWhenShardingEnvVarsAreInvalid)1870 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1871 SetEnv(index_var_, "4");
1872 SetEnv(total_var_, "4");
1873 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1874
1875 SetEnv(index_var_, "4");
1876 SetEnv(total_var_, "-2");
1877 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1878
1879 SetEnv(index_var_, "5");
1880 SetEnv(total_var_, "");
1881 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1882
1883 SetEnv(index_var_, "");
1884 SetEnv(total_var_, "5");
1885 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1886 }
1887
1888 // Tests that ShouldRunTestOnShard is a partition when 5
1889 // shards are used.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereAreFiveShards)1890 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1891 // Choose an arbitrary number of tests and shards.
1892 const int num_tests = 17;
1893 const int num_shards = 5;
1894
1895 // Check partitioning: each test should be on exactly 1 shard.
1896 for (int test_id = 0; test_id < num_tests; test_id++) {
1897 int prev_selected_shard_index = -1;
1898 for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1899 if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1900 if (prev_selected_shard_index < 0) {
1901 prev_selected_shard_index = shard_index;
1902 } else {
1903 ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1904 << shard_index << " are both selected to run test " << test_id;
1905 }
1906 }
1907 }
1908 }
1909
1910 // Check balance: This is not required by the sharding protocol, but is a
1911 // desirable property for performance.
1912 for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1913 int num_tests_on_shard = 0;
1914 for (int test_id = 0; test_id < num_tests; test_id++) {
1915 num_tests_on_shard +=
1916 ShouldRunTestOnShard(num_shards, shard_index, test_id);
1917 }
1918 EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1919 }
1920 }
1921
1922 // For the same reason we are not explicitly testing everything in the
1923 // Test class, there are no separate tests for the following classes
1924 // (except for some trivial cases):
1925 //
1926 // TestCase, UnitTest, UnitTestResultPrinter.
1927 //
1928 // Similarly, there are no separate tests for the following macros:
1929 //
1930 // TEST, TEST_F, RUN_ALL_TESTS
1931
TEST(UnitTestTest,CanGetOriginalWorkingDir)1932 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1933 ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
1934 EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
1935 }
1936
TEST(UnitTestTest,ReturnsPlausibleTimestamp)1937 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
1938 EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
1939 EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
1940 }
1941
1942 // When a property using a reserved key is supplied to this function, it
1943 // tests that a non-fatal failure is added, a fatal failure is not added,
1944 // and that the property is not recorded.
ExpectNonFatalFailureRecordingPropertyWithReservedKey(const TestResult & test_result,const char * key)1945 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1946 const TestResult& test_result, const char* key) {
1947 EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
1948 ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
1949 << "' recorded unexpectedly.";
1950 }
1951
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(const char * key)1952 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
1953 const char* key) {
1954 const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
1955 ASSERT_TRUE(test_info != NULL);
1956 ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
1957 key);
1958 }
1959
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(const char * key)1960 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1961 const char* key) {
1962 const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1963 ASSERT_TRUE(test_case != NULL);
1964 ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1965 test_case->ad_hoc_test_result(), key);
1966 }
1967
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(const char * key)1968 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
1969 const char* key) {
1970 ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1971 UnitTest::GetInstance()->ad_hoc_test_result(), key);
1972 }
1973
1974 // Tests that property recording functions in UnitTest outside of tests
1975 // functions correcly. Creating a separate instance of UnitTest ensures it
1976 // is in a state similar to the UnitTest's singleton's between tests.
1977 class UnitTestRecordPropertyTest :
1978 public testing::internal::UnitTestRecordPropertyTestHelper {
1979 public:
SetUpTestCase()1980 static void SetUpTestCase() {
1981 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1982 "disabled");
1983 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1984 "errors");
1985 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1986 "failures");
1987 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1988 "name");
1989 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1990 "tests");
1991 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1992 "time");
1993
1994 Test::RecordProperty("test_case_key_1", "1");
1995 const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1996 ASSERT_TRUE(test_case != NULL);
1997
1998 ASSERT_EQ(1, test_case->ad_hoc_test_result().test_property_count());
1999 EXPECT_STREQ("test_case_key_1",
2000 test_case->ad_hoc_test_result().GetTestProperty(0).key());
2001 EXPECT_STREQ("1",
2002 test_case->ad_hoc_test_result().GetTestProperty(0).value());
2003 }
2004 };
2005
2006 // Tests TestResult has the expected property when added.
TEST_F(UnitTestRecordPropertyTest,OnePropertyFoundWhenAdded)2007 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
2008 UnitTestRecordProperty("key_1", "1");
2009
2010 ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2011
2012 EXPECT_STREQ("key_1",
2013 unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2014 EXPECT_STREQ("1",
2015 unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2016 }
2017
2018 // Tests TestResult has multiple properties when added.
TEST_F(UnitTestRecordPropertyTest,MultiplePropertiesFoundWhenAdded)2019 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2020 UnitTestRecordProperty("key_1", "1");
2021 UnitTestRecordProperty("key_2", "2");
2022
2023 ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2024
2025 EXPECT_STREQ("key_1",
2026 unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2027 EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2028
2029 EXPECT_STREQ("key_2",
2030 unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2031 EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2032 }
2033
2034 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST_F(UnitTestRecordPropertyTest,OverridesValuesForDuplicateKeys)2035 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2036 UnitTestRecordProperty("key_1", "1");
2037 UnitTestRecordProperty("key_2", "2");
2038 UnitTestRecordProperty("key_1", "12");
2039 UnitTestRecordProperty("key_2", "22");
2040
2041 ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2042
2043 EXPECT_STREQ("key_1",
2044 unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2045 EXPECT_STREQ("12",
2046 unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2047
2048 EXPECT_STREQ("key_2",
2049 unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2050 EXPECT_STREQ("22",
2051 unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2052 }
2053
TEST_F(UnitTestRecordPropertyTest,AddFailureInsideTestsWhenUsingTestCaseReservedKeys)2054 TEST_F(UnitTestRecordPropertyTest,
2055 AddFailureInsideTestsWhenUsingTestCaseReservedKeys) {
2056 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2057 "name");
2058 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2059 "value_param");
2060 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2061 "type_param");
2062 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2063 "status");
2064 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2065 "time");
2066 ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2067 "classname");
2068 }
2069
TEST_F(UnitTestRecordPropertyTest,AddRecordWithReservedKeysGeneratesCorrectPropertyList)2070 TEST_F(UnitTestRecordPropertyTest,
2071 AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2072 EXPECT_NONFATAL_FAILURE(
2073 Test::RecordProperty("name", "1"),
2074 "'classname', 'name', 'status', 'time', 'type_param', and 'value_param'"
2075 " are reserved");
2076 }
2077
2078 class UnitTestRecordPropertyTestEnvironment : public Environment {
2079 public:
TearDown()2080 virtual void TearDown() {
2081 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2082 "tests");
2083 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2084 "failures");
2085 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2086 "disabled");
2087 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2088 "errors");
2089 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2090 "name");
2091 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2092 "timestamp");
2093 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2094 "time");
2095 ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2096 "random_seed");
2097 }
2098 };
2099
2100 // This will test property recording outside of any test or test case.
2101 static Environment* record_property_env =
2102 AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2103
2104 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2105 // of various arities. They do not attempt to be exhaustive. Rather,
2106 // view them as smoke tests that can be easily reviewed and verified.
2107 // A more complete set of tests for predicate assertions can be found
2108 // in gtest_pred_impl_unittest.cc.
2109
2110 // First, some predicates and predicate-formatters needed by the tests.
2111
2112 // Returns true iff the argument is an even number.
IsEven(int n)2113 bool IsEven(int n) {
2114 return (n % 2) == 0;
2115 }
2116
2117 // A functor that returns true iff the argument is an even number.
2118 struct IsEvenFunctor {
operator ()__anoncff51c580111::IsEvenFunctor2119 bool operator()(int n) { return IsEven(n); }
2120 };
2121
2122 // A predicate-formatter function that asserts the argument is an even
2123 // number.
AssertIsEven(const char * expr,int n)2124 AssertionResult AssertIsEven(const char* expr, int n) {
2125 if (IsEven(n)) {
2126 return AssertionSuccess();
2127 }
2128
2129 Message msg;
2130 msg << expr << " evaluates to " << n << ", which is not even.";
2131 return AssertionFailure(msg);
2132 }
2133
2134 // A predicate function that returns AssertionResult for use in
2135 // EXPECT/ASSERT_TRUE/FALSE.
ResultIsEven(int n)2136 AssertionResult ResultIsEven(int n) {
2137 if (IsEven(n))
2138 return AssertionSuccess() << n << " is even";
2139 else
2140 return AssertionFailure() << n << " is odd";
2141 }
2142
2143 // A predicate function that returns AssertionResult but gives no
2144 // explanation why it succeeds. Needed for testing that
2145 // EXPECT/ASSERT_FALSE handles such functions correctly.
ResultIsEvenNoExplanation(int n)2146 AssertionResult ResultIsEvenNoExplanation(int n) {
2147 if (IsEven(n))
2148 return AssertionSuccess();
2149 else
2150 return AssertionFailure() << n << " is odd";
2151 }
2152
2153 // A predicate-formatter functor that asserts the argument is an even
2154 // number.
2155 struct AssertIsEvenFunctor {
operator ()__anoncff51c580111::AssertIsEvenFunctor2156 AssertionResult operator()(const char* expr, int n) {
2157 return AssertIsEven(expr, n);
2158 }
2159 };
2160
2161 // Returns true iff the sum of the arguments is an even number.
SumIsEven2(int n1,int n2)2162 bool SumIsEven2(int n1, int n2) {
2163 return IsEven(n1 + n2);
2164 }
2165
2166 // A functor that returns true iff the sum of the arguments is an even
2167 // number.
2168 struct SumIsEven3Functor {
operator ()__anoncff51c580111::SumIsEven3Functor2169 bool operator()(int n1, int n2, int n3) {
2170 return IsEven(n1 + n2 + n3);
2171 }
2172 };
2173
2174 // A predicate-formatter function that asserts the sum of the
2175 // arguments is an even number.
AssertSumIsEven4(const char * e1,const char * e2,const char * e3,const char * e4,int n1,int n2,int n3,int n4)2176 AssertionResult AssertSumIsEven4(
2177 const char* e1, const char* e2, const char* e3, const char* e4,
2178 int n1, int n2, int n3, int n4) {
2179 const int sum = n1 + n2 + n3 + n4;
2180 if (IsEven(sum)) {
2181 return AssertionSuccess();
2182 }
2183
2184 Message msg;
2185 msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
2186 << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
2187 << ") evaluates to " << sum << ", which is not even.";
2188 return AssertionFailure(msg);
2189 }
2190
2191 // A predicate-formatter functor that asserts the sum of the arguments
2192 // is an even number.
2193 struct AssertSumIsEven5Functor {
operator ()__anoncff51c580111::AssertSumIsEven5Functor2194 AssertionResult operator()(
2195 const char* e1, const char* e2, const char* e3, const char* e4,
2196 const char* e5, int n1, int n2, int n3, int n4, int n5) {
2197 const int sum = n1 + n2 + n3 + n4 + n5;
2198 if (IsEven(sum)) {
2199 return AssertionSuccess();
2200 }
2201
2202 Message msg;
2203 msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2204 << " ("
2205 << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
2206 << ") evaluates to " << sum << ", which is not even.";
2207 return AssertionFailure(msg);
2208 }
2209 };
2210
2211
2212 // Tests unary predicate assertions.
2213
2214 // Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test,WithoutFormat)2215 TEST(Pred1Test, WithoutFormat) {
2216 // Success cases.
2217 EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2218 ASSERT_PRED1(IsEven, 4);
2219
2220 // Failure cases.
2221 EXPECT_NONFATAL_FAILURE({ // NOLINT
2222 EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2223 }, "This failure is expected.");
2224 EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
2225 "evaluates to false");
2226 }
2227
2228 // Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test,WithFormat)2229 TEST(Pred1Test, WithFormat) {
2230 // Success cases.
2231 EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2232 ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2233 << "This failure is UNEXPECTED!";
2234
2235 // Failure cases.
2236 const int n = 5;
2237 EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2238 "n evaluates to 5, which is not even.");
2239 EXPECT_FATAL_FAILURE({ // NOLINT
2240 ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2241 }, "This failure is expected.");
2242 }
2243
2244 // Tests that unary predicate assertions evaluates their arguments
2245 // exactly once.
TEST(Pred1Test,SingleEvaluationOnFailure)2246 TEST(Pred1Test, SingleEvaluationOnFailure) {
2247 // A success case.
2248 static int n = 0;
2249 EXPECT_PRED1(IsEven, n++);
2250 EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2251
2252 // A failure case.
2253 EXPECT_FATAL_FAILURE({ // NOLINT
2254 ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2255 << "This failure is expected.";
2256 }, "This failure is expected.");
2257 EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2258 }
2259
2260
2261 // Tests predicate assertions whose arity is >= 2.
2262
2263 // Tests predicate assertions that don't use a custom formatter.
TEST(PredTest,WithoutFormat)2264 TEST(PredTest, WithoutFormat) {
2265 // Success cases.
2266 ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2267 EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2268
2269 // Failure cases.
2270 const int n1 = 1;
2271 const int n2 = 2;
2272 EXPECT_NONFATAL_FAILURE({ // NOLINT
2273 EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2274 }, "This failure is expected.");
2275 EXPECT_FATAL_FAILURE({ // NOLINT
2276 ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2277 }, "evaluates to false");
2278 }
2279
2280 // Tests predicate assertions that use a custom formatter.
TEST(PredTest,WithFormat)2281 TEST(PredTest, WithFormat) {
2282 // Success cases.
2283 ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
2284 "This failure is UNEXPECTED!";
2285 EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2286
2287 // Failure cases.
2288 const int n1 = 1;
2289 const int n2 = 2;
2290 const int n3 = 4;
2291 const int n4 = 6;
2292 EXPECT_NONFATAL_FAILURE({ // NOLINT
2293 EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2294 }, "evaluates to 13, which is not even.");
2295 EXPECT_FATAL_FAILURE({ // NOLINT
2296 ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2297 << "This failure is expected.";
2298 }, "This failure is expected.");
2299 }
2300
2301 // Tests that predicate assertions evaluates their arguments
2302 // exactly once.
TEST(PredTest,SingleEvaluationOnFailure)2303 TEST(PredTest, SingleEvaluationOnFailure) {
2304 // A success case.
2305 int n1 = 0;
2306 int n2 = 0;
2307 EXPECT_PRED2(SumIsEven2, n1++, n2++);
2308 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2309 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2310
2311 // Another success case.
2312 n1 = n2 = 0;
2313 int n3 = 0;
2314 int n4 = 0;
2315 int n5 = 0;
2316 ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
2317 n1++, n2++, n3++, n4++, n5++)
2318 << "This failure is UNEXPECTED!";
2319 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2320 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2321 EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2322 EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2323 EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2324
2325 // A failure case.
2326 n1 = n2 = n3 = 0;
2327 EXPECT_NONFATAL_FAILURE({ // NOLINT
2328 EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2329 << "This failure is expected.";
2330 }, "This failure is expected.");
2331 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2332 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2333 EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2334
2335 // Another failure case.
2336 n1 = n2 = n3 = n4 = 0;
2337 EXPECT_NONFATAL_FAILURE({ // NOLINT
2338 EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2339 }, "evaluates to 1, which is not even.");
2340 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2341 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2342 EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2343 EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2344 }
2345
2346
2347 // Some helper functions for testing using overloaded/template
2348 // functions with ASSERT_PREDn and EXPECT_PREDn.
2349
IsPositive(double x)2350 bool IsPositive(double x) {
2351 return x > 0;
2352 }
2353
2354 template <typename T>
IsNegative(T x)2355 bool IsNegative(T x) {
2356 return x < 0;
2357 }
2358
2359 template <typename T1, typename T2>
GreaterThan(T1 x1,T2 x2)2360 bool GreaterThan(T1 x1, T2 x2) {
2361 return x1 > x2;
2362 }
2363
2364 // Tests that overloaded functions can be used in *_PRED* as long as
2365 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsOverloadedFunction)2366 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2367 // C++Builder requires C-style casts rather than static_cast.
2368 EXPECT_PRED1((bool (*)(int))(IsPositive), 5); // NOLINT
2369 ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0); // NOLINT
2370 }
2371
2372 // Tests that template functions can be used in *_PRED* as long as
2373 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsTemplateFunction)2374 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2375 EXPECT_PRED1(IsNegative<int>, -5);
2376 // Makes sure that we can handle templates with more than one
2377 // parameter.
2378 ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2379 }
2380
2381
2382 // Some helper functions for testing using overloaded/template
2383 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2384
IsPositiveFormat(const char *,int n)2385 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2386 return n > 0 ? AssertionSuccess() :
2387 AssertionFailure(Message() << "Failure");
2388 }
2389
IsPositiveFormat(const char *,double x)2390 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2391 return x > 0 ? AssertionSuccess() :
2392 AssertionFailure(Message() << "Failure");
2393 }
2394
2395 template <typename T>
IsNegativeFormat(const char *,T x)2396 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2397 return x < 0 ? AssertionSuccess() :
2398 AssertionFailure(Message() << "Failure");
2399 }
2400
2401 template <typename T1, typename T2>
EqualsFormat(const char *,const char *,const T1 & x1,const T2 & x2)2402 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2403 const T1& x1, const T2& x2) {
2404 return x1 == x2 ? AssertionSuccess() :
2405 AssertionFailure(Message() << "Failure");
2406 }
2407
2408 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2409 // without explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsOverloadedFunction)2410 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2411 EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2412 ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2413 }
2414
2415 // Tests that template functions can be used in *_PRED_FORMAT* without
2416 // explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsTemplateFunction)2417 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2418 EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2419 ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2420 }
2421
2422
2423 // Tests string assertions.
2424
2425 // Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ)2426 TEST(StringAssertionTest, ASSERT_STREQ) {
2427 const char * const p1 = "good";
2428 ASSERT_STREQ(p1, p1);
2429
2430 // Let p2 have the same content as p1, but be at a different address.
2431 const char p2[] = "good";
2432 ASSERT_STREQ(p1, p2);
2433
2434 EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
2435 "Expected: \"bad\"");
2436 }
2437
2438 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null)2439 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2440 ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
2441 EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
2442 "non-null");
2443 }
2444
2445 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null2)2446 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2447 EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
2448 "non-null");
2449 }
2450
2451 // Tests ASSERT_STRNE.
TEST(StringAssertionTest,ASSERT_STRNE)2452 TEST(StringAssertionTest, ASSERT_STRNE) {
2453 ASSERT_STRNE("hi", "Hi");
2454 ASSERT_STRNE("Hi", NULL);
2455 ASSERT_STRNE(NULL, "Hi");
2456 ASSERT_STRNE("", NULL);
2457 ASSERT_STRNE(NULL, "");
2458 ASSERT_STRNE("", "Hi");
2459 ASSERT_STRNE("Hi", "");
2460 EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
2461 "\"Hi\" vs \"Hi\"");
2462 }
2463
2464 // Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest,ASSERT_STRCASEEQ)2465 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2466 ASSERT_STRCASEEQ("hi", "Hi");
2467 ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
2468
2469 ASSERT_STRCASEEQ("", "");
2470 EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
2471 "(ignoring case)");
2472 }
2473
2474 // Tests ASSERT_STRCASENE.
TEST(StringAssertionTest,ASSERT_STRCASENE)2475 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2476 ASSERT_STRCASENE("hi1", "Hi2");
2477 ASSERT_STRCASENE("Hi", NULL);
2478 ASSERT_STRCASENE(NULL, "Hi");
2479 ASSERT_STRCASENE("", NULL);
2480 ASSERT_STRCASENE(NULL, "");
2481 ASSERT_STRCASENE("", "Hi");
2482 ASSERT_STRCASENE("Hi", "");
2483 EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
2484 "(ignoring case)");
2485 }
2486
2487 // Tests *_STREQ on wide strings.
TEST(StringAssertionTest,STREQ_Wide)2488 TEST(StringAssertionTest, STREQ_Wide) {
2489 // NULL strings.
2490 ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
2491
2492 // Empty strings.
2493 ASSERT_STREQ(L"", L"");
2494
2495 // Non-null vs NULL.
2496 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
2497 "non-null");
2498
2499 // Equal strings.
2500 EXPECT_STREQ(L"Hi", L"Hi");
2501
2502 // Unequal strings.
2503 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
2504 "Abc");
2505
2506 // Strings containing wide characters.
2507 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
2508 "abc");
2509
2510 // The streaming variation.
2511 EXPECT_NONFATAL_FAILURE({ // NOLINT
2512 EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2513 }, "Expected failure");
2514 }
2515
2516 // Tests *_STRNE on wide strings.
TEST(StringAssertionTest,STRNE_Wide)2517 TEST(StringAssertionTest, STRNE_Wide) {
2518 // NULL strings.
2519 EXPECT_NONFATAL_FAILURE({ // NOLINT
2520 EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
2521 }, "");
2522
2523 // Empty strings.
2524 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
2525 "L\"\"");
2526
2527 // Non-null vs NULL.
2528 ASSERT_STRNE(L"non-null", NULL);
2529
2530 // Equal strings.
2531 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
2532 "L\"Hi\"");
2533
2534 // Unequal strings.
2535 EXPECT_STRNE(L"abc", L"Abc");
2536
2537 // Strings containing wide characters.
2538 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
2539 "abc");
2540
2541 // The streaming variation.
2542 ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2543 }
2544
2545 // Tests for ::testing::IsSubstring().
2546
2547 // Tests that IsSubstring() returns the correct result when the input
2548 // argument type is const char*.
TEST(IsSubstringTest,ReturnsCorrectResultForCString)2549 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2550 EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
2551 EXPECT_FALSE(IsSubstring("", "", "b", NULL));
2552 EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2553
2554 EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
2555 EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2556 }
2557
2558 // Tests that IsSubstring() returns the correct result when the input
2559 // argument type is const wchar_t*.
TEST(IsSubstringTest,ReturnsCorrectResultForWideCString)2560 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2561 EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2562 EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2563 EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2564
2565 EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
2566 EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2567 }
2568
2569 // Tests that IsSubstring() generates the correct message when the input
2570 // argument type is const char*.
TEST(IsSubstringTest,GeneratesCorrectMessageForCString)2571 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2572 EXPECT_STREQ("Value of: needle_expr\n"
2573 " Actual: \"needle\"\n"
2574 "Expected: a substring of haystack_expr\n"
2575 "Which is: \"haystack\"",
2576 IsSubstring("needle_expr", "haystack_expr",
2577 "needle", "haystack").failure_message());
2578 }
2579
2580 // Tests that IsSubstring returns the correct result when the input
2581 // argument type is ::std::string.
TEST(IsSubstringTest,ReturnsCorrectResultsForStdString)2582 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2583 EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2584 EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2585 }
2586
2587 #if GTEST_HAS_STD_WSTRING
2588 // Tests that IsSubstring returns the correct result when the input
2589 // argument type is ::std::wstring.
TEST(IsSubstringTest,ReturnsCorrectResultForStdWstring)2590 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2591 EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2592 EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2593 }
2594
2595 // Tests that IsSubstring() generates the correct message when the input
2596 // argument type is ::std::wstring.
TEST(IsSubstringTest,GeneratesCorrectMessageForWstring)2597 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2598 EXPECT_STREQ("Value of: needle_expr\n"
2599 " Actual: L\"needle\"\n"
2600 "Expected: a substring of haystack_expr\n"
2601 "Which is: L\"haystack\"",
2602 IsSubstring(
2603 "needle_expr", "haystack_expr",
2604 ::std::wstring(L"needle"), L"haystack").failure_message());
2605 }
2606
2607 #endif // GTEST_HAS_STD_WSTRING
2608
2609 // Tests for ::testing::IsNotSubstring().
