1 /*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // #define LOG_NDEBUG 0
18 #define LOG_TAG "libutils.threads"
19
20 #include <assert.h>
21 #include <errno.h>
22 #include <memory.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <unistd.h>
26
27 #if !defined(_WIN32)
28 # include <pthread.h>
29 # include <sched.h>
30 # include <sys/resource.h>
31 #else
32 # include <windows.h>
33 # include <stdint.h>
34 # include <process.h>
35 # define HAVE_CREATETHREAD // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
36 #endif
37
38 #if defined(__linux__)
39 #include <sys/prctl.h>
40 #endif
41
42 #include <utils/threads.h>
43 #include <utils/Log.h>
44
45 #include <cutils/sched_policy.h>
46
47 #ifdef HAVE_ANDROID_OS
48 # define __android_unused
49 #else
50 # define __android_unused __attribute__((__unused__))
51 #endif
52
53 /*
54 * ===========================================================================
55 * Thread wrappers
56 * ===========================================================================
57 */
58
59 using namespace android;
60
61 // ----------------------------------------------------------------------------
62 #if !defined(_WIN32)
63 // ----------------------------------------------------------------------------
64
65 /*
66 * Create and run a new thread.
67 *
68 * We create it "detached", so it cleans up after itself.
69 */
70
71 typedef void* (*android_pthread_entry)(void*);
72
73 struct thread_data_t {
74 thread_func_t entryFunction;
75 void* userData;
76 int priority;
77 char * threadName;
78
79 // we use this trampoline when we need to set the priority with
80 // nice/setpriority, and name with prctl.
trampolinethread_data_t81 static int trampoline(const thread_data_t* t) {
82 thread_func_t f = t->entryFunction;
83 void* u = t->userData;
84 int prio = t->priority;
85 char * name = t->threadName;
86 delete t;
87 setpriority(PRIO_PROCESS, 0, prio);
88 if (prio >= ANDROID_PRIORITY_BACKGROUND) {
89 set_sched_policy(0, SP_BACKGROUND);
90 } else {
91 set_sched_policy(0, SP_FOREGROUND);
92 }
93
94 if (name) {
95 androidSetThreadName(name);
96 free(name);
97 }
98 return f(u);
99 }
100 };
101
androidSetThreadName(const char * name)102 void androidSetThreadName(const char* name) {
103 #if defined(__linux__)
104 // Mac OS doesn't have this, and we build libutil for the host too
105 int hasAt = 0;
106 int hasDot = 0;
107 const char *s = name;
108 while (*s) {
109 if (*s == '.') hasDot = 1;
110 else if (*s == '@') hasAt = 1;
111 s++;
112 }
113 int len = s - name;
114 if (len < 15 || hasAt || !hasDot) {
115 s = name;
116 } else {
117 s = name + len - 15;
118 }
119 prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
120 #endif
121 }
122
androidCreateRawThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName __android_unused,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)123 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
124 void *userData,
125 const char* threadName __android_unused,
126 int32_t threadPriority,
127 size_t threadStackSize,
128 android_thread_id_t *threadId)
129 {
130 pthread_attr_t attr;
131 pthread_attr_init(&attr);
132 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
133
134 #ifdef HAVE_ANDROID_OS /* valgrind is rejecting RT-priority create reqs */
135 if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
136 // Now that the pthread_t has a method to find the associated
137 // android_thread_id_t (pid) from pthread_t, it would be possible to avoid
138 // this trampoline in some cases as the parent could set the properties
139 // for the child. However, there would be a race condition because the
140 // child becomes ready immediately, and it doesn't work for the name.
141 // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was
142 // proposed but not yet accepted.
143 thread_data_t* t = new thread_data_t;
144 t->priority = threadPriority;
145 t->threadName = threadName ? strdup(threadName) : NULL;
146 t->entryFunction = entryFunction;
147 t->userData = userData;
148 entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
149 userData = t;
150 }
151 #endif
152
153 if (threadStackSize) {
154 pthread_attr_setstacksize(&attr, threadStackSize);
155 }
156
157 errno = 0;
158 pthread_t thread;
159 int result = pthread_create(&thread, &attr,
160 (android_pthread_entry)entryFunction, userData);
161 pthread_attr_destroy(&attr);
162 if (result != 0) {
163 ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n"
164 "(android threadPriority=%d)",
165 entryFunction, result, errno, threadPriority);
166 return 0;
167 }
168
169 // Note that *threadID is directly available to the parent only, as it is
170 // assigned after the child starts. Use memory barrier / lock if the child
171 // or other threads also need access.