2610
2611 // Tests that IsNotSubstring() returns the correct result when the input
2612 // argument type is const char*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForCString)2613 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2614 EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2615 EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2616 }
2617
2618 // Tests that IsNotSubstring() returns the correct result when the input
2619 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForWideCString)2620 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2621 EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2622 EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2623 }
2624
2625 // Tests that IsNotSubstring() generates the correct message when the input
2626 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForWideCString)2627 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2628 EXPECT_STREQ("Value of: needle_expr\n"
2629 " Actual: L\"needle\"\n"
2630 "Expected: not a substring of haystack_expr\n"
2631 "Which is: L\"two needles\"",
2632 IsNotSubstring(
2633 "needle_expr", "haystack_expr",
2634 L"needle", L"two needles").failure_message());
2635 }
2636
2637 // Tests that IsNotSubstring returns the correct result when the input
2638 // argument type is ::std::string.
TEST(IsNotSubstringTest,ReturnsCorrectResultsForStdString)2639 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2640 EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2641 EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2642 }
2643
2644 // Tests that IsNotSubstring() generates the correct message when the input
2645 // argument type is ::std::string.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForStdString)2646 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2647 EXPECT_STREQ("Value of: needle_expr\n"
2648 " Actual: \"needle\"\n"
2649 "Expected: not a substring of haystack_expr\n"
2650 "Which is: \"two needles\"",
2651 IsNotSubstring(
2652 "needle_expr", "haystack_expr",
2653 ::std::string("needle"), "two needles").failure_message());
2654 }
2655
2656 #if GTEST_HAS_STD_WSTRING
2657
2658 // Tests that IsNotSubstring returns the correct result when the input
2659 // argument type is ::std::wstring.
TEST(IsNotSubstringTest,ReturnsCorrectResultForStdWstring)2660 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2661 EXPECT_FALSE(
2662 IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2663 EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2664 }
2665
2666 #endif // GTEST_HAS_STD_WSTRING
2667
2668 // Tests floating-point assertions.
2669
2670 template <typename RawType>
2671 class FloatingPointTest : public Test {
2672 protected:
2673 // Pre-calculated numbers to be used by the tests.
2674 struct TestValues {
2675 RawType close_to_positive_zero;
2676 RawType close_to_negative_zero;
2677 RawType further_from_negative_zero;
2678
2679 RawType close_to_one;
2680 RawType further_from_one;
2681
2682 RawType infinity;
2683 RawType close_to_infinity;
2684 RawType further_from_infinity;
2685
2686 RawType nan1;
2687 RawType nan2;
2688 };
2689
2690 typedef typename testing::internal::FloatingPoint<RawType> Floating;
2691 typedef typename Floating::Bits Bits;
2692
SetUp()2693 virtual void SetUp() {
2694 const size_t max_ulps = Floating::kMaxUlps;
2695
2696 // The bits that represent 0.0.
2697 const Bits zero_bits = Floating(0).bits();
2698
2699 // Makes some numbers close to 0.0.
2700 values_.close_to_positive_zero = Floating::ReinterpretBits(
2701 zero_bits + max_ulps/2);
2702 values_.close_to_negative_zero = -Floating::ReinterpretBits(
2703 zero_bits + max_ulps - max_ulps/2);
2704 values_.further_from_negative_zero = -Floating::ReinterpretBits(
2705 zero_bits + max_ulps + 1 - max_ulps/2);
2706
2707 // The bits that represent 1.0.
2708 const Bits one_bits = Floating(1).bits();
2709
2710 // Makes some numbers close to 1.0.
2711 values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2712 values_.further_from_one = Floating::ReinterpretBits(
2713 one_bits + max_ulps + 1);
2714
2715 // +infinity.
2716 values_.infinity = Floating::Infinity();
2717
2718 // The bits that represent +infinity.
2719 const Bits infinity_bits = Floating(values_.infinity).bits();
2720
2721 // Makes some numbers close to infinity.
2722 values_.close_to_infinity = Floating::ReinterpretBits(
2723 infinity_bits - max_ulps);
2724 values_.further_from_infinity = Floating::ReinterpretBits(
2725 infinity_bits - max_ulps - 1);
2726
2727 // Makes some NAN's. Sets the most significant bit of the fraction so that
2728 // our NaN's are quiet; trying to process a signaling NaN would raise an
2729 // exception if our environment enables floating point exceptions.
2730 values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
2731 | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2732 values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
2733 | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2734 }
2735
TestSize()2736 void TestSize() {
2737 EXPECT_EQ(sizeof(RawType), sizeof(Bits));
2738 }
2739
2740 static TestValues values_;
2741 };
2742
2743 template <typename RawType>
2744 typename FloatingPointTest<RawType>::TestValues
2745 FloatingPointTest<RawType>::values_;
2746
2747 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2748 typedef FloatingPointTest<float> FloatTest;
2749
2750 // Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest,Size)2751 TEST_F(FloatTest, Size) {
2752 TestSize();
2753 }
2754
2755 // Tests comparing with +0 and -0.
TEST_F(FloatTest,Zeros)2756 TEST_F(FloatTest, Zeros) {
2757 EXPECT_FLOAT_EQ(0.0, -0.0);
2758 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
2759 "1.0");
2760 EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
2761 "1.5");
2762 }
2763
2764 // Tests comparing numbers close to 0.
2765 //
2766 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2767 // overflow occurs when comparing numbers whose absolute value is very
2768 // small.
TEST_F(FloatTest,AlmostZeros)2769 TEST_F(FloatTest, AlmostZeros) {
2770 // In C++Builder, names within local classes (such as used by
2771 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2772 // scoping class. Use a static local alias as a workaround.
2773 // We use the assignment syntax since some compilers, like Sun Studio,
2774 // don't allow initializing references using construction syntax
2775 // (parentheses).
2776 static const FloatTest::TestValues& v = this->values_;
2777
2778 EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2779 EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2780 EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2781
2782 EXPECT_FATAL_FAILURE({ // NOLINT
2783 ASSERT_FLOAT_EQ(v.close_to_positive_zero,
2784 v.further_from_negative_zero);
2785 }, "v.further_from_negative_zero");
2786 }
2787
2788 // Tests comparing numbers close to each other.
TEST_F(FloatTest,SmallDiff)2789 TEST_F(FloatTest, SmallDiff) {
2790 EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2791 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2792 "values_.further_from_one");
2793 }
2794
2795 // Tests comparing numbers far apart.
TEST_F(FloatTest,LargeDiff)2796 TEST_F(FloatTest, LargeDiff) {
2797 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
2798 "3.0");
2799 }
2800
2801 // Tests comparing with infinity.
2802 //
2803 // This ensures that no overflow occurs when comparing numbers whose
2804 // absolute value is very large.
TEST_F(FloatTest,Infinity)2805 TEST_F(FloatTest, Infinity) {
2806 EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2807 EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2808 #if !GTEST_OS_SYMBIAN
2809 // Nokia's STLport crashes if we try to output infinity or NaN.
2810 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2811 "-values_.infinity");
2812
2813 // This is interesting as the representations of infinity and nan1
2814 // are only 1 DLP apart.
2815 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2816 "values_.nan1");
2817 #endif // !GTEST_OS_SYMBIAN
2818 }
2819
2820 // Tests that comparing with NAN always returns false.
TEST_F(FloatTest,NaN)2821 TEST_F(FloatTest, NaN) {
2822 #if !GTEST_OS_SYMBIAN
2823 // Nokia's STLport crashes if we try to output infinity or NaN.
2824
2825 // In C++Builder, names within local classes (such as used by
2826 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2827 // scoping class. Use a static local alias as a workaround.
2828 // We use the assignment syntax since some compilers, like Sun Studio,
2829 // don't allow initializing references using construction syntax
2830 // (parentheses).
2831 static const FloatTest::TestValues& v = this->values_;
2832
2833 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
2834 "v.nan1");
2835 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
2836 "v.nan2");
2837 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
2838 "v.nan1");
2839
2840 EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
2841 "v.infinity");
2842 #endif // !GTEST_OS_SYMBIAN
2843 }
2844
2845 // Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest,Reflexive)2846 TEST_F(FloatTest, Reflexive) {
2847 EXPECT_FLOAT_EQ(0.0, 0.0);
2848 EXPECT_FLOAT_EQ(1.0, 1.0);
2849 ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2850 }
2851
2852 // Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest,Commutative)2853 TEST_F(FloatTest, Commutative) {
2854 // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2855 EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2856
2857 // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2858 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2859 "1.0");
2860 }
2861
2862 // Tests EXPECT_NEAR.
TEST_F(FloatTest,EXPECT_NEAR)2863 TEST_F(FloatTest, EXPECT_NEAR) {
2864 EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2865 EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2866 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f), // NOLINT
2867 "The difference between 1.0f and 1.5f is 0.5, "
2868 "which exceeds 0.25f");
2869 // To work around a bug in gcc 2.95.0, there is intentionally no
2870 // space after the first comma in the previous line.
2871 }
2872
2873 // Tests ASSERT_NEAR.
TEST_F(FloatTest,ASSERT_NEAR)2874 TEST_F(FloatTest, ASSERT_NEAR) {
2875 ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2876 ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2877 EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f), // NOLINT
2878 "The difference between 1.0f and 1.5f is 0.5, "
2879 "which exceeds 0.25f");
2880 // To work around a bug in gcc 2.95.0, there is intentionally no
2881 // space after the first comma in the previous line.
2882 }
2883
2884 // Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest,FloatLESucceeds)2885 TEST_F(FloatTest, FloatLESucceeds) {
2886 EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f); // When val1 < val2,
2887 ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f); // val1 == val2,
2888
2889 // or when val1 is greater than, but almost equals to, val2.
2890 EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2891 }
2892
2893 // Tests the cases where FloatLE() should fail.
TEST_F(FloatTest,FloatLEFails)2894 TEST_F(FloatTest, FloatLEFails) {
2895 // When val1 is greater than val2 by a large margin,
2896 EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2897 "(2.0f) <= (1.0f)");
2898
2899 // or by a small yet non-negligible margin,
2900 EXPECT_NONFATAL_FAILURE({ // NOLINT
2901 EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2902 }, "(values_.further_from_one) <= (1.0f)");
2903
2904 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2905 // Nokia's STLport crashes if we try to output infinity or NaN.
2906 // C++Builder gives bad results for ordered comparisons involving NaNs
2907 // due to compiler bugs.
2908 EXPECT_NONFATAL_FAILURE({ // NOLINT
2909 EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2910 }, "(values_.nan1) <= (values_.infinity)");
2911 EXPECT_NONFATAL_FAILURE({ // NOLINT
2912 EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2913 }, "(-values_.infinity) <= (values_.nan1)");
2914 EXPECT_FATAL_FAILURE({ // NOLINT
2915 ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2916 }, "(values_.nan1) <= (values_.nan1)");
2917 #endif // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2918 }
2919
2920 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2921 typedef FloatingPointTest<double> DoubleTest;
2922
2923 // Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest,Size)2924 TEST_F(DoubleTest, Size) {
2925 TestSize();
2926 }
2927
2928 // Tests comparing with +0 and -0.
TEST_F(DoubleTest,Zeros)2929 TEST_F(DoubleTest, Zeros) {
2930 EXPECT_DOUBLE_EQ(0.0, -0.0);
2931 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
2932 "1.0");
2933 EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
2934 "1.0");
2935 }
2936
2937 // Tests comparing numbers close to 0.
2938 //
2939 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
2940 // overflow occurs when comparing numbers whose absolute value is very
2941 // small.
TEST_F(DoubleTest,AlmostZeros)2942 TEST_F(DoubleTest, AlmostZeros) {
2943 // In C++Builder, names within local classes (such as used by
2944 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2945 // scoping class. Use a static local alias as a workaround.
2946 // We use the assignment syntax since some compilers, like Sun Studio,
2947 // don't allow initializing references using construction syntax
2948 // (parentheses).
2949 static const DoubleTest::TestValues& v = this->values_;
2950
2951 EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
2952 EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
2953 EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2954
2955 EXPECT_FATAL_FAILURE({ // NOLINT
2956 ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
2957 v.further_from_negative_zero);
2958 }, "v.further_from_negative_zero");
2959 }
2960
2961 // Tests comparing numbers close to each other.
TEST_F(DoubleTest,SmallDiff)2962 TEST_F(DoubleTest, SmallDiff) {
2963 EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
2964 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
2965 "values_.further_from_one");
2966 }
2967
2968 // Tests comparing numbers far apart.
TEST_F(DoubleTest,LargeDiff)2969 TEST_F(DoubleTest, LargeDiff) {
2970 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
2971 "3.0");
2972 }
2973
2974 // Tests comparing with infinity.
2975 //
2976 // This ensures that no overflow occurs when comparing numbers whose
2977 // absolute value is very large.
TEST_F(DoubleTest,Infinity)2978 TEST_F(DoubleTest, Infinity) {
2979 EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
2980 EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
2981 #if !GTEST_OS_SYMBIAN
2982 // Nokia's STLport crashes if we try to output infinity or NaN.
2983 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
2984 "-values_.infinity");
2985
2986 // This is interesting as the representations of infinity_ and nan1_
2987 // are only 1 DLP apart.
2988 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
2989 "values_.nan1");
2990 #endif // !GTEST_OS_SYMBIAN
2991 }
2992
2993 // Tests that comparing with NAN always returns false.
TEST_F(DoubleTest,NaN)2994 TEST_F(DoubleTest, NaN) {
2995 #if !GTEST_OS_SYMBIAN
2996 // In C++Builder, names within local classes (such as used by
2997 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2998 // scoping class. Use a static local alias as a workaround.
2999 // We use the assignment syntax since some compilers, like Sun Studio,
3000 // don't allow initializing references using construction syntax
3001 // (parentheses).
3002 static const DoubleTest::TestValues& v = this->values_;
3003
3004 // Nokia's STLport crashes if we try to output infinity or NaN.
3005 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
3006 "v.nan1");
3007 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3008 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3009 EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
3010 "v.infinity");
3011 #endif // !GTEST_OS_SYMBIAN
3012 }
3013
3014 // Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest,Reflexive)3015 TEST_F(DoubleTest, Reflexive) {
3016 EXPECT_DOUBLE_EQ(0.0, 0.0);
3017 EXPECT_DOUBLE_EQ(1.0, 1.0);
3018 #if !GTEST_OS_SYMBIAN
3019 // Nokia's STLport crashes if we try to output infinity or NaN.
3020 ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3021 #endif // !GTEST_OS_SYMBIAN
3022 }
3023
3024 // Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest,Commutative)3025 TEST_F(DoubleTest, Commutative) {
3026 // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3027 EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3028
3029 // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3030 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3031 "1.0");
3032 }
3033
3034 // Tests EXPECT_NEAR.
TEST_F(DoubleTest,EXPECT_NEAR)3035 TEST_F(DoubleTest, EXPECT_NEAR) {
3036 EXPECT_NEAR(-1.0, -1.1, 0.2);
3037 EXPECT_NEAR(2.0, 3.0, 1.0);
3038 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25), // NOLINT
3039 "The difference between 1.0 and 1.5 is 0.5, "
3040 "which exceeds 0.25");
3041 // To work around a bug in gcc 2.95.0, there is intentionally no
3042 // space after the first comma in the previous statement.
3043 }
3044
3045 // Tests ASSERT_NEAR.
TEST_F(DoubleTest,ASSERT_NEAR)3046 TEST_F(DoubleTest, ASSERT_NEAR) {
3047 ASSERT_NEAR(-1.0, -1.1, 0.2);
3048 ASSERT_NEAR(2.0, 3.0, 1.0);
3049 EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25), // NOLINT
3050 "The difference between 1.0 and 1.5 is 0.5, "
3051 "which exceeds 0.25");
3052 // To work around a bug in gcc 2.95.0, there is intentionally no
3053 // space after the first comma in the previous statement.
3054 }
3055
3056 // Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest,DoubleLESucceeds)3057 TEST_F(DoubleTest, DoubleLESucceeds) {
3058 EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0); // When val1 < val2,
3059 ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0); // val1 == val2,
3060
3061 // or when val1 is greater than, but almost equals to, val2.
3062 EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3063 }
3064
3065 // Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest,DoubleLEFails)3066 TEST_F(DoubleTest, DoubleLEFails) {
3067 // When val1 is greater than val2 by a large margin,
3068 EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3069 "(2.0) <= (1.0)");
3070
3071 // or by a small yet non-negligible margin,
3072 EXPECT_NONFATAL_FAILURE({ // NOLINT
3073 EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3074 }, "(values_.further_from_one) <= (1.0)");
3075
3076 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3077 // Nokia's STLport crashes if we try to output infinity or NaN.
3078 // C++Builder gives bad results for ordered comparisons involving NaNs
3079 // due to compiler bugs.
3080 EXPECT_NONFATAL_FAILURE({ // NOLINT
3081 EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3082 }, "(values_.nan1) <= (values_.infinity)");
3083 EXPECT_NONFATAL_FAILURE({ // NOLINT
3084 EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3085 }, " (-values_.infinity) <= (values_.nan1)");
3086 EXPECT_FATAL_FAILURE({ // NOLINT
3087 ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3088 }, "(values_.nan1) <= (values_.nan1)");
3089 #endif // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3090 }
3091
3092
3093 // Verifies that a test or test case whose name starts with DISABLED_ is
3094 // not run.
3095
3096 // A test whose name starts with DISABLED_.
3097 // Should not run.
TEST(DisabledTest,DISABLED_TestShouldNotRun)3098 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3099 FAIL() << "Unexpected failure: Disabled test should not be run.";
3100 }
3101
3102 // A test whose name does not start with DISABLED_.
3103 // Should run.
TEST(DisabledTest,NotDISABLED_TestShouldRun)3104 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
3105 EXPECT_EQ(1, 1);
3106 }
3107
3108 // A test case whose name starts with DISABLED_.
3109 // Should not run.
TEST(DISABLED_TestCase,TestShouldNotRun)3110 TEST(DISABLED_TestCase, TestShouldNotRun) {
3111 FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3112 }
3113
3114 // A test case and test whose names start with DISABLED_.
3115 // Should not run.
TEST(DISABLED_TestCase,DISABLED_TestShouldNotRun)3116 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
3117 FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3118 }
3119
3120 // Check that when all tests in a test case are disabled, SetupTestCase() and
3121 // TearDownTestCase() are not called.
3122 class DisabledTestsTest : public Test {
3123 protected:
SetUpTestCase()3124 static void SetUpTestCase() {
3125 FAIL() << "Unexpected failure: All tests disabled in test case. "
3126 "SetupTestCase() should not be called.";
3127 }
3128
TearDownTestCase()3129 static void TearDownTestCase() {
3130 FAIL() << "Unexpected failure: All tests disabled in test case. "
3131 "TearDownTestCase() should not be called.";
3132 }
3133 };
3134
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_1)3135 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3136 FAIL() << "Unexpected failure: Disabled test should not be run.";
3137 }
3138
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_2)3139 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3140 FAIL() << "Unexpected failure: Disabled test should not be run.";
3141 }
3142
3143 // Tests that disabled typed tests aren't run.
3144
3145 #if GTEST_HAS_TYPED_TEST
3146
3147 template <typename T>
3148 class TypedTest : public Test {
3149 };
3150
3151 typedef testing::Types<int, double> NumericTypes;
3152 TYPED_TEST_CASE(TypedTest, NumericTypes);
3153
TYPED_TEST(TypedTest,DISABLED_ShouldNotRun)3154 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3155 FAIL() << "Unexpected failure: Disabled typed test should not run.";
3156 }
3157
3158 template <typename T>
3159 class DISABLED_TypedTest : public Test {
3160 };
3161
3162 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
3163
TYPED_TEST(DISABLED_TypedTest,ShouldNotRun)3164 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3165 FAIL() << "Unexpected failure: Disabled typed test should not run.";
3166 }
3167
3168 #endif // GTEST_HAS_TYPED_TEST
3169
3170 // Tests that disabled type-parameterized tests aren't run.
3171
3172 #if GTEST_HAS_TYPED_TEST_P
3173
3174 template <typename T>
3175 class TypedTestP : public Test {
3176 };
3177
3178 TYPED_TEST_CASE_P(TypedTestP);
3179
TYPED_TEST_P(TypedTestP,DISABLED_ShouldNotRun)3180 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3181 FAIL() << "Unexpected failure: "
3182 << "Disabled type-parameterized test should not run.";
3183 }
3184
3185 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
3186
3187 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
3188
3189 template <typename T>
3190 class DISABLED_TypedTestP : public Test {
3191 };
3192
3193 TYPED_TEST_CASE_P(DISABLED_TypedTestP);
3194
TYPED_TEST_P(DISABLED_TypedTestP,ShouldNotRun)3195 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3196 FAIL() << "Unexpected failure: "
3197 << "Disabled type-parameterized test should not run.";
3198 }
3199
3200 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
3201
3202 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
3203
3204 #endif // GTEST_HAS_TYPED_TEST_P
3205
3206 // Tests that assertion macros evaluate their arguments exactly once.
3207
3208 class SingleEvaluationTest : public Test {
3209 public: // Must be public and not protected due to a bug in g++ 3.4.2.
3210 // This helper function is needed by the FailedASSERT_STREQ test
3211 // below. It's public to work around C++Builder's bug with scoping local
3212 // classes.
CompareAndIncrementCharPtrs()3213 static void CompareAndIncrementCharPtrs() {
3214 ASSERT_STREQ(p1_++, p2_++);
3215 }
3216
3217 // This helper function is needed by the FailedASSERT_NE test below. It's
3218 // public to work around C++Builder's bug with scoping local classes.
CompareAndIncrementInts()3219 static void CompareAndIncrementInts() {
3220 ASSERT_NE(a_++, b_++);
3221 }
3222
3223 protected:
SingleEvaluationTest()3224 SingleEvaluationTest() {
3225 p1_ = s1_;
3226 p2_ = s2_;
3227 a_ = 0;
3228 b_ = 0;
3229 }
3230
3231 static const char* const s1_;
3232 static const char* const s2_;
3233 static const char* p1_;
3234 static const char* p2_;
3235
3236 static int a_;
3237 static int b_;
3238 };
3239
3240 const char* const SingleEvaluationTest::s1_ = "01234";
3241 const char* const SingleEvaluationTest::s2_ = "abcde";
3242 const char* SingleEvaluationTest::p1_;
3243 const char* SingleEvaluationTest::p2_;
3244 int SingleEvaluationTest::a_;
3245 int SingleEvaluationTest::b_;
3246
3247 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3248 // exactly once.
TEST_F(SingleEvaluationTest,FailedASSERT_STREQ)3249 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3250 EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3251 "p2_++");
3252 EXPECT_EQ(s1_ + 1, p1_);
3253 EXPECT_EQ(s2_ + 1, p2_);
3254 }
3255
3256 // Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ASSERT_STR)3257 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3258 // successful EXPECT_STRNE
3259 EXPECT_STRNE(p1_++, p2_++);
3260 EXPECT_EQ(s1_ + 1, p1_);
3261 EXPECT_EQ(s2_ + 1, p2_);
3262
3263 // failed EXPECT_STRCASEEQ
3264 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
3265 "ignoring case");
3266 EXPECT_EQ(s1_ + 2, p1_);
3267 EXPECT_EQ(s2_ + 2, p2_);
3268 }
3269
3270 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3271 // once.