172 if (threadId != NULL) {
173 *threadId = (android_thread_id_t)thread; // XXX: this is not portable
174 }
175 return 1;
176 }
177
178 #ifdef HAVE_ANDROID_OS
android_thread_id_t_to_pthread(android_thread_id_t thread)179 static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread)
180 {
181 return (pthread_t) thread;
182 }
183 #endif
184
androidGetThreadId()185 android_thread_id_t androidGetThreadId()
186 {
187 return (android_thread_id_t)pthread_self();
188 }
189
190 // ----------------------------------------------------------------------------
191 #else // !defined(_WIN32)
192 // ----------------------------------------------------------------------------
193
194 /*
195 * Trampoline to make us __stdcall-compliant.
196 *
197 * We're expected to delete "vDetails" when we're done.
198 */
199 struct threadDetails {
200 int (*func)(void*);
201 void* arg;
202 };
threadIntermediary(void * vDetails)203 static __stdcall unsigned int threadIntermediary(void* vDetails)
204 {
205 struct threadDetails* pDetails = (struct threadDetails*) vDetails;
206 int result;
207
208 result = (*(pDetails->func))(pDetails->arg);
209
210 delete pDetails;
211
212 ALOG(LOG_VERBOSE, "thread", "thread exiting\n");
213 return (unsigned int) result;
214 }
215
216 /*
217 * Create and run a new thread.
218 */
doCreateThread(android_thread_func_t fn,void * arg,android_thread_id_t * id)219 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
220 {
221 HANDLE hThread;
222 struct threadDetails* pDetails = new threadDetails; // must be on heap
223 unsigned int thrdaddr;
224
225 pDetails->func = fn;
226 pDetails->arg = arg;
227
228 #if defined(HAVE__BEGINTHREADEX)
229 hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
230 &thrdaddr);
231 if (hThread == 0)
232 #elif defined(HAVE_CREATETHREAD)
233 hThread = CreateThread(NULL, 0,
234 (LPTHREAD_START_ROUTINE) threadIntermediary,
235 (void*) pDetails, 0, (DWORD*) &thrdaddr);
236 if (hThread == NULL)
237 #endif
238 {
239 ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
240 return false;
241 }
242
243 #if defined(HAVE_CREATETHREAD)
244 /* close the management handle */
245 CloseHandle(hThread);
246 #endif
247
248 if (id != NULL) {
249 *id = (android_thread_id_t)thrdaddr;
250 }
251
252 return true;
253 }
254
androidCreateRawThreadEtc(android_thread_func_t fn,void * userData,const char *,int32_t,size_t,android_thread_id_t * threadId)255 int androidCreateRawThreadEtc(android_thread_func_t fn,
256 void *userData,
257 const char* /*threadName*/,
258 int32_t /*threadPriority*/,
259 size_t /*threadStackSize*/,
260 android_thread_id_t *threadId)
261 {
262 return doCreateThread( fn, userData, threadId);
263 }
264
androidGetThreadId()265 android_thread_id_t androidGetThreadId()
266 {
267 return (android_thread_id_t)GetCurrentThreadId();
268 }
269
270 // ----------------------------------------------------------------------------
271 #endif // !defined(_WIN32)
272
273 // ----------------------------------------------------------------------------
274
androidCreateThread(android_thread_func_t fn,void * arg)275 int androidCreateThread(android_thread_func_t fn, void* arg)
276 {
277 return createThreadEtc(fn, arg);
278 }
279
androidCreateThreadGetID(android_thread_func_t fn,void * arg,android_thread_id_t * id)280 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
281 {
282 return createThreadEtc(fn, arg, "android:unnamed_thread",
283 PRIORITY_DEFAULT, 0, id);
284 }
285
286 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
287
androidCreateThreadEtc(android_thread_func_t entryFunction,void * userData,const char * threadName,int32_t threadPriority,size_t threadStackSize,android_thread_id_t * threadId)288 int androidCreateThreadEtc(android_thread_func_t entryFunction,
289 void *userData,
290 const char* threadName,
291 int32_t threadPriority,
292 size_t threadStackSize,
293 android_thread_id_t *threadId)
294 {
295 return gCreateThreadFn(entryFunction, userData, threadName,
296 threadPriority, threadStackSize, threadId);
297 }
298
androidSetCreateThreadFunc(android_create_thread_fn func)299 void androidSetCreateThreadFunc(android_create_thread_fn func)
300 {
301 gCreateThreadFn = func;
302 }
303
304 #ifdef HAVE_ANDROID_OS
androidSetThreadPriority(pid_t tid,int pri)305 int androidSetThreadPriority(pid_t tid, int pri)
306 {
307 int rc = 0;
308
309 #if !defined(_WIN32)
310 int lasterr = 0;
311
312 if (pri >= ANDROID_PRIORITY_BACKGROUND) {
313 rc = set_sched_policy(tid, SP_BACKGROUND);
314 } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) {
315 rc = set_sched_policy(tid, SP_FOREGROUND);
316 }
317
318 if (rc) {
319 lasterr = errno;
320 }
321
322 if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
323 rc = INVALID_OPERATION;
324 } else {
325 errno = lasterr;
326 }
327 #endif
328
329 return rc;
330 }
331
androidGetThreadPriority(pid_t tid)332 int androidGetThreadPriority(pid_t tid) {
333 #if !defined(_WIN32)
334 return getpriority(PRIO_PROCESS, tid);
335 #else
336 return ANDROID_PRIORITY_NORMAL;
337 #endif
338 }
339
340 #endif
341
342 namespace android {
343
344 /*
345 * ===========================================================================
346 * Mutex class
347 * ===========================================================================
348 */
349
350 #if !defined(_WIN32)
351 // implemented as inlines in threads.h
352 #else
353
354 Mutex::Mutex()
355 {
356 HANDLE hMutex;
357
358 assert(sizeof(hMutex) == sizeof(mState));
359
360 hMutex = CreateMutex(NULL, FALSE, NULL);
361 mState = (void*) hMutex;
362 }
363
364 Mutex::Mutex(const char* name)
365 {
366 // XXX: name not used for now
367 HANDLE hMutex;
368
369 assert(sizeof(hMutex) == sizeof(mState));
370
371 hMutex = CreateMutex(NULL, FALSE, NULL);
372 mState = (void*) hMutex;
373 }
374
375 Mutex::Mutex(int type, const char* name)
376 {
377 // XXX: type and name not used for now
378 HANDLE hMutex;
379
380 assert(sizeof(hMutex) == sizeof(mState));
381
382 hMutex = CreateMutex(NULL, FALSE, NULL);
383 mState = (void*) hMutex;
384 }
385
386 Mutex::~Mutex()
387 {
388 CloseHandle((HANDLE) mState);
389 }
390
391 status_t Mutex::lock()
392 {
393 DWORD dwWaitResult;
394 dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
395 return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR;
396 }
397
398 void Mutex::unlock()
399 {
400 if (!ReleaseMutex((HANDLE) mState))
401 ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
402 }
403
404 status_t Mutex::tryLock()
405 {
406 DWORD dwWaitResult;
407
408 dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
409 if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
410 ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
411 return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
412 }
413
414 #endif // !defined(_WIN32)
415
416
417 /*
418 * ===========================================================================
419 * Condition class
420 * ===========================================================================
421 */
422
423 #if !defined(_WIN32)
424 // implemented as inlines in threads.h
425 #else
426
427 /*
428 * Windows doesn't have a condition variable solution. It's possible
429 * to create one, but it's easy to get it wrong. For a discussion, and
430 * the origin of this implementation, see:
431 *
432 * http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
433 *
434 * The implementation shown on the page does NOT follow POSIX semantics.
435 * As an optimization they require acquiring the external mutex before
436 * calling signal() and broadcast(), whereas POSIX only requires grabbing
437 * it before calling wait(). The implementation here has been un-optimized
438 * to have the correct behavior.
439 */
440 typedef struct WinCondition {
441 // Number of waiting threads.
442 int waitersCount;
443
444 // Serialize access to waitersCount.
445 CRITICAL_SECTION waitersCountLock;
446
447 // Semaphore used to queue up threads waiting for the condition to
448 // become signaled.