TEST_F(SingleEvaluationTest,FailedASSERT_NE)3272 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3273 EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3274 "(a_++) != (b_++)");
3275 EXPECT_EQ(1, a_);
3276 EXPECT_EQ(1, b_);
3277 }
3278
3279 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,OtherCases)3280 TEST_F(SingleEvaluationTest, OtherCases) {
3281 // successful EXPECT_TRUE
3282 EXPECT_TRUE(0 == a_++); // NOLINT
3283 EXPECT_EQ(1, a_);
3284
3285 // failed EXPECT_TRUE
3286 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3287 EXPECT_EQ(2, a_);
3288
3289 // successful EXPECT_GT
3290 EXPECT_GT(a_++, b_++);
3291 EXPECT_EQ(3, a_);
3292 EXPECT_EQ(1, b_);
3293
3294 // failed EXPECT_LT
3295 EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3296 EXPECT_EQ(4, a_);
3297 EXPECT_EQ(2, b_);
3298
3299 // successful ASSERT_TRUE
3300 ASSERT_TRUE(0 < a_++); // NOLINT
3301 EXPECT_EQ(5, a_);
3302
3303 // successful ASSERT_GT
3304 ASSERT_GT(a_++, b_++);
3305 EXPECT_EQ(6, a_);
3306 EXPECT_EQ(3, b_);
3307 }
3308
3309 #if GTEST_HAS_EXCEPTIONS
3310
ThrowAnInteger()3311 void ThrowAnInteger() {
3312 throw 1;
3313 }
3314
3315 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ExceptionTests)3316 TEST_F(SingleEvaluationTest, ExceptionTests) {
3317 // successful EXPECT_THROW
3318 EXPECT_THROW({ // NOLINT
3319 a_++;
3320 ThrowAnInteger();
3321 }, int);
3322 EXPECT_EQ(1, a_);
3323
3324 // failed EXPECT_THROW, throws different
3325 EXPECT_NONFATAL_FAILURE(EXPECT_THROW({ // NOLINT
3326 a_++;
3327 ThrowAnInteger();
3328 }, bool), "throws a different type");
3329 EXPECT_EQ(2, a_);
3330
3331 // failed EXPECT_THROW, throws nothing
3332 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3333 EXPECT_EQ(3, a_);
3334
3335 // successful EXPECT_NO_THROW
3336 EXPECT_NO_THROW(a_++);
3337 EXPECT_EQ(4, a_);
3338
3339 // failed EXPECT_NO_THROW
3340 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({ // NOLINT
3341 a_++;
3342 ThrowAnInteger();
3343 }), "it throws");
3344 EXPECT_EQ(5, a_);
3345
3346 // successful EXPECT_ANY_THROW
3347 EXPECT_ANY_THROW({ // NOLINT
3348 a_++;
3349 ThrowAnInteger();
3350 });
3351 EXPECT_EQ(6, a_);
3352
3353 // failed EXPECT_ANY_THROW
3354 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3355 EXPECT_EQ(7, a_);
3356 }
3357
3358 #endif // GTEST_HAS_EXCEPTIONS
3359
3360 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3361 class NoFatalFailureTest : public Test {
3362 protected:
Succeeds()3363 void Succeeds() {}
FailsNonFatal()3364 void FailsNonFatal() {
3365 ADD_FAILURE() << "some non-fatal failure";
3366 }
Fails()3367 void Fails() {
3368 FAIL() << "some fatal failure";
3369 }
3370
DoAssertNoFatalFailureOnFails()3371 void DoAssertNoFatalFailureOnFails() {
3372 ASSERT_NO_FATAL_FAILURE(Fails());
3373 ADD_FAILURE() << "shold not reach here.";
3374 }
3375
DoExpectNoFatalFailureOnFails()3376 void DoExpectNoFatalFailureOnFails() {
3377 EXPECT_NO_FATAL_FAILURE(Fails());
3378 ADD_FAILURE() << "other failure";
3379 }
3380 };
3381
TEST_F(NoFatalFailureTest,NoFailure)3382 TEST_F(NoFatalFailureTest, NoFailure) {
3383 EXPECT_NO_FATAL_FAILURE(Succeeds());
3384 ASSERT_NO_FATAL_FAILURE(Succeeds());
3385 }
3386
TEST_F(NoFatalFailureTest,NonFatalIsNoFailure)3387 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3388 EXPECT_NONFATAL_FAILURE(
3389 EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3390 "some non-fatal failure");
3391 EXPECT_NONFATAL_FAILURE(
3392 ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3393 "some non-fatal failure");
3394 }
3395
TEST_F(NoFatalFailureTest,AssertNoFatalFailureOnFatalFailure)3396 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3397 TestPartResultArray gtest_failures;
3398 {
3399 ScopedFakeTestPartResultReporter gtest_reporter(>est_failures);
3400 DoAssertNoFatalFailureOnFails();
3401 }
3402 ASSERT_EQ(2, gtest_failures.size());
3403 EXPECT_EQ(TestPartResult::kFatalFailure,
3404 gtest_failures.GetTestPartResult(0).type());
3405 EXPECT_EQ(TestPartResult::kFatalFailure,
3406 gtest_failures.GetTestPartResult(1).type());
3407 EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3408 gtest_failures.GetTestPartResult(0).message());
3409 EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3410 gtest_failures.GetTestPartResult(1).message());
3411 }
3412
TEST_F(NoFatalFailureTest,ExpectNoFatalFailureOnFatalFailure)3413 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3414 TestPartResultArray gtest_failures;
3415 {
3416 ScopedFakeTestPartResultReporter gtest_reporter(>est_failures);
3417 DoExpectNoFatalFailureOnFails();
3418 }
3419 ASSERT_EQ(3, gtest_failures.size());
3420 EXPECT_EQ(TestPartResult::kFatalFailure,
3421 gtest_failures.GetTestPartResult(0).type());
3422 EXPECT_EQ(TestPartResult::kNonFatalFailure,
3423 gtest_failures.GetTestPartResult(1).type());
3424 EXPECT_EQ(TestPartResult::kNonFatalFailure,
3425 gtest_failures.GetTestPartResult(2).type());
3426 EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3427 gtest_failures.GetTestPartResult(0).message());
3428 EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3429 gtest_failures.GetTestPartResult(1).message());
3430 EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3431 gtest_failures.GetTestPartResult(2).message());
3432 }
3433
TEST_F(NoFatalFailureTest,MessageIsStreamable)3434 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3435 TestPartResultArray gtest_failures;
3436 {
3437 ScopedFakeTestPartResultReporter gtest_reporter(>est_failures);
3438 EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
3439 }
3440 ASSERT_EQ(2, gtest_failures.size());
3441 EXPECT_EQ(TestPartResult::kNonFatalFailure,
3442 gtest_failures.GetTestPartResult(0).type());
3443 EXPECT_EQ(TestPartResult::kNonFatalFailure,
3444 gtest_failures.GetTestPartResult(1).type());
3445 EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3446 gtest_failures.GetTestPartResult(0).message());
3447 EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3448 gtest_failures.GetTestPartResult(1).message());
3449 }
3450
3451 // Tests non-string assertions.
3452
3453 // Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest,EqFailure)3454 TEST(AssertionTest, EqFailure) {
3455 const std::string foo_val("5"), bar_val("6");
3456 const std::string msg1(
3457 EqFailure("foo", "bar", foo_val, bar_val, false)
3458 .failure_message());
3459 EXPECT_STREQ(
3460 "Value of: bar\n"
3461 " Actual: 6\n"
3462 "Expected: foo\n"
3463 "Which is: 5",
3464 msg1.c_str());
3465
3466 const std::string msg2(
3467 EqFailure("foo", "6", foo_val, bar_val, false)
3468 .failure_message());
3469 EXPECT_STREQ(
3470 "Value of: 6\n"
3471 "Expected: foo\n"
3472 "Which is: 5",
3473 msg2.c_str());
3474
3475 const std::string msg3(
3476 EqFailure("5", "bar", foo_val, bar_val, false)
3477 .failure_message());
3478 EXPECT_STREQ(
3479 "Value of: bar\n"
3480 " Actual: 6\n"
3481 "Expected: 5",
3482 msg3.c_str());
3483
3484 const std::string msg4(
3485 EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3486 EXPECT_STREQ(
3487 "Value of: 6\n"
3488 "Expected: 5",
3489 msg4.c_str());
3490
3491 const std::string msg5(
3492 EqFailure("foo", "bar",
3493 std::string("\"x\""), std::string("\"y\""),
3494 true).failure_message());
3495 EXPECT_STREQ(
3496 "Value of: bar\n"
3497 " Actual: \"y\"\n"
3498 "Expected: foo (ignoring case)\n"
3499 "Which is: \"x\"",
3500 msg5.c_str());
3501 }
3502
3503 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest,AppendUserMessage)3504 TEST(AssertionTest, AppendUserMessage) {
3505 const std::string foo("foo");
3506
3507 Message msg;
3508 EXPECT_STREQ("foo",
3509 AppendUserMessage(foo, msg).c_str());
3510
3511 msg << "bar";
3512 EXPECT_STREQ("foo\nbar",
3513 AppendUserMessage(foo, msg).c_str());
3514 }
3515
3516 #ifdef __BORLANDC__
3517 // Silences warnings: "Condition is always true", "Unreachable code"
3518 # pragma option push -w-ccc -w-rch
3519 #endif
3520
3521 // Tests ASSERT_TRUE.
TEST(AssertionTest,ASSERT_TRUE)3522 TEST(AssertionTest, ASSERT_TRUE) {
3523 ASSERT_TRUE(2 > 1); // NOLINT
3524 EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
3525 "2 < 1");
3526 }
3527
3528 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertTrueWithAssertionResult)3529 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3530 ASSERT_TRUE(ResultIsEven(2));
3531 #ifndef __BORLANDC__
3532 // ICE's in C++Builder.
3533 EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3534 "Value of: ResultIsEven(3)\n"
3535 " Actual: false (3 is odd)\n"
3536 "Expected: true");
3537 #endif
3538 ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3539 EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3540 "Value of: ResultIsEvenNoExplanation(3)\n"
3541 " Actual: false (3 is odd)\n"
3542 "Expected: true");
3543 }
3544
3545 // Tests ASSERT_FALSE.
TEST(AssertionTest,ASSERT_FALSE)3546 TEST(AssertionTest, ASSERT_FALSE) {
3547 ASSERT_FALSE(2 < 1); // NOLINT
3548 EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3549 "Value of: 2 > 1\n"
3550 " Actual: true\n"
3551 "Expected: false");
3552 }
3553
3554 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertFalseWithAssertionResult)3555 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3556 ASSERT_FALSE(ResultIsEven(3));
3557 #ifndef __BORLANDC__
3558 // ICE's in C++Builder.
3559 EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3560 "Value of: ResultIsEven(2)\n"
3561 " Actual: true (2 is even)\n"
3562 "Expected: false");
3563 #endif
3564 ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3565 EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3566 "Value of: ResultIsEvenNoExplanation(2)\n"
3567 " Actual: true\n"
3568 "Expected: false");
3569 }
3570
3571 #ifdef __BORLANDC__
3572 // Restores warnings after previous "#pragma option push" supressed them
3573 # pragma option pop
3574 #endif
3575
3576 // Tests using ASSERT_EQ on double values. The purpose is to make
3577 // sure that the specialization we did for integer and anonymous enums
3578 // isn't used for double arguments.
TEST(ExpectTest,ASSERT_EQ_Double)3579 TEST(ExpectTest, ASSERT_EQ_Double) {
3580 // A success.
3581 ASSERT_EQ(5.6, 5.6);
3582
3583 // A failure.
3584 EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
3585 "5.1");
3586 }
3587
3588 // Tests ASSERT_EQ.
TEST(AssertionTest,ASSERT_EQ)3589 TEST(AssertionTest, ASSERT_EQ) {
3590 ASSERT_EQ(5, 2 + 3);
3591 EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3592 "Value of: 2*3\n"
3593 " Actual: 6\n"
3594 "Expected: 5");
3595 }
3596
3597 // Tests ASSERT_EQ(NULL, pointer).
3598 #if GTEST_CAN_COMPARE_NULL
TEST(AssertionTest,ASSERT_EQ_NULL)3599 TEST(AssertionTest, ASSERT_EQ_NULL) {
3600 // A success.
3601 const char* p = NULL;
3602 // Some older GCC versions may issue a spurious waring in this or the next
3603 // assertion statement. This warning should not be suppressed with
3604 // static_cast since the test verifies the ability to use bare NULL as the
3605 // expected parameter to the macro.
3606 ASSERT_EQ(NULL, p);
3607
3608 // A failure.
3609 static int n = 0;
3610 EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
3611 "Value of: &n\n");
3612 }
3613 #endif // GTEST_CAN_COMPARE_NULL
3614
3615 // Tests ASSERT_EQ(0, non_pointer). Since the literal 0 can be
3616 // treated as a null pointer by the compiler, we need to make sure
3617 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3618 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,ASSERT_EQ_0)3619 TEST(ExpectTest, ASSERT_EQ_0) {
3620 int n = 0;
3621
3622 // A success.
3623 ASSERT_EQ(0, n);
3624
3625 // A failure.
3626 EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
3627 "Expected: 0");
3628 }
3629
3630 // Tests ASSERT_NE.
TEST(AssertionTest,ASSERT_NE)3631 TEST(AssertionTest, ASSERT_NE) {
3632 ASSERT_NE(6, 7);
3633 EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3634 "Expected: ('a') != ('a'), "
3635 "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3636 }
3637
3638 // Tests ASSERT_LE.
TEST(AssertionTest,ASSERT_LE)3639 TEST(AssertionTest, ASSERT_LE) {
3640 ASSERT_LE(2, 3);
3641 ASSERT_LE(2, 2);
3642 EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
3643 "Expected: (2) <= (0), actual: 2 vs 0");
3644 }
3645
3646 // Tests ASSERT_LT.
TEST(AssertionTest,ASSERT_LT)3647 TEST(AssertionTest, ASSERT_LT) {
3648 ASSERT_LT(2, 3);
3649 EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
3650 "Expected: (2) < (2), actual: 2 vs 2");
3651 }
3652
3653 // Tests ASSERT_GE.
TEST(AssertionTest,ASSERT_GE)3654 TEST(AssertionTest, ASSERT_GE) {
3655 ASSERT_GE(2, 1);
3656 ASSERT_GE(2, 2);
3657 EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
3658 "Expected: (2) >= (3), actual: 2 vs 3");
3659 }
3660
3661 // Tests ASSERT_GT.
TEST(AssertionTest,ASSERT_GT)3662 TEST(AssertionTest, ASSERT_GT) {
3663 ASSERT_GT(2, 1);
3664 EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
3665 "Expected: (2) > (2), actual: 2 vs 2");
3666 }
3667
3668 #if GTEST_HAS_EXCEPTIONS
3669
ThrowNothing()3670 void ThrowNothing() {}
3671
3672 // Tests ASSERT_THROW.
TEST(AssertionTest,ASSERT_THROW)3673 TEST(AssertionTest, ASSERT_THROW) {
3674 ASSERT_THROW(ThrowAnInteger(), int);
3675
3676 # ifndef __BORLANDC__
3677
3678 // ICE's in C++Builder 2007 and 2009.
3679 EXPECT_FATAL_FAILURE(
3680 ASSERT_THROW(ThrowAnInteger(), bool),
3681 "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3682 " Actual: it throws a different type.");
3683 # endif
3684
3685 EXPECT_FATAL_FAILURE(
3686 ASSERT_THROW(ThrowNothing(), bool),
3687 "Expected: ThrowNothing() throws an exception of type bool.\n"
3688 " Actual: it throws nothing.");
3689 }
3690
3691 // Tests ASSERT_NO_THROW.
TEST(AssertionTest,ASSERT_NO_THROW)3692 TEST(AssertionTest, ASSERT_NO_THROW) {
3693 ASSERT_NO_THROW(ThrowNothing());
3694 EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3695 "Expected: ThrowAnInteger() doesn't throw an exception."
3696 "\n Actual: it throws.");
3697 }
3698
3699 // Tests ASSERT_ANY_THROW.
TEST(AssertionTest,ASSERT_ANY_THROW)3700 TEST(AssertionTest, ASSERT_ANY_THROW) {
3701 ASSERT_ANY_THROW(ThrowAnInteger());
3702 EXPECT_FATAL_FAILURE(
3703 ASSERT_ANY_THROW(ThrowNothing()),
3704 "Expected: ThrowNothing() throws an exception.\n"
3705 " Actual: it doesn't.");
3706 }
3707
3708 #endif // GTEST_HAS_EXCEPTIONS
3709
3710 // Makes sure we deal with the precedence of <<. This test should
3711 // compile.
TEST(AssertionTest,AssertPrecedence)3712 TEST(AssertionTest, AssertPrecedence) {
3713 ASSERT_EQ(1 < 2, true);
3714 bool false_value = false;
3715 ASSERT_EQ(true && false_value, false);
3716 }
3717
3718 // A subroutine used by the following test.
TestEq1(int x)3719 void TestEq1(int x) {
3720 ASSERT_EQ(1, x);
3721 }
3722
3723 // Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest,NonFixtureSubroutine)3724 TEST(AssertionTest, NonFixtureSubroutine) {
3725 EXPECT_FATAL_FAILURE(TestEq1(2),
3726 "Value of: x");
3727 }
3728
3729 // An uncopyable class.
3730 class Uncopyable {
3731 public:
Uncopyable(int a_value)3732 explicit Uncopyable(int a_value) : value_(a_value) {}
3733
value() const3734 int value() const { return value_; }
operator ==(const Uncopyable & rhs) const3735 bool operator==(const Uncopyable& rhs) const {
3736 return value() == rhs.value();
3737 }
3738 private:
3739 // This constructor deliberately has no implementation, as we don't
3740 // want this class to be copyable.
3741 Uncopyable(const Uncopyable&); // NOLINT
3742
3743 int value_;
3744 };
3745
operator <<(::std::ostream & os,const Uncopyable & value)3746 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3747 return os << value.value();
3748 }
3749
3750
IsPositiveUncopyable(const Uncopyable & x)3751 bool IsPositiveUncopyable(const Uncopyable& x) {
3752 return x.value() > 0;
3753 }
3754
3755 // A subroutine used by the following test.
TestAssertNonPositive()3756 void TestAssertNonPositive() {
3757 Uncopyable y(-1);
3758 ASSERT_PRED1(IsPositiveUncopyable, y);
3759 }
3760 // A subroutine used by the following test.
TestAssertEqualsUncopyable()3761 void TestAssertEqualsUncopyable() {
3762 Uncopyable x(5);
3763 Uncopyable y(-1);
3764 ASSERT_EQ(x, y);
3765 }
3766
3767 // Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest,AssertWorksWithUncopyableObject)3768 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3769 Uncopyable x(5);
3770 ASSERT_PRED1(IsPositiveUncopyable, x);
3771 ASSERT_EQ(x, x);
3772 EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
3773 "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3774 EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3775 "Value of: y\n Actual: -1\nExpected: x\nWhich is: 5");
3776 }
3777
3778 // Tests that uncopyable objects can be used in expects.
TEST(AssertionTest,ExpectWorksWithUncopyableObject)3779 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3780 Uncopyable x(5);
3781 EXPECT_PRED1(IsPositiveUncopyable, x);
3782 Uncopyable y(-1);
3783 EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
3784 "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3785 EXPECT_EQ(x, x);
3786 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3787 "Value of: y\n Actual: -1\nExpected: x\nWhich is: 5");
3788 }
3789
3790 enum NamedEnum {
3791 kE1 = 0,
3792 kE2 = 1
3793 };
3794
TEST(AssertionTest,NamedEnum)3795 TEST(AssertionTest, NamedEnum) {
3796 EXPECT_EQ(kE1, kE1);
3797 EXPECT_LT(kE1, kE2);
3798 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3799 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
3800 }
3801
3802 // The version of gcc used in XCode 2.2 has a bug and doesn't allow
3803 // anonymous enums in assertions. Therefore the following test is not
3804 // done on Mac.
3805 // Sun Studio and HP aCC also reject this code.
3806 #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3807
3808 // Tests using assertions with anonymous enums.
3809 enum {
3810 kCaseA = -1,
3811
3812 # if GTEST_OS_LINUX
3813
3814 // We want to test the case where the size of the anonymous enum is
3815 // larger than sizeof(int), to make sure our implementation of the
3816 // assertions doesn't truncate the enums. However, MSVC
3817 // (incorrectly) doesn't allow an enum value to exceed the range of
3818 // an int, so this has to be conditionally compiled.
3819 //
3820 // On Linux, kCaseB and kCaseA have the same value when truncated to
3821 // int size. We want to test whether this will confuse the
3822 // assertions.
3823 kCaseB = testing::internal::kMaxBiggestInt,
3824
3825 # else
3826
3827 kCaseB = INT_MAX,
3828
3829 # endif // GTEST_OS_LINUX
3830
3831 kCaseC = 42
3832 };
3833
TEST(AssertionTest,AnonymousEnum)3834 TEST(AssertionTest, AnonymousEnum) {
3835 # if GTEST_OS_LINUX
3836
3837 EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3838
3839 # endif // GTEST_OS_LINUX
3840
3841 EXPECT_EQ(kCaseA, kCaseA);
3842 EXPECT_NE(kCaseA, kCaseB);
3843 EXPECT_LT(kCaseA, kCaseB);
3844 EXPECT_LE(kCaseA, kCaseB);
3845 EXPECT_GT(kCaseB, kCaseA);
3846 EXPECT_GE(kCaseA, kCaseA);
3847 EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
3848 "(kCaseA) >= (kCaseB)");
3849 EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
3850 "-1 vs 42");
3851
3852 ASSERT_EQ(kCaseA, kCaseA);
3853 ASSERT_NE(kCaseA, kCaseB);
3854 ASSERT_LT(kCaseA, kCaseB);
3855 ASSERT_LE(kCaseA, kCaseB);
3856 ASSERT_GT(kCaseB, kCaseA);
3857 ASSERT_GE(kCaseA, kCaseA);
3858
3859 # ifndef __BORLANDC__
3860
3861 // ICE's in C++Builder.
3862 EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
3863 "Value of: kCaseB");
3864 EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3865 "Actual: 42");
3866 # endif
3867
3868 EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3869 "Which is: -1");
3870 }
3871
3872 #endif // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3873
3874 #if GTEST_OS_WINDOWS
3875
UnexpectedHRESULTFailure()3876 static HRESULT UnexpectedHRESULTFailure() {
3877 return E_UNEXPECTED;
3878 }
3879
OkHRESULTSuccess()3880 static HRESULT OkHRESULTSuccess() {
3881 return S_OK;
3882 }
3883
FalseHRESULTSuccess()3884 static HRESULT FalseHRESULTSuccess() {
3885 return S_FALSE;
3886 }
3887
3888 // HRESULT assertion tests test both zero and non-zero
3889 // success codes as well as failure message for each.
3890 //
3891 // Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest,EXPECT_HRESULT_SUCCEEDED)3892 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
3893 EXPECT_HRESULT_SUCCEEDED(S_OK);
3894 EXPECT_HRESULT_SUCCEEDED(S_FALSE);
3895
3896 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3897 "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3898 " Actual: 0x8000FFFF");
3899 }
3900
TEST(HRESULTAssertionTest,ASSERT_HRESULT_SUCCEEDED)3901 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
3902 ASSERT_HRESULT_SUCCEEDED(S_OK);
3903 ASSERT_HRESULT_SUCCEEDED(S_FALSE);
3904
3905 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3906 "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3907 " Actual: 0x8000FFFF");
3908 }
3909
TEST(HRESULTAssertionTest,EXPECT_HRESULT_FAILED)3910 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
3911 EXPECT_HRESULT_FAILED(E_UNEXPECTED);
3912
3913 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
3914 "Expected: (OkHRESULTSuccess()) fails.\n"
3915 " Actual: 0x0");
3916 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
3917 "Expected: (FalseHRESULTSuccess()) fails.\n"
3918 " Actual: 0x1");
3919 }
3920
TEST(HRESULTAssertionTest,ASSERT_HRESULT_FAILED)3921 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
3922 ASSERT_HRESULT_FAILED(E_UNEXPECTED);
3923
3924 # ifndef __BORLANDC__
3925
3926 // ICE's in C++Builder 2007 and 2009.