449 HANDLE sema;
450
451 // An auto-reset event used by the broadcast/signal thread to wait
452 // for all the waiting thread(s) to wake up and be released from
453 // the semaphore.
454 HANDLE waitersDone;
455
456 // This mutex wouldn't be necessary if we required that the caller
457 // lock the external mutex before calling signal() and broadcast().
458 // I'm trying to mimic pthread semantics though.
459 HANDLE internalMutex;
460
461 // Keeps track of whether we were broadcasting or signaling. This
462 // allows us to optimize the code if we're just signaling.
463 bool wasBroadcast;
464
465 status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
466 {
467 // Increment the wait count, avoiding race conditions.
468 EnterCriticalSection(&condState->waitersCountLock);
469 condState->waitersCount++;
470 //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
471 // condState->waitersCount, getThreadId());
472 LeaveCriticalSection(&condState->waitersCountLock);
473
474 DWORD timeout = INFINITE;
475 if (abstime) {
476 nsecs_t reltime = *abstime - systemTime();
477 if (reltime < 0)
478 reltime = 0;
479 timeout = reltime/1000000;
480 }
481
482 // Atomically release the external mutex and wait on the semaphore.
483 DWORD res =
484 SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
485
486 //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
487
488 // Reacquire lock to avoid race conditions.
489 EnterCriticalSection(&condState->waitersCountLock);
490
491 // No longer waiting.
492 condState->waitersCount--;
493
494 // Check to see if we're the last waiter after a broadcast.
495 bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
496
497 //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
498 // lastWaiter, condState->wasBroadcast, condState->waitersCount);
499
500 LeaveCriticalSection(&condState->waitersCountLock);
501
502 // If we're the last waiter thread during this particular broadcast
503 // then signal broadcast() that we're all awake. It'll drop the
504 // internal mutex.
505 if (lastWaiter) {
506 // Atomically signal the "waitersDone" event and wait until we
507 // can acquire the internal mutex. We want to do this in one step
508 // because it ensures that everybody is in the mutex FIFO before
509 // any thread has a chance to run. Without it, another thread
510 // could wake up, do work, and hop back in ahead of us.
511 SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
512 INFINITE, FALSE);
513 } else {
514 // Grab the internal mutex.
515 WaitForSingleObject(condState->internalMutex, INFINITE);
516 }
517
518 // Release the internal and grab the external.
519 ReleaseMutex(condState->internalMutex);
520 WaitForSingleObject(hMutex, INFINITE);
521
522 return res == WAIT_OBJECT_0 ? NO_ERROR : -1;
523 }
524 } WinCondition;
525
526 /*
527 * Constructor. Set up the WinCondition stuff.
528 */
529 Condition::Condition()
530 {
531 WinCondition* condState = new WinCondition;
532
533 condState->waitersCount = 0;
534 condState->wasBroadcast = false;
535 // semaphore: no security, initial value of 0
536 condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
537 InitializeCriticalSection(&condState->waitersCountLock);
538 // auto-reset event, not signaled initially
539 condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
540 // used so we don't have to lock external mutex on signal/broadcast
541 condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
542
543 mState = condState;
544 }
545
546 /*
547 * Destructor. Free Windows resources as well as our allocated storage.
548 */
549 Condition::~Condition()
550 {
551 WinCondition* condState = (WinCondition*) mState;
552 if (condState != NULL) {
553 CloseHandle(condState->sema);
554 CloseHandle(condState->waitersDone);
555 delete condState;
556 }
557 }
558
559
560 status_t Condition::wait(Mutex& mutex)
561 {
562 WinCondition* condState = (WinCondition*) mState;
563 HANDLE hMutex = (HANDLE) mutex.mState;
564
565 return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
566 }
567
568 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
569 {
570 WinCondition* condState = (WinCondition*) mState;
571 HANDLE hMutex = (HANDLE) mutex.mState;
572 nsecs_t absTime = systemTime()+reltime;
573
574 return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
575 }
576
577 /*
578 * Signal the condition variable, allowing one thread to continue.
579 */
580 void Condition::signal()
581 {
582 WinCondition* condState = (WinCondition*) mState;
583
584 // Lock the internal mutex. This ensures that we don't clash with
585 // broadcast().