3927 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
3928 "Expected: (OkHRESULTSuccess()) fails.\n"
3929 " Actual: 0x0");
3930 # endif
3931
3932 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
3933 "Expected: (FalseHRESULTSuccess()) fails.\n"
3934 " Actual: 0x1");
3935 }
3936
3937 // Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest,Streaming)3938 TEST(HRESULTAssertionTest, Streaming) {
3939 EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
3940 ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
3941 EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
3942 ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
3943
3944 EXPECT_NONFATAL_FAILURE(
3945 EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
3946 "expected failure");
3947
3948 # ifndef __BORLANDC__
3949
3950 // ICE's in C++Builder 2007 and 2009.
3951 EXPECT_FATAL_FAILURE(
3952 ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
3953 "expected failure");
3954 # endif
3955
3956 EXPECT_NONFATAL_FAILURE(
3957 EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
3958 "expected failure");
3959
3960 EXPECT_FATAL_FAILURE(
3961 ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
3962 "expected failure");
3963 }
3964
3965 #endif // GTEST_OS_WINDOWS
3966
3967 #ifdef __BORLANDC__
3968 // Silences warnings: "Condition is always true", "Unreachable code"
3969 # pragma option push -w-ccc -w-rch
3970 #endif
3971
3972 // Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest,BasicAssertionsBehavesLikeSingleStatement)3973 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
3974 if (AlwaysFalse())
3975 ASSERT_TRUE(false) << "This should never be executed; "
3976 "It's a compilation test only.";
3977
3978 if (AlwaysTrue())
3979 EXPECT_FALSE(false);
3980 else
3981 ; // NOLINT
3982
3983 if (AlwaysFalse())
3984 ASSERT_LT(1, 3);
3985
3986 if (AlwaysFalse())
3987 ; // NOLINT
3988 else
3989 EXPECT_GT(3, 2) << "";
3990 }
3991
3992 #if GTEST_HAS_EXCEPTIONS
3993 // Tests that the compiler will not complain about unreachable code in the
3994 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
TEST(ExpectThrowTest,DoesNotGenerateUnreachableCodeWarning)3995 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
3996 int n = 0;
3997
3998 EXPECT_THROW(throw 1, int);
3999 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4000 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
4001 EXPECT_NO_THROW(n++);
4002 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4003 EXPECT_ANY_THROW(throw 1);
4004 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4005 }
4006
TEST(AssertionSyntaxTest,ExceptionAssertionsBehavesLikeSingleStatement)4007 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4008 if (AlwaysFalse())
4009 EXPECT_THROW(ThrowNothing(), bool);
4010
4011 if (AlwaysTrue())
4012 EXPECT_THROW(ThrowAnInteger(), int);
4013 else
4014 ; // NOLINT
4015
4016 if (AlwaysFalse())
4017 EXPECT_NO_THROW(ThrowAnInteger());
4018
4019 if (AlwaysTrue())
4020 EXPECT_NO_THROW(ThrowNothing());
4021 else
4022 ; // NOLINT
4023
4024 if (AlwaysFalse())
4025 EXPECT_ANY_THROW(ThrowNothing());
4026
4027 if (AlwaysTrue())
4028 EXPECT_ANY_THROW(ThrowAnInteger());
4029 else
4030 ; // NOLINT
4031 }
4032 #endif // GTEST_HAS_EXCEPTIONS
4033
TEST(AssertionSyntaxTest,NoFatalFailureAssertionsBehavesLikeSingleStatement)4034 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4035 if (AlwaysFalse())
4036 EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4037 << "It's a compilation test only.";
4038 else
4039 ; // NOLINT
4040
4041 if (AlwaysFalse())
4042 ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4043 else
4044 ; // NOLINT
4045
4046 if (AlwaysTrue())
4047 EXPECT_NO_FATAL_FAILURE(SUCCEED());
4048 else
4049 ; // NOLINT
4050
4051 if (AlwaysFalse())
4052 ; // NOLINT
4053 else
4054 ASSERT_NO_FATAL_FAILURE(SUCCEED());
4055 }
4056
4057 // Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest,WorksWithSwitch)4058 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4059 switch (0) {
4060 case 1:
4061 break;
4062 default:
4063 ASSERT_TRUE(true);
4064 }
4065
4066 switch (0)
4067 case 0:
4068 EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4069
4070 // Binary assertions are implemented using a different code path
4071 // than the Boolean assertions. Hence we test them separately.
4072 switch (0) {
4073 case 1:
4074 default:
4075 ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4076 }
4077
4078 switch (0)
4079 case 0:
4080 EXPECT_NE(1, 2);
4081 }
4082
4083 #if GTEST_HAS_EXCEPTIONS
4084
ThrowAString()4085 void ThrowAString() {
4086 throw "std::string";
4087 }
4088
4089 // Test that the exception assertion macros compile and work with const
4090 // type qualifier.
TEST(AssertionSyntaxTest,WorksWithConst)4091 TEST(AssertionSyntaxTest, WorksWithConst) {
4092 ASSERT_THROW(ThrowAString(), const char*);
4093
4094 EXPECT_THROW(ThrowAString(), const char*);
4095 }
4096
4097 #endif // GTEST_HAS_EXCEPTIONS
4098
4099 } // namespace
4100
4101 namespace testing {
4102
4103 // Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest,SUCCEED)4104 TEST(SuccessfulAssertionTest, SUCCEED) {
4105 SUCCEED();
4106 SUCCEED() << "OK";
4107 EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4108 }
4109
4110 // Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest,EXPECT)4111 TEST(SuccessfulAssertionTest, EXPECT) {
4112 EXPECT_TRUE(true);
4113 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4114 }
4115
4116 // Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest,EXPECT_STR)4117 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4118 EXPECT_STREQ("", "");
4119 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4120 }
4121
4122 // Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest,ASSERT)4123 TEST(SuccessfulAssertionTest, ASSERT) {
4124 ASSERT_TRUE(true);
4125 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4126 }
4127
4128 // Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest,ASSERT_STR)4129 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4130 ASSERT_STREQ("", "");
4131 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4132 }
4133
4134 } // namespace testing
4135
4136 namespace {
4137
4138 // Tests the message streaming variation of assertions.
4139
TEST(AssertionWithMessageTest,EXPECT)4140 TEST(AssertionWithMessageTest, EXPECT) {
4141 EXPECT_EQ(1, 1) << "This should succeed.";
4142 EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4143 "Expected failure #1");
4144 EXPECT_LE(1, 2) << "This should succeed.";
4145 EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4146 "Expected failure #2.");
4147 EXPECT_GE(1, 0) << "This should succeed.";
4148 EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4149 "Expected failure #3.");
4150
4151 EXPECT_STREQ("1", "1") << "This should succeed.";
4152 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4153 "Expected failure #4.");
4154 EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4155 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4156 "Expected failure #5.");
4157
4158 EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4159 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4160 "Expected failure #6.");
4161 EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4162 }
4163
TEST(AssertionWithMessageTest,ASSERT)4164 TEST(AssertionWithMessageTest, ASSERT) {
4165 ASSERT_EQ(1, 1) << "This should succeed.";
4166 ASSERT_NE(1, 2) << "This should succeed.";
4167 ASSERT_LE(1, 2) << "This should succeed.";
4168 ASSERT_LT(1, 2) << "This should succeed.";
4169 ASSERT_GE(1, 0) << "This should succeed.";
4170 EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4171 "Expected failure.");
4172 }
4173
TEST(AssertionWithMessageTest,ASSERT_STR)4174 TEST(AssertionWithMessageTest, ASSERT_STR) {
4175 ASSERT_STREQ("1", "1") << "This should succeed.";
4176 ASSERT_STRNE("1", "2") << "This should succeed.";
4177 ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4178 EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4179 "Expected failure.");
4180 }
4181
TEST(AssertionWithMessageTest,ASSERT_FLOATING)4182 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4183 ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4184 ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4185 EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.", // NOLINT
4186 "Expect failure.");
4187 // To work around a bug in gcc 2.95.0, there is intentionally no
4188 // space after the first comma in the previous statement.
4189 }
4190
4191 // Tests using ASSERT_FALSE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_FALSE)4192 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4193 ASSERT_FALSE(false) << "This shouldn't fail.";
4194 EXPECT_FATAL_FAILURE({ // NOLINT
4195 ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4196 << " evaluates to " << true;
4197 }, "Expected failure");
4198 }
4199
4200 // Tests using FAIL with a streamed message.
TEST(AssertionWithMessageTest,FAIL)4201 TEST(AssertionWithMessageTest, FAIL) {
4202 EXPECT_FATAL_FAILURE(FAIL() << 0,
4203 "0");
4204 }
4205
4206 // Tests using SUCCEED with a streamed message.
TEST(AssertionWithMessageTest,SUCCEED)4207 TEST(AssertionWithMessageTest, SUCCEED) {
4208 SUCCEED() << "Success == " << 1;
4209 }
4210
4211 // Tests using ASSERT_TRUE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_TRUE)4212 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4213 ASSERT_TRUE(true) << "This should succeed.";
4214 ASSERT_TRUE(true) << true;
4215 EXPECT_FATAL_FAILURE({ // NOLINT
4216 ASSERT_TRUE(false) << static_cast<const char *>(NULL)
4217 << static_cast<char *>(NULL);
4218 }, "(null)(null)");
4219 }
4220
4221 #if GTEST_OS_WINDOWS
4222 // Tests using wide strings in assertion messages.
TEST(AssertionWithMessageTest,WideStringMessage)4223 TEST(AssertionWithMessageTest, WideStringMessage) {
4224 EXPECT_NONFATAL_FAILURE({ // NOLINT
4225 EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4226 }, "This failure is expected.");
4227 EXPECT_FATAL_FAILURE({ // NOLINT
4228 ASSERT_EQ(1, 2) << "This failure is "
4229 << L"expected too.\x8120";
4230 }, "This failure is expected too.");
4231 }
4232 #endif // GTEST_OS_WINDOWS
4233
4234 // Tests EXPECT_TRUE.
TEST(ExpectTest,EXPECT_TRUE)4235 TEST(ExpectTest, EXPECT_TRUE) {
4236 EXPECT_TRUE(true) << "Intentional success";
4237 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4238 "Intentional failure #1.");
4239 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4240 "Intentional failure #2.");
4241 EXPECT_TRUE(2 > 1); // NOLINT
4242 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4243 "Value of: 2 < 1\n"
4244 " Actual: false\n"
4245 "Expected: true");
4246 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
4247 "2 > 3");
4248 }
4249
4250 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectTrueWithAssertionResult)4251 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4252 EXPECT_TRUE(ResultIsEven(2));
4253 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4254 "Value of: ResultIsEven(3)\n"
4255 " Actual: false (3 is odd)\n"
4256 "Expected: true");
4257 EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4258 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4259 "Value of: ResultIsEvenNoExplanation(3)\n"
4260 " Actual: false (3 is odd)\n"
4261 "Expected: true");
4262 }
4263
4264 // Tests EXPECT_FALSE with a streamed message.
TEST(ExpectTest,EXPECT_FALSE)4265 TEST(ExpectTest, EXPECT_FALSE) {
4266 EXPECT_FALSE(2 < 1); // NOLINT
4267 EXPECT_FALSE(false) << "Intentional success";
4268 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4269 "Intentional failure #1.");
4270 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4271 "Intentional failure #2.");
4272 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4273 "Value of: 2 > 1\n"
4274 " Actual: true\n"
4275 "Expected: false");
4276 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
4277 "2 < 3");
4278 }
4279
4280 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectFalseWithAssertionResult)4281 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4282 EXPECT_FALSE(ResultIsEven(3));
4283 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4284 "Value of: ResultIsEven(2)\n"
4285 " Actual: true (2 is even)\n"
4286 "Expected: false");
4287 EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4288 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4289 "Value of: ResultIsEvenNoExplanation(2)\n"
4290 " Actual: true\n"
4291 "Expected: false");
4292 }
4293
4294 #ifdef __BORLANDC__
4295 // Restores warnings after previous "#pragma option push" supressed them
4296 # pragma option pop
4297 #endif
4298
4299 // Tests EXPECT_EQ.
TEST(ExpectTest,EXPECT_EQ)4300 TEST(ExpectTest, EXPECT_EQ) {
4301 EXPECT_EQ(5, 2 + 3);
4302 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4303 "Value of: 2*3\n"
4304 " Actual: 6\n"
4305 "Expected: 5");
4306 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
4307 "2 - 3");
4308 }
4309
4310 // Tests using EXPECT_EQ on double values. The purpose is to make
4311 // sure that the specialization we did for integer and anonymous enums
4312 // isn't used for double arguments.
TEST(ExpectTest,EXPECT_EQ_Double)4313 TEST(ExpectTest, EXPECT_EQ_Double) {
4314 // A success.
4315 EXPECT_EQ(5.6, 5.6);
4316
4317 // A failure.
4318 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
4319 "5.1");
4320 }
4321
4322 #if GTEST_CAN_COMPARE_NULL
4323 // Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest,EXPECT_EQ_NULL)4324 TEST(ExpectTest, EXPECT_EQ_NULL) {
4325 // A success.
4326 const char* p = NULL;
4327 // Some older GCC versions may issue a spurious warning in this or the next
4328 // assertion statement. This warning should not be suppressed with
4329 // static_cast since the test verifies the ability to use bare NULL as the
4330 // expected parameter to the macro.
4331 EXPECT_EQ(NULL, p);
4332
4333 // A failure.
4334 int n = 0;
4335 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
4336 "Value of: &n\n");
4337 }
4338 #endif // GTEST_CAN_COMPARE_NULL
4339
4340 // Tests EXPECT_EQ(0, non_pointer). Since the literal 0 can be
4341 // treated as a null pointer by the compiler, we need to make sure
4342 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4343 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,EXPECT_EQ_0)4344 TEST(ExpectTest, EXPECT_EQ_0) {
4345 int n = 0;
4346
4347 // A success.
4348 EXPECT_EQ(0, n);
4349
4350 // A failure.
4351 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
4352 "Expected: 0");
4353 }
4354
4355 // Tests EXPECT_NE.
TEST(ExpectTest,EXPECT_NE)4356 TEST(ExpectTest, EXPECT_NE) {
4357 EXPECT_NE(6, 7);
4358
4359 EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4360 "Expected: ('a') != ('a'), "
4361 "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4362 EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
4363 "2");
4364 char* const p0 = NULL;
4365 EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
4366 "p0");
4367 // Only way to get the Nokia compiler to compile the cast
4368 // is to have a separate void* variable first. Putting
4369 // the two casts on the same line doesn't work, neither does
4370 // a direct C-style to char*.
4371 void* pv1 = (void*)0x1234; // NOLINT
4372 char* const p1 = reinterpret_cast<char*>(pv1);
4373 EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
4374 "p1");
4375 }
4376
4377 // Tests EXPECT_LE.
TEST(ExpectTest,EXPECT_LE)4378 TEST(ExpectTest, EXPECT_LE) {
4379 EXPECT_LE(2, 3);
4380 EXPECT_LE(2, 2);
4381 EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4382 "Expected: (2) <= (0), actual: 2 vs 0");
4383 EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
4384 "(1.1) <= (0.9)");
4385 }
4386
4387 // Tests EXPECT_LT.
TEST(ExpectTest,EXPECT_LT)4388 TEST(ExpectTest, EXPECT_LT) {
4389 EXPECT_LT(2, 3);
4390 EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4391 "Expected: (2) < (2), actual: 2 vs 2");
4392 EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
4393 "(2) < (1)");
4394 }
4395
4396 // Tests EXPECT_GE.
TEST(ExpectTest,EXPECT_GE)4397 TEST(ExpectTest, EXPECT_GE) {
4398 EXPECT_GE(2, 1);
4399 EXPECT_GE(2, 2);
4400 EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4401 "Expected: (2) >= (3), actual: 2 vs 3");
4402 EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
4403 "(0.9) >= (1.1)");
4404 }
4405
4406 // Tests EXPECT_GT.
TEST(ExpectTest,EXPECT_GT)4407 TEST(ExpectTest, EXPECT_GT) {
4408 EXPECT_GT(2, 1);
4409 EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4410 "Expected: (2) > (2), actual: 2 vs 2");
4411 EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
4412 "(2) > (3)");
4413 }
4414
4415 #if GTEST_HAS_EXCEPTIONS
4416
4417 // Tests EXPECT_THROW.
TEST(ExpectTest,EXPECT_THROW)4418 TEST(ExpectTest, EXPECT_THROW) {
4419 EXPECT_THROW(ThrowAnInteger(), int);
4420 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4421 "Expected: ThrowAnInteger() throws an exception of "
4422 "type bool.\n Actual: it throws a different type.");
4423 EXPECT_NONFATAL_FAILURE(
4424 EXPECT_THROW(ThrowNothing(), bool),
4425 "Expected: ThrowNothing() throws an exception of type bool.\n"
4426 " Actual: it throws nothing.");
4427 }
4428
4429 // Tests EXPECT_NO_THROW.
TEST(ExpectTest,EXPECT_NO_THROW)4430 TEST(ExpectTest, EXPECT_NO_THROW) {
4431 EXPECT_NO_THROW(ThrowNothing());
4432 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4433 "Expected: ThrowAnInteger() doesn't throw an "
4434 "exception.\n Actual: it throws.");
4435 }
4436
4437 // Tests EXPECT_ANY_THROW.
TEST(ExpectTest,EXPECT_ANY_THROW)4438 TEST(ExpectTest, EXPECT_ANY_THROW) {
4439 EXPECT_ANY_THROW(ThrowAnInteger());
4440 EXPECT_NONFATAL_FAILURE(
4441 EXPECT_ANY_THROW(ThrowNothing()),
4442 "Expected: ThrowNothing() throws an exception.\n"
4443 " Actual: it doesn't.");
4444 }
4445
4446 #endif // GTEST_HAS_EXCEPTIONS
4447
4448 // Make sure we deal with the precedence of <<.
TEST(ExpectTest,ExpectPrecedence)4449 TEST(ExpectTest, ExpectPrecedence) {
4450 EXPECT_EQ(1 < 2, true);
4451 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4452 "Value of: true && false");
4453 }
4454
4455
4456 // Tests the StreamableToString() function.
4457
4458 // Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest,Scalar)4459 TEST(StreamableToStringTest, Scalar) {
4460 EXPECT_STREQ("5", StreamableToString(5).c_str());
4461 }
4462
4463 // Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest,Pointer)4464 TEST(StreamableToStringTest, Pointer) {
4465 int n = 0;
4466 int* p = &n;
4467 EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4468 }
4469
4470 // Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest,NullPointer)4471 TEST(StreamableToStringTest, NullPointer) {
4472 int* p = NULL;
4473 EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4474 }
4475
4476 // Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest,CString)4477 TEST(StreamableToStringTest, CString) {
4478 EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4479 }
4480
4481 // Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest,NullCString)4482 TEST(StreamableToStringTest, NullCString) {
4483 char* p = NULL;
4484 EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4485 }
4486
4487 // Tests using streamable values as assertion messages.
4488
4489 // Tests using std::string as an assertion message.
TEST(StreamableTest,string)4490 TEST(StreamableTest, string) {
4491 static const std::string str(
4492 "This failure message is a std::string, and is expected.");
4493 EXPECT_FATAL_FAILURE(FAIL() << str,
4494 str.c_str());
4495 }
4496
4497 // Tests that we can output strings containing embedded NULs.
4498 // Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest,stringWithEmbeddedNUL)4499 TEST(StreamableTest, stringWithEmbeddedNUL) {
4500 static const char char_array_with_nul[] =
4501 "Here's a NUL\0 and some more string";
4502 static const std::string string_with_nul(char_array_with_nul,
4503 sizeof(char_array_with_nul)
4504 - 1); // drops the trailing NUL
4505 EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4506 "Here's a NUL\\0 and some more string");
4507 }
4508
4509 // Tests that we can output a NUL char.
TEST(StreamableTest,NULChar)4510 TEST(StreamableTest, NULChar) {
4511 EXPECT_FATAL_FAILURE({ // NOLINT
4512 FAIL() << "A NUL" << '\0' << " and some more string";
4513 }, "A NUL\\0 and some more string");
4514 }
4515
4516 // Tests using int as an assertion message.
TEST(StreamableTest,int)4517 TEST(StreamableTest, int) {
4518 EXPECT_FATAL_FAILURE(FAIL() << 900913,
4519 "900913");
4520 }
4521
4522 // Tests using NULL char pointer as an assertion message.
4523 //
4524 // In MSVC, streaming a NULL char * causes access violation. Google Test
4525 // implemented a workaround (substituting "(null)" for NULL). This
4526 // tests whether the workaround works.
TEST(StreamableTest,NullCharPtr)4527 TEST(StreamableTest, NullCharPtr) {
4528 EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
4529 "(null)");
4530 }
4531
4532 // Tests that basic IO manipulators (endl, ends, and flush) can be
4533 // streamed to testing::Message.
TEST(StreamableTest,BasicIoManip)4534 TEST(StreamableTest, BasicIoManip) {
4535 EXPECT_FATAL_FAILURE({ // NOLINT
4536 FAIL() << "Line 1." << std::endl
4537 << "A NUL char " << std::ends << std::flush << " in line 2.";
4538 }, "Line 1.\nA NUL char \\0 in line 2.");
4539 }
4540
4541 // Tests the macros that haven't been covered so far.
4542
AddFailureHelper(bool * aborted)4543 void AddFailureHelper(bool* aborted) {
4544 *aborted = true;
4545 ADD_FAILURE() << "Intentional failure.";
4546 *aborted = false;
4547 }
4548
4549 // Tests ADD_FAILURE.
TEST(MacroTest,ADD_FAILURE)4550 TEST(MacroTest, ADD_FAILURE) {
4551 bool aborted = true;
4552 EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
4553 "Intentional failure.");
4554 EXPECT_FALSE(aborted);
4555 }
4556
4557 // Tests ADD_FAILURE_AT.
TEST(MacroTest,ADD_FAILURE_AT)4558 TEST(MacroTest, ADD_FAILURE_AT) {
4559 // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4560 // the failure message contains the user-streamed part.
4561 EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4562
4563 // Verifies that the user-streamed part is optional.
4564 EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4565
4566 // Unfortunately, we cannot verify that the failure message contains
4567 // the right file path and line number the same way, as
4568 // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4569 // line number. Instead, we do that in gtest_output_test_.cc.
4570 }
4571
4572 // Tests FAIL.
TEST(MacroTest,FAIL)4573 TEST(MacroTest, FAIL) {
4574 EXPECT_FATAL_FAILURE(FAIL(),
4575 "Failed");
4576 EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4577 "Intentional failure.");
4578 }
4579
4580 // Tests SUCCEED
TEST(MacroTest,SUCCEED)4581 TEST(MacroTest, SUCCEED) {
4582 SUCCEED();
4583 SUCCEED() << "Explicit success.";
4584 }
4585
4586 // Tests for EXPECT_EQ() and ASSERT_EQ().
4587 //
4588 // These tests fail *intentionally*, s.t. the failure messages can be
4589 // generated and tested.
4590 //
4591 // We have different tests for different argument types.
4592
4593 // Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Bool)4594 TEST(EqAssertionTest, Bool) {
4595 EXPECT_EQ(true, true);
4596 EXPECT_FATAL_FAILURE({
4597 bool false_value = false;
4598 ASSERT_EQ(false_value, true);
4599 }, "Value of: true");
4600 }
4601
4602 // Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Int)4603 TEST(EqAssertionTest, Int) {
4604 ASSERT_EQ(32, 32);
4605 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
4606 "33");
4607 }
4608
4609 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Time_T)4610 TEST(EqAssertionTest, Time_T) {
4611 EXPECT_EQ(static_cast<time_t>(0),
4612 static_cast<time_t>(0));
4613 EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
4614 static_cast<time_t>(1234)),
4615 "1234");
4616 }
4617
4618 // Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Char)4619 TEST(EqAssertionTest, Char) {
4620 ASSERT_EQ('z', 'z');
4621 const char ch = 'b';
4622 EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
4623 "ch");
4624 EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
4625 "ch");
4626 }
4627
4628 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideChar)4629 TEST(EqAssertionTest, WideChar) {
4630 EXPECT_EQ(L'b', L'b');
4631
4632 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4633 "Value of: L'x'\n"
4634 " Actual: L'x' (120, 0x78)\n"
4635 "Expected: L'\0'\n"
4636 "Which is: L'\0' (0, 0x0)");
4637
4638 static wchar_t wchar;
4639 wchar = L'b';
4640 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
4641 "wchar");
4642 wchar = 0x8119;
4643 EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4644 "Value of: wchar");
4645 }
4646
4647 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdString)4648 TEST(EqAssertionTest, StdString) {
4649 // Compares a const char* to an std::string that has identical
4650 // content.
4651 ASSERT_EQ("Test", ::std::string("Test"));
4652
4653 // Compares two identical std::strings.
4654 static const ::std::string str1("A * in the middle");
4655 static const ::std::string str2(str1);
4656 EXPECT_EQ(str1, str2);
4657
4658 // Compares a const char* to an std::string that has different
4659 // content
4660 EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
4661 "\"test\"");
4662
4663 // Compares an std::string to a char* that has different content.
4664 char* const p1 = const_cast<char*>("foo");
4665 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
4666 "p1");
4667
4668 // Compares two std::strings that have different contents, one of
4669 // which having a NUL character in the middle. This should fail.
4670 static ::std::string str3(str1);
4671 str3.at(2) = '\0';
4672 EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4673 "Value of: str3\n"
4674 " Actual: \"A \\0 in the middle\"");
4675 }
4676
4677 #if GTEST_HAS_STD_WSTRING
4678
4679 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdWideString)4680 TEST(EqAssertionTest, StdWideString) {
4681 // Compares two identical std::wstrings.
4682 const ::std::wstring wstr1(L"A * in the middle");
4683 const ::std::wstring wstr2(wstr1);
4684 ASSERT_EQ(wstr1, wstr2);
4685
4686 // Compares an std::wstring to a const wchar_t* that has identical
4687 // content.
4688 const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4689 EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4690
4691 // Compares an std::wstring to a const wchar_t* that has different
4692 // content.
4693 const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4694 EXPECT_NONFATAL_FAILURE({ // NOLINT
4695 EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4696 }, "kTestX8120");
4697
4698 // Compares two std::wstrings that have different contents, one of
4699 // which having a NUL character in the middle.
4700 ::std::wstring wstr3(wstr1);
4701 wstr3.at(2) = L'\0';
4702 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
4703 "wstr3");
4704
4705 // Compares a wchar_t* to an std::wstring that has different
4706 // content.
4707 EXPECT_FATAL_FAILURE({ // NOLINT
4708 ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4709 }, "");
4710 }
4711
4712 #endif // GTEST_HAS_STD_WSTRING
4713
4714 #if GTEST_HAS_GLOBAL_STRING
4715 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,GlobalString)4716 TEST(EqAssertionTest, GlobalString) {
4717 // Compares a const char* to a ::string that has identical content.
4718 EXPECT_EQ("Test", ::string("Test"));
4719
4720 // Compares two identical ::strings.
4721 const ::string str1("A * in the middle");
4722 const ::string str2(str1);
4723 ASSERT_EQ(str1, str2);
4724
4725 // Compares a ::string to a const char* that has different content.
4726 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
4727 "test");
4728
4729 // Compares two ::strings that have different contents, one of which
4730 // having a NUL character in the middle.
4731 ::string str3(str1);
4732 str3.at(2) = '\0';
4733 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
4734 "str3");
4735
4736 // Compares a ::string to a char* that has different content.
4737 EXPECT_FATAL_FAILURE({ // NOLINT
4738 ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
4739 }, "");
4740 }
4741
4742 #endif // GTEST_HAS_GLOBAL_STRING
4743
4744 #if GTEST_HAS_GLOBAL_WSTRING
4745
4746 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,GlobalWideString)4747 TEST(EqAssertionTest, GlobalWideString) {
4748 // Compares two identical ::wstrings.
4749 static const ::wstring wstr1(L"A * in the middle");
4750 static const ::wstring wstr2(wstr1);
4751 EXPECT_EQ(wstr1, wstr2);
4752
4753 // Compares a const wchar_t* to a ::wstring that has identical content.
4754 const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4755 ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
4756
4757 // Compares a const wchar_t* to a ::wstring that has different
4758 // content.
4759 const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4760 EXPECT_NONFATAL_FAILURE({ // NOLINT
4761 EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
4762 }, "Test\\x8119");
4763
4764 // Compares a wchar_t* to a ::wstring that has different content.
4765 wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
4766 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
4767 "bar");
4768
4769 // Compares two ::wstrings that have different contents, one of which
4770 // having a NUL character in the middle.
4771 static ::wstring wstr3;
4772 wstr3 = wstr1;
4773 wstr3.at(2) = L'\0';
4774 EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
4775 "wstr3");
4776 }
4777
4778 #endif // GTEST_HAS_GLOBAL_WSTRING
4779
4780 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,CharPointer)4781 TEST(EqAssertionTest, CharPointer) {
4782 char* const p0 = NULL;
4783 // Only way to get the Nokia compiler to compile the cast
4784 // is to have a separate void* variable first. Putting
4785 // the two casts on the same line doesn't work, neither does
4786 // a direct C-style to char*.
4787 void* pv1 = (void*)0x1234; // NOLINT
4788 void* pv2 = (void*)0xABC0; // NOLINT
4789 char* const p1 = reinterpret_cast<char*>(pv1);
4790 char* const p2 = reinterpret_cast<char*>(pv2);
4791 ASSERT_EQ(p1, p1);
4792
4793 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4794 "Value of: p2");
4795 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4796 "p2");
4797 EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4798 reinterpret_cast<char*>(0xABC0)),
4799 "ABC0");
4800 }
4801
4802 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideCharPointer)4803 TEST(EqAssertionTest, WideCharPointer) {
4804 wchar_t* const p0 = NULL;
4805 // Only way to get the Nokia compiler to compile the cast
4806 // is to have a separate void* variable first. Putting
4807 // the two casts on the same line doesn't work, neither does
4808 // a direct C-style to char*.
4809 void* pv1 = (void*)0x1234; // NOLINT
4810 void* pv2 = (void*)0xABC0; // NOLINT
4811 wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4812 wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4813 EXPECT_EQ(p0, p0);
4814
4815 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4816 "Value of: p2");
4817 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4818 "p2");
4819 void* pv3 = (void*)0x1234; // NOLINT
4820 void* pv4 = (void*)0xABC0; // NOLINT
4821 const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4822 const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4823 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
4824 "p4");
4825 }
4826
4827 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,OtherPointer)4828 TEST(EqAssertionTest, OtherPointer) {
4829 ASSERT_EQ(static_cast<const int*>(NULL),
4830 static_cast<const int*>(NULL));
4831 EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
4832 reinterpret_cast<const int*>(0x1234)),
4833 "0x1234");
4834 }
4835
4836 // A class that supports binary comparison operators but not streaming.
4837 class UnprintableChar {
4838 public:
UnprintableChar(char ch)4839 explicit UnprintableChar(char ch) : char_(ch) {}
4840
operator ==(const UnprintableChar & rhs) const4841 bool operator==(const UnprintableChar& rhs) const {
4842 return char_ == rhs.char_;
4843 }
operator !=(const UnprintableChar & rhs) const4844 bool operator!=(const UnprintableChar& rhs) const {
4845 return char_ != rhs.char_;
4846 }
operator <(const UnprintableChar & rhs) const4847 bool operator<(const UnprintableChar& rhs) const {
4848 return char_ < rhs.char_;
4849 }
operator <=(const UnprintableChar & rhs) const4850 bool operator<=(const UnprintableChar& rhs) const {
4851 return char_ <= rhs.char_;
4852 }
operator >(const UnprintableChar & rhs) const4853 bool operator>(const UnprintableChar& rhs) const {
4854 return char_ > rhs.char_;
4855 }
operator >=(const UnprintableChar & rhs) const4856 bool operator>=(const UnprintableChar& rhs) const {
4857 return char_ >= rhs.char_;
4858 }
4859
4860 private:
4861 char char_;
4862 };
4863
4864 // Tests that ASSERT_EQ() and friends don't require the arguments to
4865 // be printable.
TEST(ComparisonAssertionTest,AcceptsUnprintableArgs)4866 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4867 const UnprintableChar x('x'), y('y');
4868 ASSERT_EQ(x, x);
4869 EXPECT_NE(x, y);
4870 ASSERT_LT(x, y);
4871 EXPECT_LE(x, y);
4872 ASSERT_GT(y, x);
4873 EXPECT_GE(x, x);
4874
4875 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4876 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4877 EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4878 EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4879 EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4880
4881 // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4882 // variables, so we have to write UnprintableChar('x') instead of x.
4883 #ifndef __BORLANDC__
4884 // ICE's in C++Builder.
4885 EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
4886 "1-byte object <78>");
4887 EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4888 "1-byte object <78>");
4889 #endif
4890 EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4891 "1-byte object <79>");
4892 EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4893 "1-byte object <78>");
4894 EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4895 "1-byte object <79>");
4896 }
4897
4898 // Tests the FRIEND_TEST macro.
4899
4900 // This class has a private member we want to test. We will test it
4901 // both in a TEST and in a TEST_F.
4902 class Foo {
4903 public:
Foo()4904 Foo() {}
4905
4906 private:
Bar() const4907 int Bar() const { return 1; }
4908
4909 // Declares the friend tests that can access the private member
4910 // Bar().
4911 FRIEND_TEST(FRIEND_TEST_Test, TEST);
4912 FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
4913 };
4914
4915 // Tests that the FRIEND_TEST declaration allows a TEST to access a
4916 // class's private members. This should compile.
TEST(FRIEND_TEST_Test,TEST)4917 TEST(FRIEND_TEST_Test, TEST) {
4918 ASSERT_EQ(1, Foo().Bar());
4919 }
4920
4921 // The fixture needed to test using FRIEND_TEST with TEST_F.
4922 class FRIEND_TEST_Test2 : public Test {
4923 protected:
4924 Foo foo;
4925 };
4926
4927 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
4928 // class's private members. This should compile.
TEST_F(FRIEND_TEST_Test2,TEST_F)4929 TEST_F(FRIEND_TEST_Test2, TEST_F) {
4930 ASSERT_EQ(1, foo.Bar());
4931 }
4932
4933 // Tests the life cycle of Test objects.
4934
4935 // The test fixture for testing the life cycle of Test objects.
4936 //
4937 // This class counts the number of live test objects that uses this
4938 // fixture.
4939 class TestLifeCycleTest : public Test {
4940 protected:
4941 // Constructor. Increments the number of test objects that uses
4942 // this fixture.
TestLifeCycleTest()4943 TestLifeCycleTest() { count_++; }
4944
4945 // Destructor. Decrements the number of test objects that uses this
4946 // fixture.
~TestLifeCycleTest()4947 ~TestLifeCycleTest() { count_--; }
4948
4949 // Returns the number of live test objects that uses this fixture.
count() const4950 int count() const { return count_; }
4951
4952 private:
4953 static int count_;
4954 };
4955
4956 int TestLifeCycleTest::count_ = 0;
4957
4958 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test1)4959 TEST_F(TestLifeCycleTest, Test1) {
4960 // There should be only one test object in this test case that's
4961 // currently alive.
4962 ASSERT_EQ(1, count());
4963 }
4964
4965 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test2)4966 TEST_F(TestLifeCycleTest, Test2) {
4967 // After Test1 is done and Test2 is started, there should still be
4968 // only one live test object, as the object for Test1 should've been
4969 // deleted.
4970 ASSERT_EQ(1, count());
4971 }
4972
4973 } // namespace
4974
4975 // Tests that the copy constructor works when it is NOT optimized away by
4976 // the compiler.
TEST(AssertionResultTest,CopyConstructorWorksWhenNotOptimied)4977 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
4978 // Checks that the copy constructor doesn't try to dereference NULL pointers
4979 // in the source object.
4980 AssertionResult r1 = AssertionSuccess();
4981 AssertionResult r2 = r1;
4982 // The following line is added to prevent the compiler from optimizing
4983 // away the constructor call.
4984 r1 << "abc";
4985
4986 AssertionResult r3 = r1;
4987 EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
4988 EXPECT_STREQ("abc", r1.message());
4989 }
4990
4991 // Tests that AssertionSuccess and AssertionFailure construct
4992 // AssertionResult objects as expected.
TEST(AssertionResultTest,ConstructionWorks)4993 TEST(AssertionResultTest, ConstructionWorks) {
4994 AssertionResult r1 = AssertionSuccess();
4995 EXPECT_TRUE(r1);
4996 EXPECT_STREQ("", r1.message());
4997
4998 AssertionResult r2 = AssertionSuccess() << "abc";
4999 EXPECT_TRUE(r2);
5000 EXPECT_STREQ("abc", r2.message());
5001
5002 AssertionResult r3 = AssertionFailure();
5003 EXPECT_FALSE(r3);
5004 EXPECT_STREQ("", r3.message());
5005
5006 AssertionResult r4 = AssertionFailure() << "def";
5007 EXPECT_FALSE(r4);
5008 EXPECT_STREQ("def", r4.message());
5009
5010 AssertionResult r5 = AssertionFailure(Message() << "ghi");
5011 EXPECT_FALSE(r5);
5012 EXPECT_STREQ("ghi", r5.message());
5013 }
5014
5015 // Tests that the negation flips the predicate result but keeps the message.
TEST(AssertionResultTest,NegationWorks)5016 TEST(AssertionResultTest, NegationWorks) {
5017 AssertionResult r1 = AssertionSuccess() << "abc";
5018 EXPECT_FALSE(!r1);
5019 EXPECT_STREQ("abc", (!r1).message());
5020
5021 AssertionResult r2 = AssertionFailure() << "def";
5022 EXPECT_TRUE(!r2);
5023 EXPECT_STREQ("def", (!r2).message());
5024 }
5025
TEST(AssertionResultTest,StreamingWorks)5026 TEST(AssertionResultTest, StreamingWorks) {
5027 AssertionResult r = AssertionSuccess();
5028 r << "abc" << 'd' << 0 << true;
5029 EXPECT_STREQ("abcd0true", r.message());
5030 }
5031
TEST(AssertionResultTest,CanStreamOstreamManipulators)5032 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5033 AssertionResult r = AssertionSuccess();
5034 r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5035 EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5036 }
5037
5038 // Tests streaming a user type whose definition and operator << are
5039 // both in the global namespace.
5040 class Base {
5041 public:
Base(int an_x)5042 explicit Base(int an_x) : x_(an_x) {}
x() const5043 int x() const { return x_; }
5044 private:
5045 int x_;
5046 };
operator <<(std::ostream & os,const Base & val)5047 std::ostream& operator<<(std::ostream& os,
5048 const Base& val) {
5049 return os << val.x();
5050 }
operator <<(std::ostream & os,const Base * pointer)5051 std::ostream& operator<<(std::ostream& os,
5052 const Base* pointer) {
5053 return os << "(" << pointer->x() << ")";
5054 }
5055
TEST(MessageTest,CanStreamUserTypeInGlobalNameSpace)5056 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5057 Message msg;
5058 Base a(1);
5059
5060 msg << a << &a; // Uses ::operator<<.
5061 EXPECT_STREQ("1(1)", msg.GetString().c_str());
5062 }
5063
5064 // Tests streaming a user type whose definition and operator<< are
5065 // both in an unnamed namespace.
5066 namespace {
5067 class MyTypeInUnnamedNameSpace : public Base {
5068 public:
MyTypeInUnnamedNameSpace(int an_x)5069 explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
5070 };
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace & val)5071 std::ostream& operator<<(std::ostream& os,
5072 const MyTypeInUnnamedNameSpace& val) {
5073 return os << val.x();
5074 }
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace * pointer)5075 std::ostream& operator<<(std::ostream& os,
5076 const MyTypeInUnnamedNameSpace* pointer) {
5077 return os << "(" << pointer->x() << ")";
5078 }
5079 } // namespace
5080
TEST(MessageTest,CanStreamUserTypeInUnnamedNameSpace)5081 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5082 Message msg;
5083 MyTypeInUnnamedNameSpace a(1);
5084
5085 msg << a << &a; // Uses <unnamed_namespace>::operator<<.
5086 EXPECT_STREQ("1(1)", msg.GetString().c_str());
5087 }
5088
5089 // Tests streaming a user type whose definition and operator<< are
5090 // both in a user namespace.
5091 namespace namespace1 {
5092 class MyTypeInNameSpace1 : public Base {
5093 public:
MyTypeInNameSpace1(int an_x)5094 explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
5095 };
operator <<(std::ostream & os,const MyTypeInNameSpace1 & val)5096 std::ostream& operator<<(std::ostream& os,
5097 const MyTypeInNameSpace1& val) {
5098 return os << val.x();
5099 }
operator <<(std::ostream & os,const MyTypeInNameSpace1 * pointer)5100 std::ostream& operator<<(std::ostream& os,
5101 const MyTypeInNameSpace1* pointer) {
5102 return os << "(" << pointer->x() << ")";
5103 }
5104 } // namespace namespace1
5105
TEST(MessageTest,CanStreamUserTypeInUserNameSpace)5106 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5107 Message msg;
5108 namespace1::MyTypeInNameSpace1 a(1);
5109
5110 msg << a << &a; // Uses namespace1::operator<<.
5111 EXPECT_STREQ("1(1)", msg.GetString().c_str());
5112 }
5113
5114 // Tests streaming a user type whose definition is in a user namespace
5115 // but whose operator<< is in the global namespace.
5116 namespace namespace2 {
5117 class MyTypeInNameSpace2 : public ::Base {
5118 public:
MyTypeInNameSpace2(int an_x)5119 explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
5120 };
5121 } // namespace namespace2
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 & val)5122 std::ostream& operator<<(std::ostream& os,
5123 const namespace2::MyTypeInNameSpace2& val) {
5124 return os << val.x();
5125 }
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 * pointer)5126 std::ostream& operator<<(std::ostream& os,
5127 const namespace2::MyTypeInNameSpace2* pointer) {
5128 return os << "(" << pointer->x() << ")";
5129 }
5130
TEST(MessageTest,CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal)5131 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5132 Message msg;
5133 namespace2::MyTypeInNameSpace2 a(1);
5134
5135 msg << a << &a; // Uses ::operator<<.
5136 EXPECT_STREQ("1(1)", msg.GetString().c_str());
5137 }
5138
5139 // Tests streaming NULL pointers to testing::Message.
TEST(MessageTest,NullPointers)5140 TEST(MessageTest, NullPointers) {
5141 Message msg;
5142 char* const p1 = NULL;
5143 unsigned char* const p2 = NULL;
5144 int* p3 = NULL;
5145 double* p4 = NULL;
5146 bool* p5 = NULL;
5147 Message* p6 = NULL;
5148
5149 msg << p1 << p2 << p3 << p4 << p5 << p6;
5150 ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
5151 msg.GetString().c_str());
5152 }
5153
5154 // Tests streaming wide strings to testing::Message.
TEST(MessageTest,WideStrings)5155 TEST(MessageTest, WideStrings) {
5156 // Streams a NULL of type const wchar_t*.
5157 const wchar_t* const_wstr = NULL;
5158 EXPECT_STREQ("(null)",
5159 (Message() << const_wstr).GetString().c_str());
5160
5161 // Streams a NULL of type wchar_t*.
5162 wchar_t* wstr = NULL;
5163 EXPECT_STREQ("(null)",
5164 (Message() << wstr).GetString().c_str());
5165
5166 // Streams a non-NULL of type const wchar_t*.
5167 const_wstr = L"abc\x8119";
5168 EXPECT_STREQ("abc\xe8\x84\x99",
5169 (Message() << const_wstr).GetString().c_str());
5170
5171 // Streams a non-NULL of type wchar_t*.
5172 wstr = const_cast<wchar_t*>(const_wstr);
5173 EXPECT_STREQ("abc\xe8\x84\x99",
5174 (Message() << wstr).GetString().c_str());
5175 }
5176
5177
5178 // This line tests that we can define tests in the testing namespace.
5179 namespace testing {
5180
5181 // Tests the TestInfo class.
5182
5183 class TestInfoTest : public Test {
5184 protected:
GetTestInfo(const char * test_name)5185 static const TestInfo* GetTestInfo(const char* test_name) {
5186 const TestCase* const test_case = GetUnitTestImpl()->
5187 GetTestCase("TestInfoTest", "", NULL, NULL);
5188
5189 for (int i = 0; i < test_case->total_test_count(); ++i) {
5190 const TestInfo* const test_info = test_case->GetTestInfo(i);
5191 if (strcmp(test_name, test_info->name()) == 0)
5192 return test_info;
5193 }
5194 return NULL;
5195 }
5196
GetTestResult(const TestInfo * test_info)5197 static const TestResult* GetTestResult(
5198 const TestInfo* test_info) {
5199 return test_info->result();
5200 }
5201 };
5202
5203 // Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest,Names)5204 TEST_F(TestInfoTest, Names) {
5205 const TestInfo* const test_info = GetTestInfo("Names");
5206
5207 ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
5208 ASSERT_STREQ("Names", test_info->name());
5209 }
5210
5211 // Tests TestInfo::result().
TEST_F(TestInfoTest,result)5212 TEST_F(TestInfoTest, result) {
5213 const TestInfo* const test_info = GetTestInfo("result");
5214
5215 // Initially, there is no TestPartResult for this test.
5216 ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5217
5218 // After the previous assertion, there is still none.
5219 ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5220 }
5221
5222 // Tests setting up and tearing down a test case.
5223
5224 class SetUpTestCaseTest : public Test {
5225 protected:
5226 // This will be called once before the first test in this test case
5227 // is run.
SetUpTestCase()5228 static void SetUpTestCase() {
5229 printf("Setting up the test case . . .\n");
5230
5231 // Initializes some shared resource. In this simple example, we
5232 // just create a C string. More complex stuff can be done if
5233 // desired.
5234 shared_resource_ = "123";
5235
5236 // Increments the number of test cases that have been set up.
5237 counter_++;
5238
5239 // SetUpTestCase() should be called only once.
5240 EXPECT_EQ(1, counter_);
5241 }
5242
5243 // This will be called once after the last test in this test case is
5244 // run.
TearDownTestCase()5245 static void TearDownTestCase() {
5246 printf("Tearing down the test case . . .\n");
5247
5248 // Decrements the number of test cases that have been set up.
5249 counter_--;
5250
5251 // TearDownTestCase() should be called only once.