586 WaitForSingleObject(condState->internalMutex, INFINITE);
587
588 EnterCriticalSection(&condState->waitersCountLock);
589 bool haveWaiters = (condState->waitersCount > 0);
590 LeaveCriticalSection(&condState->waitersCountLock);
591
592 // If no waiters, then this is a no-op. Otherwise, knock the semaphore
593 // down a notch.
594 if (haveWaiters)
595 ReleaseSemaphore(condState->sema, 1, 0);
596
597 // Release internal mutex.
598 ReleaseMutex(condState->internalMutex);
599 }
600
601 /*
602 * Signal the condition variable, allowing all threads to continue.
603 *
604 * First we have to wake up all threads waiting on the semaphore, then
605 * we wait until all of the threads have actually been woken before
606 * releasing the internal mutex. This ensures that all threads are woken.
607 */
608 void Condition::broadcast()
609 {
610 WinCondition* condState = (WinCondition*) mState;
611
612 // Lock the internal mutex. This keeps the guys we're waking up
613 // from getting too far.
614 WaitForSingleObject(condState->internalMutex, INFINITE);
615
616 EnterCriticalSection(&condState->waitersCountLock);
617 bool haveWaiters = false;
618
619 if (condState->waitersCount > 0) {
620 haveWaiters = true;
621 condState->wasBroadcast = true;
622 }
623
624 if (haveWaiters) {
625 // Wake up all the waiters.
626 ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
627
628 LeaveCriticalSection(&condState->waitersCountLock);
629
630 // Wait for all awakened threads to acquire the counting semaphore.
631 // The last guy who was waiting sets this.
632 WaitForSingleObject(condState->waitersDone, INFINITE);
633
634 // Reset wasBroadcast. (No crit section needed because nobody
635 // else can wake up to poke at it.)
636 condState->wasBroadcast = 0;
637 } else {
638 // nothing to do
639 LeaveCriticalSection(&condState->waitersCountLock);
640 }
641
642 // Release internal mutex.
643 ReleaseMutex(condState->internalMutex);
644 }
645
646 #endif // !defined(_WIN32)
647
648 // ----------------------------------------------------------------------------
649
650 /*
651 * This is our thread object!
652 */
653
Thread(bool canCallJava)654 Thread::Thread(bool canCallJava)
655 : mCanCallJava(canCallJava),
656 mThread(thread_id_t(-1)),
657 mLock("Thread::mLock"),
658 mStatus(NO_ERROR),
659 mExitPending(false), mRunning(false)
660 #ifdef HAVE_ANDROID_OS
661 , mTid(-1)
662 #endif
663 {
664 }
665
~Thread()666 Thread::~Thread()
667 {
668 }
669
readyToRun()670 status_t Thread::readyToRun()
671 {
672 return NO_ERROR;
673 }
674
run(const char * name,int32_t priority,size_t stack)675 status_t Thread::run(const char* name, int32_t priority, size_t stack)
676 {
677 Mutex::Autolock _l(mLock);
678
679 if (mRunning) {
680 // thread already started
681 return INVALID_OPERATION;
682 }
683
684 // reset status and exitPending to their default value, so we can
685 // try again after an error happened (either below, or in readyToRun())
686 mStatus = NO_ERROR;
687 mExitPending = false;
688 mThread = thread_id_t(-1);
689
690 // hold a strong reference on ourself
691 mHoldSelf = this;
692
693 mRunning = true;
694
695 bool res;
696 if (mCanCallJava) {
697 res = createThreadEtc(_threadLoop,
698 this, name, priority, stack, &mThread);
699 } else {
700 res = androidCreateRawThreadEtc(_threadLoop,
701 this, name, priority, stack, &mThread);
702 }
703
704 if (res == false) {
705 mStatus = UNKNOWN_ERROR; // something happened!
706 mRunning = false;
707 mThread = thread_id_t(-1);
708 mHoldSelf.clear(); // "this" may have gone away after this.
709
710 return UNKNOWN_ERROR;
711 }
712
713 // Do not refer to mStatus here: The thread is already running (may, in fact
714 // already have exited with a valid mStatus result). The NO_ERROR indication
715 // here merely indicates successfully starting the thread and does not
716 // imply successful termination/execution.