5252 EXPECT_EQ(0, counter_);
5253
5254 // Cleans up the shared resource.
5255 shared_resource_ = NULL;
5256 }
5257
5258 // This will be called before each test in this test case.
SetUp()5259 virtual void SetUp() {
5260 // SetUpTestCase() should be called only once, so counter_ should
5261 // always be 1.
5262 EXPECT_EQ(1, counter_);
5263 }
5264
5265 // Number of test cases that have been set up.
5266 static int counter_;
5267
5268 // Some resource to be shared by all tests in this test case.
5269 static const char* shared_resource_;
5270 };
5271
5272 int SetUpTestCaseTest::counter_ = 0;
5273 const char* SetUpTestCaseTest::shared_resource_ = NULL;
5274
5275 // A test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test1)5276 TEST_F(SetUpTestCaseTest, Test1) {
5277 EXPECT_STRNE(NULL, shared_resource_);
5278 }
5279
5280 // Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test2)5281 TEST_F(SetUpTestCaseTest, Test2) {
5282 EXPECT_STREQ("123", shared_resource_);
5283 }
5284
5285 // The InitGoogleTestTest test case tests testing::InitGoogleTest().
5286
5287 // The Flags struct stores a copy of all Google Test flags.
5288 struct Flags {
5289 // Constructs a Flags struct where each flag has its default value.
Flagstesting::Flags5290 Flags() : also_run_disabled_tests(false),
5291 break_on_failure(false),
5292 catch_exceptions(false),
5293 death_test_use_fork(false),
5294 filter(""),
5295 list_tests(false),
5296 output(""),
5297 print_time(true),
5298 random_seed(0),
5299 repeat(1),
5300 shuffle(false),
5301 stack_trace_depth(kMaxStackTraceDepth),
5302 stream_result_to(""),
5303 throw_on_failure(false) {}
5304
5305 // Factory methods.
5306
5307 // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5308 // the given value.
AlsoRunDisabledTeststesting::Flags5309 static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5310 Flags flags;
5311 flags.also_run_disabled_tests = also_run_disabled_tests;
5312 return flags;
5313 }
5314
5315 // Creates a Flags struct where the gtest_break_on_failure flag has
5316 // the given value.
BreakOnFailuretesting::Flags5317 static Flags BreakOnFailure(bool break_on_failure) {
5318 Flags flags;
5319 flags.break_on_failure = break_on_failure;
5320 return flags;
5321 }
5322
5323 // Creates a Flags struct where the gtest_catch_exceptions flag has
5324 // the given value.
CatchExceptionstesting::Flags5325 static Flags CatchExceptions(bool catch_exceptions) {
5326 Flags flags;
5327 flags.catch_exceptions = catch_exceptions;
5328 return flags;
5329 }
5330
5331 // Creates a Flags struct where the gtest_death_test_use_fork flag has
5332 // the given value.
DeathTestUseForktesting::Flags5333 static Flags DeathTestUseFork(bool death_test_use_fork) {
5334 Flags flags;
5335 flags.death_test_use_fork = death_test_use_fork;
5336 return flags;
5337 }
5338
5339 // Creates a Flags struct where the gtest_filter flag has the given
5340 // value.
Filtertesting::Flags5341 static Flags Filter(const char* filter) {
5342 Flags flags;
5343 flags.filter = filter;
5344 return flags;
5345 }
5346
5347 // Creates a Flags struct where the gtest_list_tests flag has the
5348 // given value.
ListTeststesting::Flags5349 static Flags ListTests(bool list_tests) {
5350 Flags flags;
5351 flags.list_tests = list_tests;
5352 return flags;
5353 }
5354
5355 // Creates a Flags struct where the gtest_output flag has the given
5356 // value.
Outputtesting::Flags5357 static Flags Output(const char* output) {
5358 Flags flags;
5359 flags.output = output;
5360 return flags;
5361 }
5362
5363 // Creates a Flags struct where the gtest_print_time flag has the given
5364 // value.
PrintTimetesting::Flags5365 static Flags PrintTime(bool print_time) {
5366 Flags flags;
5367 flags.print_time = print_time;
5368 return flags;
5369 }
5370
5371 // Creates a Flags struct where the gtest_random_seed flag has
5372 // the given value.
RandomSeedtesting::Flags5373 static Flags RandomSeed(Int32 random_seed) {
5374 Flags flags;
5375 flags.random_seed = random_seed;
5376 return flags;
5377 }
5378
5379 // Creates a Flags struct where the gtest_repeat flag has the given
5380 // value.
Repeattesting::Flags5381 static Flags Repeat(Int32 repeat) {
5382 Flags flags;
5383 flags.repeat = repeat;
5384 return flags;
5385 }
5386
5387 // Creates a Flags struct where the gtest_shuffle flag has
5388 // the given value.
Shuffletesting::Flags5389 static Flags Shuffle(bool shuffle) {
5390 Flags flags;
5391 flags.shuffle = shuffle;
5392 return flags;
5393 }
5394
5395 // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5396 // the given value.
StackTraceDepthtesting::Flags5397 static Flags StackTraceDepth(Int32 stack_trace_depth) {
5398 Flags flags;
5399 flags.stack_trace_depth = stack_trace_depth;
5400 return flags;
5401 }
5402
5403 // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5404 // the given value.
StreamResultTotesting::Flags5405 static Flags StreamResultTo(const char* stream_result_to) {
5406 Flags flags;
5407 flags.stream_result_to = stream_result_to;
5408 return flags;
5409 }
5410
5411 // Creates a Flags struct where the gtest_throw_on_failure flag has
5412 // the given value.
ThrowOnFailuretesting::Flags5413 static Flags ThrowOnFailure(bool throw_on_failure) {
5414 Flags flags;
5415 flags.throw_on_failure = throw_on_failure;
5416 return flags;
5417 }
5418
5419 // These fields store the flag values.
5420 bool also_run_disabled_tests;
5421 bool break_on_failure;
5422 bool catch_exceptions;
5423 bool death_test_use_fork;
5424 const char* filter;
5425 bool list_tests;
5426 const char* output;
5427 bool print_time;
5428 Int32 random_seed;
5429 Int32 repeat;
5430 bool shuffle;
5431 Int32 stack_trace_depth;
5432 const char* stream_result_to;
5433 bool throw_on_failure;
5434 };
5435
5436 // Fixture for testing InitGoogleTest().
5437 class InitGoogleTestTest : public Test {
5438 protected:
5439 // Clears the flags before each test.
SetUp()5440 virtual void SetUp() {
5441 GTEST_FLAG(also_run_disabled_tests) = false;
5442 GTEST_FLAG(break_on_failure) = false;
5443 GTEST_FLAG(catch_exceptions) = false;
5444 GTEST_FLAG(death_test_use_fork) = false;
5445 GTEST_FLAG(filter) = "";
5446 GTEST_FLAG(list_tests) = false;
5447 GTEST_FLAG(output) = "";
5448 GTEST_FLAG(print_time) = true;
5449 GTEST_FLAG(random_seed) = 0;
5450 GTEST_FLAG(repeat) = 1;
5451 GTEST_FLAG(shuffle) = false;
5452 GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
5453 GTEST_FLAG(stream_result_to) = "";
5454 GTEST_FLAG(throw_on_failure) = false;
5455 }
5456
5457 // Asserts that two narrow or wide string arrays are equal.
5458 template <typename CharType>
AssertStringArrayEq(size_t size1,CharType ** array1,size_t size2,CharType ** array2)5459 static void AssertStringArrayEq(size_t size1, CharType** array1,
5460 size_t size2, CharType** array2) {
5461 ASSERT_EQ(size1, size2) << " Array sizes different.";
5462
5463 for (size_t i = 0; i != size1; i++) {
5464 ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5465 }
5466 }
5467
5468 // Verifies that the flag values match the expected values.
CheckFlags(const Flags & expected)5469 static void CheckFlags(const Flags& expected) {
5470 EXPECT_EQ(expected.also_run_disabled_tests,
5471 GTEST_FLAG(also_run_disabled_tests));
5472 EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
5473 EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
5474 EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
5475 EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
5476 EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
5477 EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
5478 EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
5479 EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
5480 EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
5481 EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
5482 EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
5483 EXPECT_STREQ(expected.stream_result_to,
5484 GTEST_FLAG(stream_result_to).c_str());
5485 EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
5486 }
5487
5488 // Parses a command line (specified by argc1 and argv1), then
5489 // verifies that the flag values are expected and that the
5490 // recognized flags are removed from the command line.
5491 template <typename CharType>
TestParsingFlags(int argc1,const CharType ** argv1,int argc2,const CharType ** argv2,const Flags & expected,bool should_print_help)5492 static void TestParsingFlags(int argc1, const CharType** argv1,
5493 int argc2, const CharType** argv2,
5494 const Flags& expected, bool should_print_help) {
5495 const bool saved_help_flag = ::testing::internal::g_help_flag;
5496 ::testing::internal::g_help_flag = false;
5497
5498 #if GTEST_HAS_STREAM_REDIRECTION
5499 CaptureStdout();
5500 #endif
5501
5502 // Parses the command line.
5503 internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5504
5505 #if GTEST_HAS_STREAM_REDIRECTION
5506 const std::string captured_stdout = GetCapturedStdout();
5507 #endif
5508
5509 // Verifies the flag values.
5510 CheckFlags(expected);
5511
5512 // Verifies that the recognized flags are removed from the command
5513 // line.
5514 AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5515
5516 // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5517 // help message for the flags it recognizes.
5518 EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5519
5520 #if GTEST_HAS_STREAM_REDIRECTION
5521 const char* const expected_help_fragment =
5522 "This program contains tests written using";
5523 if (should_print_help) {
5524 EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5525 } else {
5526 EXPECT_PRED_FORMAT2(IsNotSubstring,
5527 expected_help_fragment, captured_stdout);
5528 }
5529 #endif // GTEST_HAS_STREAM_REDIRECTION
5530
5531 ::testing::internal::g_help_flag = saved_help_flag;
5532 }
5533
5534 // This macro wraps TestParsingFlags s.t. the user doesn't need
5535 // to specify the array sizes.
5536
5537 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5538 TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
5539 sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
5540 expected, should_print_help)
5541 };
5542
5543 // Tests parsing an empty command line.
TEST_F(InitGoogleTestTest,Empty)5544 TEST_F(InitGoogleTestTest, Empty) {
5545 const char* argv[] = {
5546 NULL
5547 };
5548
5549 const char* argv2[] = {
5550 NULL
5551 };
5552
5553 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5554 }
5555
5556 // Tests parsing a command line that has no flag.
TEST_F(InitGoogleTestTest,NoFlag)5557 TEST_F(InitGoogleTestTest, NoFlag) {
5558 const char* argv[] = {
5559 "foo.exe",
5560 NULL
5561 };
5562
5563 const char* argv2[] = {
5564 "foo.exe",
5565 NULL
5566 };
5567
5568 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5569 }
5570
5571 // Tests parsing a bad --gtest_filter flag.
TEST_F(InitGoogleTestTest,FilterBad)5572 TEST_F(InitGoogleTestTest, FilterBad) {
5573 const char* argv[] = {
5574 "foo.exe",
5575 "--gtest_filter",
5576 NULL
5577 };
5578
5579 const char* argv2[] = {
5580 "foo.exe",
5581 "--gtest_filter",
5582 NULL
5583 };
5584
5585 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
5586 }
5587
5588 // Tests parsing an empty --gtest_filter flag.
TEST_F(InitGoogleTestTest,FilterEmpty)5589 TEST_F(InitGoogleTestTest, FilterEmpty) {
5590 const char* argv[] = {
5591 "foo.exe",
5592 "--gtest_filter=",
5593 NULL
5594 };
5595
5596 const char* argv2[] = {
5597 "foo.exe",
5598 NULL
5599 };
5600
5601 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5602 }
5603
5604 // Tests parsing a non-empty --gtest_filter flag.
TEST_F(InitGoogleTestTest,FilterNonEmpty)5605 TEST_F(InitGoogleTestTest, FilterNonEmpty) {
5606 const char* argv[] = {
5607 "foo.exe",
5608 "--gtest_filter=abc",
5609 NULL
5610 };
5611
5612 const char* argv2[] = {
5613 "foo.exe",
5614 NULL
5615 };
5616
5617 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5618 }
5619
5620 // Tests parsing --gtest_break_on_failure.
TEST_F(InitGoogleTestTest,BreakOnFailureWithoutValue)5621 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
5622 const char* argv[] = {
5623 "foo.exe",
5624 "--gtest_break_on_failure",
5625 NULL
5626 };
5627
5628 const char* argv2[] = {
5629 "foo.exe",
5630 NULL
5631 };
5632
5633 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5634 }
5635
5636 // Tests parsing --gtest_break_on_failure=0.
TEST_F(InitGoogleTestTest,BreakOnFailureFalse_0)5637 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
5638 const char* argv[] = {
5639 "foo.exe",
5640 "--gtest_break_on_failure=0",
5641 NULL
5642 };
5643
5644 const char* argv2[] = {
5645 "foo.exe",
5646 NULL
5647 };
5648
5649 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5650 }
5651
5652 // Tests parsing --gtest_break_on_failure=f.
TEST_F(InitGoogleTestTest,BreakOnFailureFalse_f)5653 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
5654 const char* argv[] = {
5655 "foo.exe",
5656 "--gtest_break_on_failure=f",
5657 NULL
5658 };
5659
5660 const char* argv2[] = {
5661 "foo.exe",
5662 NULL
5663 };
5664
5665 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5666 }
5667
5668 // Tests parsing --gtest_break_on_failure=F.
TEST_F(InitGoogleTestTest,BreakOnFailureFalse_F)5669 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
5670 const char* argv[] = {
5671 "foo.exe",
5672 "--gtest_break_on_failure=F",
5673 NULL
5674 };
5675
5676 const char* argv2[] = {
5677 "foo.exe",
5678 NULL
5679 };
5680
5681 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5682 }
5683
5684 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5685 // definition.
TEST_F(InitGoogleTestTest,BreakOnFailureTrue)5686 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
5687 const char* argv[] = {
5688 "foo.exe",
5689 "--gtest_break_on_failure=1",
5690 NULL
5691 };
5692
5693 const char* argv2[] = {
5694 "foo.exe",
5695 NULL
5696 };
5697
5698 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5699 }
5700
5701 // Tests parsing --gtest_catch_exceptions.
TEST_F(InitGoogleTestTest,CatchExceptions)5702 TEST_F(InitGoogleTestTest, CatchExceptions) {
5703 const char* argv[] = {
5704 "foo.exe",
5705 "--gtest_catch_exceptions",
5706 NULL
5707 };
5708
5709 const char* argv2[] = {
5710 "foo.exe",
5711 NULL
5712 };
5713
5714 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5715 }
5716
5717 // Tests parsing --gtest_death_test_use_fork.
TEST_F(InitGoogleTestTest,DeathTestUseFork)5718 TEST_F(InitGoogleTestTest, DeathTestUseFork) {
5719 const char* argv[] = {
5720 "foo.exe",
5721 "--gtest_death_test_use_fork",
5722 NULL
5723 };
5724
5725 const char* argv2[] = {
5726 "foo.exe",
5727 NULL
5728 };
5729
5730 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5731 }
5732
5733 // Tests having the same flag twice with different values. The
5734 // expected behavior is that the one coming last takes precedence.
TEST_F(InitGoogleTestTest,DuplicatedFlags)5735 TEST_F(InitGoogleTestTest, DuplicatedFlags) {
5736 const char* argv[] = {
5737 "foo.exe",
5738 "--gtest_filter=a",
5739 "--gtest_filter=b",
5740 NULL
5741 };
5742
5743 const char* argv2[] = {
5744 "foo.exe",
5745 NULL
5746 };
5747
5748 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5749 }
5750
5751 // Tests having an unrecognized flag on the command line.
TEST_F(InitGoogleTestTest,UnrecognizedFlag)5752 TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
5753 const char* argv[] = {
5754 "foo.exe",
5755 "--gtest_break_on_failure",
5756 "bar", // Unrecognized by Google Test.
5757 "--gtest_filter=b",
5758 NULL
5759 };
5760
5761 const char* argv2[] = {
5762 "foo.exe",
5763 "bar",
5764 NULL
5765 };
5766
5767 Flags flags;
5768 flags.break_on_failure = true;
5769 flags.filter = "b";
5770 GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5771 }
5772
5773 // Tests having a --gtest_list_tests flag
TEST_F(InitGoogleTestTest,ListTestsFlag)5774 TEST_F(InitGoogleTestTest, ListTestsFlag) {
5775 const char* argv[] = {
5776 "foo.exe",
5777 "--gtest_list_tests",
5778 NULL
5779 };
5780
5781 const char* argv2[] = {
5782 "foo.exe",
5783 NULL
5784 };
5785
5786 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5787 }
5788
5789 // Tests having a --gtest_list_tests flag with a "true" value
TEST_F(InitGoogleTestTest,ListTestsTrue)5790 TEST_F(InitGoogleTestTest, ListTestsTrue) {
5791 const char* argv[] = {
5792 "foo.exe",
5793 "--gtest_list_tests=1",
5794 NULL
5795 };
5796
5797 const char* argv2[] = {
5798 "foo.exe",
5799 NULL
5800 };
5801
5802 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5803 }
5804
5805 // Tests having a --gtest_list_tests flag with a "false" value
TEST_F(InitGoogleTestTest,ListTestsFalse)5806 TEST_F(InitGoogleTestTest, ListTestsFalse) {
5807 const char* argv[] = {
5808 "foo.exe",
5809 "--gtest_list_tests=0",
5810 NULL
5811 };
5812
5813 const char* argv2[] = {
5814 "foo.exe",
5815 NULL
5816 };
5817
5818 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5819 }
5820
5821 // Tests parsing --gtest_list_tests=f.
TEST_F(InitGoogleTestTest,ListTestsFalse_f)5822 TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
5823 const char* argv[] = {
5824 "foo.exe",
5825 "--gtest_list_tests=f",
5826 NULL
5827 };
5828
5829 const char* argv2[] = {
5830 "foo.exe",
5831 NULL
5832 };
5833
5834 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5835 }
5836
5837 // Tests parsing --gtest_list_tests=F.
TEST_F(InitGoogleTestTest,ListTestsFalse_F)5838 TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
5839 const char* argv[] = {
5840 "foo.exe",
5841 "--gtest_list_tests=F",
5842 NULL
5843 };
5844
5845 const char* argv2[] = {
5846 "foo.exe",
5847 NULL
5848 };
5849
5850 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5851 }
5852
5853 // Tests parsing --gtest_output (invalid).
TEST_F(InitGoogleTestTest,OutputEmpty)5854 TEST_F(InitGoogleTestTest, OutputEmpty) {
5855 const char* argv[] = {
5856 "foo.exe",
5857 "--gtest_output",
5858 NULL
5859 };
5860
5861 const char* argv2[] = {
5862 "foo.exe",
5863 "--gtest_output",
5864 NULL
5865 };
5866
5867 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
5868 }
5869
5870 // Tests parsing --gtest_output=xml
TEST_F(InitGoogleTestTest,OutputXml)5871 TEST_F(InitGoogleTestTest, OutputXml) {
5872 const char* argv[] = {
5873 "foo.exe",
5874 "--gtest_output=xml",
5875 NULL
5876 };
5877
5878 const char* argv2[] = {
5879 "foo.exe",
5880 NULL
5881 };
5882
5883 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
5884 }
5885
5886 // Tests parsing --gtest_output=xml:file
TEST_F(InitGoogleTestTest,OutputXmlFile)5887 TEST_F(InitGoogleTestTest, OutputXmlFile) {
5888 const char* argv[] = {
5889 "foo.exe",
5890 "--gtest_output=xml:file",
5891 NULL
5892 };
5893
5894 const char* argv2[] = {
5895 "foo.exe",
5896 NULL
5897 };
5898
5899 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
5900 }
5901
5902 // Tests parsing --gtest_output=xml:directory/path/
TEST_F(InitGoogleTestTest,OutputXmlDirectory)5903 TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
5904 const char* argv[] = {
5905 "foo.exe",
5906 "--gtest_output=xml:directory/path/",
5907 NULL
5908 };
5909
5910 const char* argv2[] = {
5911 "foo.exe",
5912 NULL
5913 };
5914
5915 GTEST_TEST_PARSING_FLAGS_(argv, argv2,
5916 Flags::Output("xml:directory/path/"), false);
5917 }
5918
5919 // Tests having a --gtest_print_time flag
TEST_F(InitGoogleTestTest,PrintTimeFlag)5920 TEST_F(InitGoogleTestTest, PrintTimeFlag) {
5921 const char* argv[] = {
5922 "foo.exe",
5923 "--gtest_print_time",
5924 NULL
5925 };
5926
5927 const char* argv2[] = {
5928 "foo.exe",
5929 NULL
5930 };
5931
5932 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5933 }
5934
5935 // Tests having a --gtest_print_time flag with a "true" value
TEST_F(InitGoogleTestTest,PrintTimeTrue)5936 TEST_F(InitGoogleTestTest, PrintTimeTrue) {
5937 const char* argv[] = {
5938 "foo.exe",
5939 "--gtest_print_time=1",
5940 NULL
5941 };
5942
5943 const char* argv2[] = {
5944 "foo.exe",
5945 NULL
5946 };
5947
5948 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
5949 }
5950
5951 // Tests having a --gtest_print_time flag with a "false" value
TEST_F(InitGoogleTestTest,PrintTimeFalse)5952 TEST_F(InitGoogleTestTest, PrintTimeFalse) {
5953 const char* argv[] = {
5954 "foo.exe",
5955 "--gtest_print_time=0",
5956 NULL
5957 };
5958
5959 const char* argv2[] = {
5960 "foo.exe",
5961 NULL
5962 };
5963
5964 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5965 }
5966
5967 // Tests parsing --gtest_print_time=f.
TEST_F(InitGoogleTestTest,PrintTimeFalse_f)5968 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
5969 const char* argv[] = {
5970 "foo.exe",
5971 "--gtest_print_time=f",
5972 NULL
5973 };
5974
5975 const char* argv2[] = {
5976 "foo.exe",
5977 NULL
5978 };
5979
5980 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5981 }
5982
5983 // Tests parsing --gtest_print_time=F.
TEST_F(InitGoogleTestTest,PrintTimeFalse_F)5984 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
5985 const char* argv[] = {
5986 "foo.exe",
5987 "--gtest_print_time=F",
5988 NULL
5989 };
5990
5991 const char* argv2[] = {
5992 "foo.exe",
5993 NULL
5994 };
5995
5996 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
5997 }
5998
5999 // Tests parsing --gtest_random_seed=number
TEST_F(InitGoogleTestTest,RandomSeed)6000 TEST_F(InitGoogleTestTest, RandomSeed) {
6001 const char* argv[] = {
6002 "foo.exe",
6003 "--gtest_random_seed=1000",
6004 NULL
6005 };
6006
6007 const char* argv2[] = {
6008 "foo.exe",
6009 NULL
6010 };
6011
6012 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6013 }
6014
6015 // Tests parsing --gtest_repeat=number
TEST_F(InitGoogleTestTest,Repeat)6016 TEST_F(InitGoogleTestTest, Repeat) {
6017 const char* argv[] = {
6018 "foo.exe",
6019 "--gtest_repeat=1000",
6020 NULL
6021 };
6022
6023 const char* argv2[] = {
6024 "foo.exe",
6025 NULL
6026 };
6027
6028 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6029 }
6030
6031 // Tests having a --gtest_also_run_disabled_tests flag
TEST_F(InitGoogleTestTest,AlsoRunDisabledTestsFlag)6032 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
6033 const char* argv[] = {
6034 "foo.exe",
6035 "--gtest_also_run_disabled_tests",
6036 NULL
6037 };
6038
6039 const char* argv2[] = {
6040 "foo.exe",
6041 NULL
6042 };
6043
6044 GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6045 Flags::AlsoRunDisabledTests(true), false);
6046 }
6047
6048 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(InitGoogleTestTest,AlsoRunDisabledTestsTrue)6049 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
6050 const char* argv[] = {
6051 "foo.exe",
6052 "--gtest_also_run_disabled_tests=1",
6053 NULL
6054 };
6055
6056 const char* argv2[] = {
6057 "foo.exe",
6058 NULL
6059 };
6060
6061 GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6062 Flags::AlsoRunDisabledTests(true), false);
6063 }
6064
6065 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(InitGoogleTestTest,AlsoRunDisabledTestsFalse)6066 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
6067 const char* argv[] = {
6068 "foo.exe",
6069 "--gtest_also_run_disabled_tests=0",
6070 NULL
6071 };
6072
6073 const char* argv2[] = {
6074 "foo.exe",
6075 NULL
6076 };
6077
6078 GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6079 Flags::AlsoRunDisabledTests(false), false);
6080 }
6081
6082 // Tests parsing --gtest_shuffle.
TEST_F(InitGoogleTestTest,ShuffleWithoutValue)6083 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
6084 const char* argv[] = {
6085 "foo.exe",
6086 "--gtest_shuffle",
6087 NULL
6088 };
6089
6090 const char* argv2[] = {
6091 "foo.exe",
6092 NULL
6093 };
6094
6095 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6096 }
6097
6098 // Tests parsing --gtest_shuffle=0.
TEST_F(InitGoogleTestTest,ShuffleFalse_0)6099 TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
6100 const char* argv[] = {
6101 "foo.exe",
6102 "--gtest_shuffle=0",
6103 NULL
6104 };
6105
6106 const char* argv2[] = {
6107 "foo.exe",
6108 NULL
6109 };
6110
6111 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6112 }
6113
6114 // Tests parsing a --gtest_shuffle flag that has a "true"
6115 // definition.
TEST_F(InitGoogleTestTest,ShuffleTrue)6116 TEST_F(InitGoogleTestTest, ShuffleTrue) {
6117 const char* argv[] = {
6118 "foo.exe",
6119 "--gtest_shuffle=1",
6120 NULL
6121 };
6122
6123 const char* argv2[] = {
6124 "foo.exe",
6125 NULL
6126 };
6127
6128 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6129 }
6130
6131 // Tests parsing --gtest_stack_trace_depth=number.
TEST_F(InitGoogleTestTest,StackTraceDepth)6132 TEST_F(InitGoogleTestTest, StackTraceDepth) {
6133 const char* argv[] = {
6134 "foo.exe",
6135 "--gtest_stack_trace_depth=5",
6136 NULL
6137 };
6138
6139 const char* argv2[] = {
6140 "foo.exe",
6141 NULL
6142 };
6143
6144 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6145 }
6146
TEST_F(InitGoogleTestTest,StreamResultTo)6147 TEST_F(InitGoogleTestTest, StreamResultTo) {
6148 const char* argv[] = {
6149 "foo.exe",
6150 "--gtest_stream_result_to=localhost:1234",
6151 NULL
6152 };
6153
6154 const char* argv2[] = {
6155 "foo.exe",
6156 NULL
6157 };
6158
6159 GTEST_TEST_PARSING_FLAGS_(
6160 argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
6161 }
6162
6163 // Tests parsing --gtest_throw_on_failure.
TEST_F(InitGoogleTestTest,ThrowOnFailureWithoutValue)6164 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
6165 const char* argv[] = {
6166 "foo.exe",
6167 "--gtest_throw_on_failure",
6168 NULL
6169 };
6170
6171 const char* argv2[] = {
6172 "foo.exe",
6173 NULL
6174 };
6175
6176 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6177 }
6178
6179 // Tests parsing --gtest_throw_on_failure=0.
TEST_F(InitGoogleTestTest,ThrowOnFailureFalse_0)6180 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
6181 const char* argv[] = {
6182 "foo.exe",
6183 "--gtest_throw_on_failure=0",
6184 NULL
6185 };
6186
6187 const char* argv2[] = {
6188 "foo.exe",
6189 NULL
6190 };
6191
6192 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6193 }
6194
6195 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6196 // definition.
TEST_F(InitGoogleTestTest,ThrowOnFailureTrue)6197 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
6198 const char* argv[] = {
6199 "foo.exe",
6200 "--gtest_throw_on_failure=1",
6201 NULL
6202 };
6203
6204 const char* argv2[] = {
6205 "foo.exe",
6206 NULL
6207 };
6208
6209 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6210 }
6211
6212 #if GTEST_OS_WINDOWS
6213 // Tests parsing wide strings.
TEST_F(InitGoogleTestTest,WideStrings)6214 TEST_F(InitGoogleTestTest, WideStrings) {
6215 const wchar_t* argv[] = {
6216 L"foo.exe",
6217 L"--gtest_filter=Foo*",
6218 L"--gtest_list_tests=1",
6219 L"--gtest_break_on_failure",
6220 L"--non_gtest_flag",
6221 NULL
6222 };
6223
6224 const wchar_t* argv2[] = {
6225 L"foo.exe",
6226 L"--non_gtest_flag",
6227 NULL
6228 };
6229
6230 Flags expected_flags;
6231 expected_flags.break_on_failure = true;
6232 expected_flags.filter = "Foo*";
6233 expected_flags.list_tests = true;
6234
6235 GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6236 }
6237 #endif // GTEST_OS_WINDOWS
6238
6239 // Tests current_test_info() in UnitTest.
6240 class CurrentTestInfoTest : public Test {
6241 protected:
6242 // Tests that current_test_info() returns NULL before the first test in
6243 // the test case is run.
SetUpTestCase()6244 static void SetUpTestCase() {
6245 // There should be no tests running at this point.
6246 const TestInfo* test_info =
6247 UnitTest::GetInstance()->current_test_info();
6248 EXPECT_TRUE(test_info == NULL)
6249 << "There should be no tests running at this point.";
6250 }
6251
6252 // Tests that current_test_info() returns NULL after the last test in
6253 // the test case has run.
TearDownTestCase()6254 static void TearDownTestCase() {
6255 const TestInfo* test_info =
6256 UnitTest::GetInstance()->current_test_info();
6257 EXPECT_TRUE(test_info == NULL)
6258 << "There should be no tests running at this point.";
6259 }
6260 };
6261
6262 // Tests that current_test_info() returns TestInfo for currently running
6263 // test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest,WorksForFirstTestInATestCase)6264 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
6265 const TestInfo* test_info =
6266 UnitTest::GetInstance()->current_test_info();
6267 ASSERT_TRUE(NULL != test_info)
6268 << "There is a test running so we should have a valid TestInfo.";
6269 EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6270 << "Expected the name of the currently running test case.";
6271 EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
6272 << "Expected the name of the currently running test.";
6273 }
6274
6275 // Tests that current_test_info() returns TestInfo for currently running
6276 // test by checking the expected test name against the actual one. We
6277 // use this test to see that the TestInfo object actually changed from
6278 // the previous invocation.
TEST_F(CurrentTestInfoTest,WorksForSecondTestInATestCase)6279 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
6280 const TestInfo* test_info =
6281 UnitTest::GetInstance()->current_test_info();
6282 ASSERT_TRUE(NULL != test_info)
6283 << "There is a test running so we should have a valid TestInfo.";
6284 EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6285 << "Expected the name of the currently running test case.";
6286 EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
6287 << "Expected the name of the currently running test.";
6288 }
6289
6290 } // namespace testing
6291
6292 // These two lines test that we can define tests in a namespace that
6293 // has the name "testing" and is nested in another namespace.
6294 namespace my_namespace {
6295 namespace testing {
6296
6297 // Makes sure that TEST knows to use ::testing::Test instead of
6298 // ::my_namespace::testing::Test.
6299 class Test {};
6300
6301 // Makes sure that an assertion knows to use ::testing::Message instead of
6302 // ::my_namespace::testing::Message.
6303 class Message {};
6304
6305 // Makes sure that an assertion knows to use
6306 // ::testing::AssertionResult instead of
6307 // ::my_namespace::testing::AssertionResult.
6308 class AssertionResult {};
6309
6310 // Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest,Success)6311 TEST(NestedTestingNamespaceTest, Success) {
6312 EXPECT_EQ(1, 1) << "This shouldn't fail.";
6313 }
6314
6315 // Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest,Failure)6316 TEST(NestedTestingNamespaceTest, Failure) {
6317 EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6318 "This failure is expected.");
6319 }
6320
6321 } // namespace testing
6322 } // namespace my_namespace
6323
6324 // Tests that one can call superclass SetUp and TearDown methods--
6325 // that is, that they are not private.
6326 // No tests are based on this fixture; the test "passes" if it compiles
6327 // successfully.
6328 class ProtectedFixtureMethodsTest : public Test {
6329 protected:
SetUp()6330 virtual void SetUp() {
6331 Test::SetUp();
6332 }
TearDown()6333 virtual void TearDown() {
6334 Test::TearDown();
6335 }
6336 };
6337
6338 // StreamingAssertionsTest tests the streaming versions of a representative
6339 // sample of assertions.
TEST(StreamingAssertionsTest,Unconditional)6340 TEST(StreamingAssertionsTest, Unconditional) {
6341 SUCCEED() << "expected success";
6342 EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6343 "expected failure");
6344 EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
6345 "expected failure");
6346 }
6347
6348 #ifdef __BORLANDC__
6349 // Silences warnings: "Condition is always true", "Unreachable code"
6350 # pragma option push -w-ccc -w-rch
6351 #endif
6352
TEST(StreamingAssertionsTest,Truth)6353 TEST(StreamingAssertionsTest, Truth) {
6354 EXPECT_TRUE(true) << "unexpected failure";
6355 ASSERT_TRUE(true) << "unexpected failure";
6356 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6357 "expected failure");
6358 EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6359 "expected failure");
6360 }
6361
TEST(StreamingAssertionsTest,Truth2)6362 TEST(StreamingAssertionsTest, Truth2) {
6363 EXPECT_FALSE(false) << "unexpected failure";
6364 ASSERT_FALSE(false) << "unexpected failure";
6365 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6366 "expected failure");
6367 EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6368 "expected failure");
6369 }
6370
6371 #ifdef __BORLANDC__
6372 // Restores warnings after previous "#pragma option push" supressed them
6373 # pragma option pop
6374 #endif
6375
TEST(StreamingAssertionsTest,IntegerEquals)6376 TEST(StreamingAssertionsTest, IntegerEquals) {
6377 EXPECT_EQ(1, 1) << "unexpected failure";
6378 ASSERT_EQ(1, 1) << "unexpected failure";
6379 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6380 "expected failure");
6381 EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6382 "expected failure");
6383 }
6384
TEST(StreamingAssertionsTest,IntegerLessThan)6385 TEST(StreamingAssertionsTest, IntegerLessThan) {
6386 EXPECT_LT(1, 2) << "unexpected failure";
6387 ASSERT_LT(1, 2) << "unexpected failure";
6388 EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6389 "expected failure");
6390 EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6391 "expected failure");
6392 }
6393
TEST(StreamingAssertionsTest,StringsEqual)6394 TEST(StreamingAssertionsTest, StringsEqual) {
6395 EXPECT_STREQ("foo", "foo") << "unexpected failure";
6396 ASSERT_STREQ("foo", "foo") << "unexpected failure";
6397 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6398 "expected failure");
6399 EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6400 "expected failure");
6401 }
6402
TEST(StreamingAssertionsTest,StringsNotEqual)6403 TEST(StreamingAssertionsTest, StringsNotEqual) {
6404 EXPECT_STRNE("foo", "bar") << "unexpected failure";
6405 ASSERT_STRNE("foo", "bar") << "unexpected failure";
6406 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6407 "expected failure");
6408 EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6409 "expected failure");
6410 }
6411
TEST(StreamingAssertionsTest,StringsEqualIgnoringCase)6412 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6413 EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6414 ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6415 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6416 "expected failure");
6417 EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6418 "expected failure");
6419 }
6420
TEST(StreamingAssertionsTest,StringNotEqualIgnoringCase)6421 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6422 EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6423 ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6424 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6425 "expected failure");
6426 EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6427 "expected failure");
6428 }
6429
TEST(StreamingAssertionsTest,FloatingPointEquals)6430 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6431 EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6432 ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6433 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6434 "expected failure");
6435 EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6436 "expected failure");
6437 }
6438
6439 #if GTEST_HAS_EXCEPTIONS
6440
TEST(StreamingAssertionsTest,Throw)6441 TEST(StreamingAssertionsTest, Throw) {
6442 EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6443 ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6444 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
6445 "expected failure", "expected failure");
6446 EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
6447 "expected failure", "expected failure");
6448 }
6449
TEST(StreamingAssertionsTest,NoThrow)6450 TEST(StreamingAssertionsTest, NoThrow) {
6451 EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6452 ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6453 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
6454 "expected failure", "expected failure");
6455 EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
6456 "expected failure", "expected failure");
6457 }
6458
TEST(StreamingAssertionsTest,AnyThrow)6459 TEST(StreamingAssertionsTest, AnyThrow) {
6460 EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6461 ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6462 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
6463 "expected failure", "expected failure");
6464 EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
6465 "expected failure", "expected failure");
6466 }
6467
6468 #endif // GTEST_HAS_EXCEPTIONS
6469
6470 // Tests that Google Test correctly decides whether to use colors in the output.
6471
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsYes)6472 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6473 GTEST_FLAG(color) = "yes";
6474
6475 SetEnv("TERM", "xterm"); // TERM supports colors.
6476 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6477 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6478
6479 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6480 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6481 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6482 }
6483
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsAliasOfYes)6484 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6485 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6486
6487 GTEST_FLAG(color) = "True";
6488 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6489
6490 GTEST_FLAG(color) = "t";
6491 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6492
6493 GTEST_FLAG(color) = "1";
6494 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
6495 }
6496
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsNo)6497 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6498 GTEST_FLAG(color) = "no";
6499
6500 SetEnv("TERM", "xterm"); // TERM supports colors.
6501 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6502 EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6503
6504 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6505 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6506 EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6507 }
6508
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsInvalid)6509 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6510 SetEnv("TERM", "xterm"); // TERM supports colors.
6511
6512 GTEST_FLAG(color) = "F";
6513 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6514
6515 GTEST_FLAG(color) = "0";
6516 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6517
6518 GTEST_FLAG(color) = "unknown";
6519 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6520 }
6521
TEST(ColoredOutputTest,UsesColorsWhenStdoutIsTty)6522 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6523 GTEST_FLAG(color) = "auto";
6524
6525 SetEnv("TERM", "xterm"); // TERM supports colors.
6526 EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
6527 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6528 }
6529
TEST(ColoredOutputTest,UsesColorsWhenTermSupportsColors)6530 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6531 GTEST_FLAG(color) = "auto";
6532
6533 #if GTEST_OS_WINDOWS
6534 // On Windows, we ignore the TERM variable as it's usually not set.
6535
6536 SetEnv("TERM", "dumb");
6537 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6538
6539 SetEnv("TERM", "");
6540 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6541
6542 SetEnv("TERM", "xterm");
6543 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6544 #else
6545 // On non-Windows platforms, we rely on TERM to determine if the
6546 // terminal supports colors.
6547
6548 SetEnv("TERM", "dumb"); // TERM doesn't support colors.
6549 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6550
6551 SetEnv("TERM", "emacs"); // TERM doesn't support colors.
6552 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6553
6554 SetEnv("TERM", "vt100"); // TERM doesn't support colors.
6555 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6556
6557 SetEnv("TERM", "xterm-mono"); // TERM doesn't support colors.
6558 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
6559
6560 SetEnv("TERM", "xterm"); // TERM supports colors.
6561 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6562
6563 SetEnv("TERM", "xterm-color"); // TERM supports colors.
6564 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6565
6566 SetEnv("TERM", "xterm-256color"); // TERM supports colors.
6567 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6568
6569 SetEnv("TERM", "screen"); // TERM supports colors.
6570 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6571
6572 SetEnv("TERM", "screen-256color"); // TERM supports colors.
6573 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6574
6575 SetEnv("TERM", "linux"); // TERM supports colors.
6576 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6577
6578 SetEnv("TERM", "cygwin"); // TERM supports colors.
6579 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
6580 #endif // GTEST_OS_WINDOWS
6581 }
6582
6583 // Verifies that StaticAssertTypeEq works in a namespace scope.
6584
6585 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6586 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6587 StaticAssertTypeEq<const int, const int>();
6588
6589 // Verifies that StaticAssertTypeEq works in a class.
6590
6591 template <typename T>
6592 class StaticAssertTypeEqTestHelper {
6593 public:
StaticAssertTypeEqTestHelper()6594 StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6595 };
6596
TEST(StaticAssertTypeEqTest,WorksInClass)6597 TEST(StaticAssertTypeEqTest, WorksInClass) {
6598 StaticAssertTypeEqTestHelper<bool>();
6599 }
6600
6601 // Verifies that StaticAssertTypeEq works inside a function.
6602
6603 typedef int IntAlias;
6604
TEST(StaticAssertTypeEqTest,CompilesForEqualTypes)6605 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6606 StaticAssertTypeEq<int, IntAlias>();
6607 StaticAssertTypeEq<int*, IntAlias*>();
6608 }
6609
TEST(GetCurrentOsStackTraceExceptTopTest,ReturnsTheStackTrace)6610 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
6611 testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
6612
6613 // We don't have a stack walker in Google Test yet.
6614 EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
6615 EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
6616 }
6617
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsNoFailure)6618 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6619 EXPECT_FALSE(HasNonfatalFailure());
6620 }
6621
FailFatally()6622 static void FailFatally() { FAIL(); }
6623
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsOnlyFatalFailure)6624 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6625 FailFatally();
6626 const bool has_nonfatal_failure = HasNonfatalFailure();
6627 ClearCurrentTestPartResults();
6628 EXPECT_FALSE(has_nonfatal_failure);
6629 }
6630
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6631 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6632 ADD_FAILURE();
6633 const bool has_nonfatal_failure = HasNonfatalFailure();
6634 ClearCurrentTestPartResults();
6635 EXPECT_TRUE(has_nonfatal_failure);
6636 }
6637
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6638 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6639 FailFatally();
6640 ADD_FAILURE();
6641 const bool has_nonfatal_failure = HasNonfatalFailure();
6642 ClearCurrentTestPartResults();
6643 EXPECT_TRUE(has_nonfatal_failure);
6644 }
6645
6646 // A wrapper for calling HasNonfatalFailure outside of a test body.
HasNonfatalFailureHelper()6647 static bool HasNonfatalFailureHelper() {
6648 return testing::Test::HasNonfatalFailure();
6649 }
6650
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody)6651 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6652 EXPECT_FALSE(HasNonfatalFailureHelper());
6653 }
6654
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody2)6655 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6656 ADD_FAILURE();
6657 const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6658 ClearCurrentTestPartResults();
6659 EXPECT_TRUE(has_nonfatal_failure);
6660 }
6661
TEST(HasFailureTest,ReturnsFalseWhenThereIsNoFailure)6662 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6663 EXPECT_FALSE(HasFailure());
6664 }
6665
TEST(HasFailureTest,ReturnsTrueWhenThereIsFatalFailure)6666 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6667 FailFatally();
6668 const bool has_failure = HasFailure();
6669 ClearCurrentTestPartResults();
6670 EXPECT_TRUE(has_failure);
6671 }
6672
TEST(HasFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6673 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6674 ADD_FAILURE();
6675 const bool has_failure = HasFailure();
6676 ClearCurrentTestPartResults();
6677 EXPECT_TRUE(has_failure);
6678 }
6679
TEST(HasFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6680 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6681 FailFatally();
6682 ADD_FAILURE();
6683 const bool has_failure = HasFailure();
6684 ClearCurrentTestPartResults();
6685 EXPECT_TRUE(has_failure);
6686 }
6687
6688 // A wrapper for calling HasFailure outside of a test body.
HasFailureHelper()6689 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6690
TEST(HasFailureTest,WorksOutsideOfTestBody)6691 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6692 EXPECT_FALSE(HasFailureHelper());
6693 }
6694
TEST(HasFailureTest,WorksOutsideOfTestBody2)6695 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6696 ADD_FAILURE();
6697 const bool has_failure = HasFailureHelper();
6698 ClearCurrentTestPartResults();
6699 EXPECT_TRUE(has_failure);
6700 }
6701
6702 class TestListener : public EmptyTestEventListener {
6703 public:
TestListener()6704 TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
TestListener(int * on_start_counter,bool * is_destroyed)6705 TestListener(int* on_start_counter, bool* is_destroyed)
6706 : on_start_counter_(on_start_counter),
6707 is_destroyed_(is_destroyed) {}
6708
~TestListener()6709 virtual ~TestListener() {
6710 if (is_destroyed_)
6711 *is_destroyed_ = true;
6712 }
6713
6714 protected:
OnTestProgramStart(const UnitTest &)6715 virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6716 if (on_start_counter_ != NULL)
6717 (*on_start_counter_)++;
6718 }
6719
6720 private:
6721 int* on_start_counter_;
6722 bool* is_destroyed_;
6723 };
6724
6725 // Tests the constructor.
TEST(TestEventListenersTest,ConstructionWorks)6726 TEST(TestEventListenersTest, ConstructionWorks) {
6727 TestEventListeners listeners;
6728
6729 EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
6730 EXPECT_TRUE(listeners.default_result_printer() == NULL);
6731 EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6732 }
6733
6734 // Tests that the TestEventListeners destructor deletes all the listeners it
6735 // owns.
TEST(TestEventListenersTest,DestructionWorks)6736 TEST(TestEventListenersTest, DestructionWorks) {
6737 bool default_result_printer_is_destroyed = false;
6738 bool default_xml_printer_is_destroyed = false;
6739 bool extra_listener_is_destroyed = false;
6740 TestListener* default_result_printer = new TestListener(
6741 NULL, &default_result_printer_is_destroyed);
6742 TestListener* default_xml_printer = new TestListener(
6743 NULL, &default_xml_printer_is_destroyed);
6744 TestListener* extra_listener = new TestListener(
6745 NULL, &extra_listener_is_destroyed);
6746
6747 {
6748 TestEventListeners listeners;
6749 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
6750 default_result_printer);
6751 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
6752 default_xml_printer);
6753 listeners.Append(extra_listener);
6754 }
6755 EXPECT_TRUE(default_result_printer_is_destroyed);
6756 EXPECT_TRUE(default_xml_printer_is_destroyed);
6757 EXPECT_TRUE(extra_listener_is_destroyed);
6758 }
6759
6760 // Tests that a listener Append'ed to a TestEventListeners list starts
6761 // receiving events.
TEST(TestEventListenersTest,Append)6762 TEST(TestEventListenersTest, Append) {
6763 int on_start_counter = 0;
6764 bool is_destroyed = false;
6765 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6766 {
6767 TestEventListeners listeners;
6768 listeners.Append(listener);
6769 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6770 *UnitTest::GetInstance());
6771 EXPECT_EQ(1, on_start_counter);
6772 }
6773 EXPECT_TRUE(is_destroyed);
6774 }
6775
6776 // Tests that listeners receive events in the order they were appended to
6777 // the list, except for *End requests, which must be received in the reverse
6778 // order.
6779 class SequenceTestingListener : public EmptyTestEventListener {
6780 public:
SequenceTestingListener(std::vector<std::string> * vector,const char * id)6781 SequenceTestingListener(std::vector<std::string>* vector, const char* id)
6782 : vector_(vector), id_(id) {}
6783
6784 protected:
OnTestProgramStart(const UnitTest &)6785 virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6786 vector_->push_back(GetEventDescription("OnTestProgramStart"));
6787 }
6788
OnTestProgramEnd(const UnitTest &)6789 virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
6790 vector_->push_back(GetEventDescription("OnTestProgramEnd"));
6791 }
6792
OnTestIterationStart(const UnitTest &,int)6793 virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
6794 int /*iteration*/) {
6795 vector_->push_back(GetEventDescription("OnTestIterationStart"));
6796 }
6797
OnTestIterationEnd(const UnitTest &,int)6798 virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
6799 int /*iteration*/) {
6800 vector_->push_back(GetEventDescription("OnTestIterationEnd"));
6801 }
6802
6803 private:
GetEventDescription(const char * method)6804 std::string GetEventDescription(const char* method) {
6805 Message message;
6806 message << id_ << "." << method;
6807 return message.GetString();
6808 }
6809
6810 std::vector<std::string>* vector_;
6811 const char* const id_;
6812
6813 GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
6814 };
6815
TEST(EventListenerTest,AppendKeepsOrder)6816 TEST(EventListenerTest, AppendKeepsOrder) {
6817 std::vector<std::string> vec;
6818 TestEventListeners listeners;
6819 listeners.Append(new SequenceTestingListener(&vec, "1st"));
6820 listeners.Append(new SequenceTestingListener(&vec, "2nd"));
6821 listeners.Append(new SequenceTestingListener(&vec, "3rd"));
6822
6823 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6824 *UnitTest::GetInstance());
6825 ASSERT_EQ(3U, vec.size());
6826 EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
6827 EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
6828 EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
6829
6830 vec.clear();
6831 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
6832 *UnitTest::GetInstance());
6833 ASSERT_EQ(3U, vec.size());
6834 EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
6835 EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
6836 EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
6837
6838 vec.clear();
6839 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
6840 *UnitTest::GetInstance(), 0);
6841 ASSERT_EQ(3U, vec.size());
6842 EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
6843 EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
6844 EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
6845
6846 vec.clear();
6847 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
6848 *UnitTest::GetInstance(), 0);
6849 ASSERT_EQ(3U, vec.size());
6850 EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
6851 EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
6852 EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
6853 }
6854
6855 // Tests that a listener removed from a TestEventListeners list stops receiving
6856 // events and is not deleted when the list is destroyed.
TEST(TestEventListenersTest,Release)6857 TEST(TestEventListenersTest, Release) {
6858 int on_start_counter = 0;
6859 bool is_destroyed = false;
6860 // Although Append passes the ownership of this object to the list,
6861 // the following calls release it, and we need to delete it before the
6862 // test ends.
6863 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6864 {
6865 TestEventListeners listeners;
6866 listeners.Append(listener);
6867 EXPECT_EQ(listener, listeners.Release(listener));
6868 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6869 *UnitTest::GetInstance());
6870 EXPECT_TRUE(listeners.Release(listener) == NULL);
6871 }
6872 EXPECT_EQ(0, on_start_counter);
6873 EXPECT_FALSE(is_destroyed);
6874 delete listener;
6875 }
6876
6877 // Tests that no events are forwarded when event forwarding is disabled.
TEST(EventListenerTest,SuppressEventForwarding)6878 TEST(EventListenerTest, SuppressEventForwarding) {
6879 int on_start_counter = 0;
6880 TestListener* listener = new TestListener(&on_start_counter, NULL);
6881
6882 TestEventListeners listeners;
6883 listeners.Append(listener);
6884 ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6885 TestEventListenersAccessor::SuppressEventForwarding(&listeners);
6886 ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
6887 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6888 *UnitTest::GetInstance());
6889 EXPECT_EQ(0, on_start_counter);
6890 }
6891
6892 // Tests that events generated by Google Test are not forwarded in
6893 // death test subprocesses.
TEST(EventListenerDeathTest,EventsNotForwardedInDeathTestSubprecesses)6894 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
6895 EXPECT_DEATH_IF_SUPPORTED({
6896 GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
6897 *GetUnitTestImpl()->listeners())) << "expected failure";},
6898 "expected failure");
6899 }
6900
6901 // Tests that a listener installed via SetDefaultResultPrinter() starts
6902 // receiving events and is returned via default_result_printer() and that
6903 // the previous default_result_printer is removed from the list and deleted.
TEST(EventListenerTest,default_result_printer)6904 TEST(EventListenerTest, default_result_printer) {
6905 int on_start_counter = 0;
6906 bool is_destroyed = false;
6907 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6908
6909 TestEventListeners listeners;
6910 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
6911
6912 EXPECT_EQ(listener, listeners.default_result_printer());
6913
6914 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6915 *UnitTest::GetInstance());
6916
6917 EXPECT_EQ(1, on_start_counter);
6918
6919 // Replacing default_result_printer with something else should remove it
6920 // from the list and destroy it.
6921 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
6922
6923 EXPECT_TRUE(listeners.default_result_printer() == NULL);
6924 EXPECT_TRUE(is_destroyed);
6925
6926 // After broadcasting an event the counter is still the same, indicating
6927 // the listener is not in the list anymore.
6928 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6929 *UnitTest::GetInstance());
6930 EXPECT_EQ(1, on_start_counter);
6931 }
6932
6933 // Tests that the default_result_printer listener stops receiving events
6934 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultResultPrinterWorks)6935 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
6936 int on_start_counter = 0;
6937 bool is_destroyed = false;
6938 // Although Append passes the ownership of this object to the list,
6939 // the following calls release it, and we need to delete it before the
6940 // test ends.
6941 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6942 {
6943 TestEventListeners listeners;
6944 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
6945
6946 EXPECT_EQ(listener, listeners.Release(listener));
6947 EXPECT_TRUE(listeners.default_result_printer() == NULL);
6948 EXPECT_FALSE(is_destroyed);
6949
6950 // Broadcasting events now should not affect default_result_printer.
6951 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6952 *UnitTest::GetInstance());
6953 EXPECT_EQ(0, on_start_counter);
6954 }
6955 // Destroying the list should not affect the listener now, too.
6956 EXPECT_FALSE(is_destroyed);
6957 delete listener;
6958 }
6959
6960 // Tests that a listener installed via SetDefaultXmlGenerator() starts
6961 // receiving events and is returned via default_xml_generator() and that
6962 // the previous default_xml_generator is removed from the list and deleted.
TEST(EventListenerTest,default_xml_generator)6963 TEST(EventListenerTest, default_xml_generator) {
6964 int on_start_counter = 0;
6965 bool is_destroyed = false;
6966 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
6967
6968 TestEventListeners listeners;
6969 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
6970
6971 EXPECT_EQ(listener, listeners.default_xml_generator());
6972
6973 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6974 *UnitTest::GetInstance());
6975
6976 EXPECT_EQ(1, on_start_counter);
6977
6978 // Replacing default_xml_generator with something else should remove it
6979 // from the list and destroy it.
6980 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
6981
6982 EXPECT_TRUE(listeners.default_xml_generator() == NULL);
6983 EXPECT_TRUE(is_destroyed);
6984
6985 // After broadcasting an event the counter is still the same, indicating
6986 // the listener is not in the list anymore.
6987 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
6988 *UnitTest::GetInstance());
6989 EXPECT_EQ(1, on_start_counter);
6990 }
6991
6992 // Tests that the default_xml_generator listener stops receiving events
6993 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultXmlGeneratorWorks)6994 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
6995 int on_start_counter = 0;
6996 bool is_destroyed = false;
6997 // Although Append passes the ownership of this object to the list,
6998 // the following calls release it, and we need to delete it before the
6999 // test ends.
7000 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7001 {
7002 TestEventListeners listeners;
7003 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7004
7005 EXPECT_EQ(listener, listeners.Release(listener));
7006 EXPECT_TRUE(listeners.default_xml_generator() == NULL);
7007 EXPECT_FALSE(is_destroyed);
7008
7009 // Broadcasting events now should not affect default_xml_generator.
7010 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7011 *UnitTest::GetInstance());
7012 EXPECT_EQ(0, on_start_counter);
7013 }
7014 // Destroying the list should not affect the listener now, too.
7015 EXPECT_FALSE(is_destroyed);
7016 delete listener;
7017 }
7018
7019 // Sanity tests to ensure that the alternative, verbose spellings of
7020 // some of the macros work. We don't test them thoroughly as that
7021 // would be quite involved. Since their implementations are
7022 // straightforward, and they are rarely used, we'll just rely on the
7023 // users to tell us when they are broken.
GTEST_TEST(AlternativeNameTest,Works)7024 GTEST_TEST(AlternativeNameTest, Works) { // GTEST_TEST is the same as TEST.
7025 GTEST_SUCCEED() << "OK"; // GTEST_SUCCEED is the same as SUCCEED.
7026
7027 // GTEST_FAIL is the same as FAIL.
7028 EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7029 "An expected failure");
7030
7031 // GTEST_ASSERT_XY is the same as ASSERT_XY.
7032
7033 GTEST_ASSERT_EQ(0, 0);
7034 EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7035 "An expected failure");
7036 EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7037 "An expected failure");
7038
7039 GTEST_ASSERT_NE(0, 1);
7040 GTEST_ASSERT_NE(1, 0);
7041 EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7042 "An expected failure");
7043
7044 GTEST_ASSERT_LE(0, 0);
7045 GTEST_ASSERT_LE(0, 1);
7046 EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7047 "An expected failure");
7048
7049 GTEST_ASSERT_LT(0, 1);
7050 EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7051 "An expected failure");
7052 EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7053 "An expected failure");
7054
7055 GTEST_ASSERT_GE(0, 0);
7056 GTEST_ASSERT_GE(1, 0);
7057 EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7058 "An expected failure");
7059
7060 GTEST_ASSERT_GT(1, 0);
7061 EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7062 "An expected failure");
7063 EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7064 "An expected failure");
7065 }
7066
7067 // Tests for internal utilities necessary for implementation of the universal
7068 // printing.
7069 // TODO(vladl@google.com): Find a better home for them.
7070
7071 class ConversionHelperBase {};
7072 class ConversionHelperDerived : public ConversionHelperBase {};
7073
7074 // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
TEST(IsAProtocolMessageTest,ValueIsCompileTimeConstant)7075 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
7076 GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
7077 const_true);
7078 GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
7079 }
7080
7081 // Tests that IsAProtocolMessage<T>::value is true when T is
7082 // proto2::Message or a sub-class of it.
TEST(IsAProtocolMessageTest,ValueIsTrueWhenTypeIsAProtocolMessage)7083 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
7084 EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
7085 EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
7086 }
7087
7088 // Tests that IsAProtocolMessage<T>::value is false when T is neither
7089 // ProtocolMessage nor a sub-class of it.
TEST(IsAProtocolMessageTest,ValueIsFalseWhenTypeIsNotAProtocolMessage)7090 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7091 EXPECT_FALSE(IsAProtocolMessage<int>::value);
7092 EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
7093 }
7094
7095 // Tests that CompileAssertTypesEqual compiles when the type arguments are
7096 // equal.
TEST(CompileAssertTypesEqual,CompilesWhenTypesAreEqual)7097 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
7098 CompileAssertTypesEqual<void, void>();
7099 CompileAssertTypesEqual<int*, int*>();
7100 }
7101
7102 // Tests that RemoveReference does not affect non-reference types.
TEST(RemoveReferenceTest,DoesNotAffectNonReferenceType)7103 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
7104 CompileAssertTypesEqual<int, RemoveReference<int>::type>();
7105 CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
7106 }
7107
7108 // Tests that RemoveReference removes reference from reference types.
TEST(RemoveReferenceTest,RemovesReference)7109 TEST(RemoveReferenceTest, RemovesReference) {
7110 CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
7111 CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
7112 }
7113
7114 // Tests GTEST_REMOVE_REFERENCE_.
7115
7116 template <typename T1, typename T2>
TestGTestRemoveReference()7117 void TestGTestRemoveReference() {
7118 CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
7119 }
7120
TEST(RemoveReferenceTest,MacroVersion)7121 TEST(RemoveReferenceTest, MacroVersion) {
7122 TestGTestRemoveReference<int, int>();
7123 TestGTestRemoveReference<const char, const char&>();
7124 }
7125
7126
7127 // Tests that RemoveConst does not affect non-const types.
TEST(RemoveConstTest,DoesNotAffectNonConstType)7128 TEST(RemoveConstTest, DoesNotAffectNonConstType) {
7129 CompileAssertTypesEqual<int, RemoveConst<int>::type>();
7130 CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
7131 }
7132
7133 // Tests that RemoveConst removes const from const types.
TEST(RemoveConstTest,RemovesConst)7134 TEST(RemoveConstTest, RemovesConst) {
7135 CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
7136 CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
7137 CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
7138 }
7139
7140 // Tests GTEST_REMOVE_CONST_.
7141
7142 template <typename T1, typename T2>
TestGTestRemoveConst()7143 void TestGTestRemoveConst() {
7144 CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
7145 }
7146
TEST(RemoveConstTest,MacroVersion)7147 TEST(RemoveConstTest, MacroVersion) {
7148 TestGTestRemoveConst<int, int>();
7149 TestGTestRemoveConst<double&, double&>();
7150 TestGTestRemoveConst<char, const char>();
7151 }
7152
7153 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7154
7155 template <typename T1, typename T2>
TestGTestRemoveReferenceAndConst()7156 void TestGTestRemoveReferenceAndConst() {
7157 CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
7158 }
7159
TEST(RemoveReferenceToConstTest,Works)7160 TEST(RemoveReferenceToConstTest, Works) {
7161 TestGTestRemoveReferenceAndConst<int, int>();
7162 TestGTestRemoveReferenceAndConst<double, double&>();
7163 TestGTestRemoveReferenceAndConst<char, const char>();
7164 TestGTestRemoveReferenceAndConst<char, const char&>();
7165 TestGTestRemoveReferenceAndConst<const char*, const char*>();
7166 }
7167
7168 // Tests that AddReference does not affect reference types.
TEST(AddReferenceTest,DoesNotAffectReferenceType)7169 TEST(AddReferenceTest, DoesNotAffectReferenceType) {
7170 CompileAssertTypesEqual<int&, AddReference<int&>::type>();
7171 CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
7172 }
7173
7174 // Tests that AddReference adds reference to non-reference types.
TEST(AddReferenceTest,AddsReference)7175 TEST(AddReferenceTest, AddsReference) {
7176 CompileAssertTypesEqual<int&, AddReference<int>::type>();
7177 CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
7178 }
7179
7180 // Tests GTEST_ADD_REFERENCE_.
7181
7182 template <typename T1, typename T2>
TestGTestAddReference()7183 void TestGTestAddReference() {
7184 CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
7185 }
7186
TEST(AddReferenceTest,MacroVersion)7187 TEST(AddReferenceTest, MacroVersion) {
7188 TestGTestAddReference<int&, int>();
7189 TestGTestAddReference<const char&, const char&>();
7190 }
7191
7192 // Tests GTEST_REFERENCE_TO_CONST_.
7193
7194 template <typename T1, typename T2>
TestGTestReferenceToConst()7195 void TestGTestReferenceToConst() {
7196 CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
7197 }
7198
TEST(GTestReferenceToConstTest,Works)7199 TEST(GTestReferenceToConstTest, Works) {
7200 TestGTestReferenceToConst<const char&, char>();
7201 TestGTestReferenceToConst<const int&, const int>();
7202 TestGTestReferenceToConst<const double&, double>();
7203 TestGTestReferenceToConst<const std::string&, const std::string&>();
7204 }
7205
7206 // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
TEST(ImplicitlyConvertibleTest,ValueIsCompileTimeConstant)7207 TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
7208 GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
7209 GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
7210 const_false);
7211 }
7212
7213 // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
7214 // be implicitly converted to T2.
TEST(ImplicitlyConvertibleTest,ValueIsTrueWhenConvertible)7215 TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
7216 EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
7217 EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
7218 EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
7219 EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
7220 EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
7221 const ConversionHelperBase&>::value));
7222 EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
7223 ConversionHelperBase>::value));
7224 }
7225
7226 // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
7227 // cannot be implicitly converted to T2.
TEST(ImplicitlyConvertibleTest,ValueIsFalseWhenNotConvertible)7228 TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
7229 EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
7230 EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
7231 EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
7232 EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
7233 ConversionHelperDerived&>::value));
7234 }
7235
7236 // Tests IsContainerTest.
7237
7238 class NonContainer {};
7239
TEST(IsContainerTestTest,WorksForNonContainer)7240 TEST(IsContainerTestTest, WorksForNonContainer) {
7241 EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7242 EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7243 EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7244 }
7245
TEST(IsContainerTestTest,WorksForContainer)7246 TEST(IsContainerTestTest, WorksForContainer) {
7247 EXPECT_EQ(sizeof(IsContainer),
7248 sizeof(IsContainerTest<std::vector<bool> >(0)));
7249 EXPECT_EQ(sizeof(IsContainer),
7250 sizeof(IsContainerTest<std::map<int, double> >(0)));
7251 }
7252
7253 // Tests ArrayEq().
7254
TEST(ArrayEqTest,WorksForDegeneratedArrays)7255 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7256 EXPECT_TRUE(ArrayEq(5, 5L));
7257 EXPECT_FALSE(ArrayEq('a', 0));
7258 }
7259
TEST(ArrayEqTest,WorksForOneDimensionalArrays)7260 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7261 // Note that a and b are distinct but compatible types.
7262 const int a[] = { 0, 1 };
7263 long b[] = { 0, 1 };
7264 EXPECT_TRUE(ArrayEq(a, b));
7265 EXPECT_TRUE(ArrayEq(a, 2, b));
7266
7267 b[0] = 2;
7268 EXPECT_FALSE(ArrayEq(a, b));
7269 EXPECT_FALSE(ArrayEq(a, 1, b));
7270 }
7271
TEST(ArrayEqTest,WorksForTwoDimensionalArrays)7272 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7273 const char a[][3] = { "hi", "lo" };
7274 const char b[][3] = { "hi", "lo" };
7275 const char c[][3] = { "hi", "li" };
7276
7277 EXPECT_TRUE(ArrayEq(a, b));
7278 EXPECT_TRUE(ArrayEq(a, 2, b));
7279
7280 EXPECT_FALSE(ArrayEq(a, c));
7281 EXPECT_FALSE(ArrayEq(a, 2, c));
7282 }
7283
7284 // Tests ArrayAwareFind().
7285
TEST(ArrayAwareFindTest,WorksForOneDimensionalArray)7286 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7287 const char a[] = "hello";
7288 EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7289 EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7290 }
7291
TEST(ArrayAwareFindTest,WorksForTwoDimensionalArray)7292 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7293 int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
7294 const int b[2] = { 2, 3 };
7295 EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7296
7297 const int c[2] = { 6, 7 };
7298 EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7299 }
7300
7301 // Tests CopyArray().
7302
TEST(CopyArrayTest,WorksForDegeneratedArrays)7303 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7304 int n = 0;
7305 CopyArray('a', &n);
7306 EXPECT_EQ('a', n);
7307 }
7308
TEST(CopyArrayTest,WorksForOneDimensionalArrays)7309 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7310 const char a[3] = "hi";
7311 int b[3];
7312 #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
7313 CopyArray(a, &b);
7314 EXPECT_TRUE(ArrayEq(a, b));
7315 #endif
7316
7317 int c[3];
7318 CopyArray(a, 3, c);
7319 EXPECT_TRUE(ArrayEq(a, c));
7320 }
7321
TEST(CopyArrayTest,WorksForTwoDimensionalArrays)7322 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7323 const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
7324 int b[2][3];
7325 #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions.
7326 CopyArray(a, &b);
7327 EXPECT_TRUE(ArrayEq(a, b));
7328 #endif
7329
7330 int c[2][3];
7331 CopyArray(a, 2, c);
7332 EXPECT_TRUE(ArrayEq(a, c));
7333 }
7334
7335 // Tests NativeArray.
7336
TEST(NativeArrayTest,ConstructorFromArrayWorks)7337 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7338 const int a[3] = { 0, 1, 2 };
7339 NativeArray<int> na(a, 3, kReference);
7340 EXPECT_EQ(3U, na.size());
7341 EXPECT_EQ(a, na.begin());
7342 }
7343
TEST(NativeArrayTest,CreatesAndDeletesCopyOfArrayWhenAskedTo)7344 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7345 typedef int Array[2];
7346 Array* a = new Array[1];
7347 (*a)[0] = 0;
7348 (*a)[1] = 1;
7349 NativeArray<int> na(*a, 2, kCopy);
7350 EXPECT_NE(*a, na.begin());
7351 delete[] a;
7352 EXPECT_EQ(0, na.begin()[0]);
7353 EXPECT_EQ(1, na.begin()[1]);
7354
7355 // We rely on the heap checker to verify that na deletes the copy of
7356 // array.
7357 }
7358
TEST(NativeArrayTest,TypeMembersAreCorrect)7359 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7360 StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7361 StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7362
7363 StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7364 StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7365 }
7366
TEST(NativeArrayTest,MethodsWork)7367 TEST(NativeArrayTest, MethodsWork) {
7368 const int a[3] = { 0, 1, 2 };
7369 NativeArray<int> na(a, 3, kCopy);
7370 ASSERT_EQ(3U, na.size());
7371 EXPECT_EQ(3, na.end() - na.begin());
7372
7373 NativeArray<int>::const_iterator it = na.begin();
7374 EXPECT_EQ(0, *it);
7375 ++it;
7376 EXPECT_EQ(1, *it);
7377 it++;
7378 EXPECT_EQ(2, *it);
7379 ++it;
7380 EXPECT_EQ(na.end(), it);
7381
7382 EXPECT_TRUE(na == na);
7383
7384 NativeArray<int> na2(a, 3, kReference);
7385 EXPECT_TRUE(na == na2);
7386
7387 const int b1[3] = { 0, 1, 1 };
7388 const int b2[4] = { 0, 1, 2, 3 };
7389 EXPECT_FALSE(na == NativeArray<int>(b1, 3, kReference));
7390 EXPECT_FALSE(na == NativeArray<int>(b2, 4, kCopy));
7391 }
7392
TEST(NativeArrayTest,WorksForTwoDimensionalArray)7393 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7394 const char a[2][3] = { "hi", "lo" };
7395 NativeArray<char[3]> na(a, 2, kReference);
7396 ASSERT_EQ(2U, na.size());
7397 EXPECT_EQ(a, na.begin());
7398 }
7399
7400 // Tests SkipPrefix().
7401
TEST(SkipPrefixTest,SkipsWhenPrefixMatches)7402 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7403 const char* const str = "hello";
7404
7405 const char* p = str;
7406 EXPECT_TRUE(SkipPrefix("", &p));
7407 EXPECT_EQ(str, p);
7408
7409 p = str;
7410 EXPECT_TRUE(SkipPrefix("hell", &p));
7411 EXPECT_EQ(str + 4, p);
7412 }
7413
TEST(SkipPrefixTest,DoesNotSkipWhenPrefixDoesNotMatch)7414 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7415 const char* const str = "world";
7416
7417 const char* p = str;
7418 EXPECT_FALSE(SkipPrefix("W", &p));
7419 EXPECT_EQ(str, p);
7420
7421 p = str;
7422 EXPECT_FALSE(SkipPrefix("world!", &p));
7423 EXPECT_EQ(str, p);
7424 }
7425