717 return NO_ERROR;
718
719 // Exiting scope of mLock is a memory barrier and allows new thread to run
720 }
721
_threadLoop(void * user)722 int Thread::_threadLoop(void* user)
723 {
724 Thread* const self = static_cast<Thread*>(user);
725
726 sp<Thread> strong(self->mHoldSelf);
727 wp<Thread> weak(strong);
728 self->mHoldSelf.clear();
729
730 #ifdef HAVE_ANDROID_OS
731 // this is very useful for debugging with gdb
732 self->mTid = gettid();
733 #endif
734
735 bool first = true;
736
737 do {
738 bool result;
739 if (first) {
740 first = false;
741 self->mStatus = self->readyToRun();
742 result = (self->mStatus == NO_ERROR);
743
744 if (result && !self->exitPending()) {
745 // Binder threads (and maybe others) rely on threadLoop
746 // running at least once after a successful ::readyToRun()
747 // (unless, of course, the thread has already been asked to exit
748 // at that point).
749 // This is because threads are essentially used like this:
750 // (new ThreadSubclass())->run();
751 // The caller therefore does not retain a strong reference to
752 // the thread and the thread would simply disappear after the
753 // successful ::readyToRun() call instead of entering the
754 // threadLoop at least once.
755 result = self->threadLoop();
756 }
757 } else {
758 result = self->threadLoop();
759 }
760
761 // establish a scope for mLock
762 {
763 Mutex::Autolock _l(self->mLock);
764 if (result == false || self->mExitPending) {
765 self->mExitPending = true;
766 self->mRunning = false;
767 // clear thread ID so that requestExitAndWait() does not exit if
768 // called by a new thread using the same thread ID as this one.
769 self->mThread = thread_id_t(-1);
770 // note that interested observers blocked in requestExitAndWait are
771 // awoken by broadcast, but blocked on mLock until break exits scope
772 self->mThreadExitedCondition.broadcast();
773 break;
774 }
775 }
776
777 // Release our strong reference, to let a chance to the thread
778 // to die a peaceful death.
779 strong.clear();
780 // And immediately, re-acquire a strong reference for the next loop
781 strong = weak.promote();
782 } while(strong != 0);
783
784 return 0;
785 }
786
requestExit()787 void Thread::requestExit()
788 {
789 Mutex::Autolock _l(mLock);
790 mExitPending = true;
791 }
792
requestExitAndWait()793 status_t Thread::requestExitAndWait()
794 {
795 Mutex::Autolock _l(mLock);
796 if (mThread == getThreadId()) {
797 ALOGW(
798 "Thread (this=%p): don't call waitForExit() from this "
799 "Thread object's thread. It's a guaranteed deadlock!",
800 this);
801
802 return WOULD_BLOCK;
803 }
804
805 mExitPending = true;
806
807 while (mRunning == true) {
808 mThreadExitedCondition.wait(mLock);
809 }
810 // This next line is probably not needed any more, but is being left for
811 // historical reference. Note that each interested party will clear flag.
812 mExitPending = false;
813
814 return mStatus;
815 }
816
join()817 status_t Thread::join()
818 {
819 Mutex::Autolock _l(mLock);
820 if (mThread == getThreadId()) {
821 ALOGW(
822 "Thread (this=%p): don't call join() from this "
823 "Thread object's thread. It's a guaranteed deadlock!",
824 this);
825
826 return WOULD_BLOCK;
827 }
828
829 while (mRunning == true) {
830 mThreadExitedCondition.wait(mLock);
831 }
832
833 return mStatus;
834 }
835
isRunning() const836 bool Thread::isRunning() const {
837 Mutex::Autolock _l(mLock);
838 return mRunning;
839 }
840
841 #ifdef HAVE_ANDROID_OS
getTid() const842 pid_t Thread::getTid() const
843 {
844 // mTid is not defined until the child initializes it, and the caller may need it earlier
845 Mutex::Autolock _l(mLock);
846 pid_t tid;
847 if (mRunning) {
848 pthread_t pthread = android_thread_id_t_to_pthread(mThread);
849 tid = pthread_gettid_np(pthread);
850 } else {
851 ALOGW("Thread (this=%p): getTid() is undefined before run()", this);
852 tid = -1;
853 }
854 return tid;
855 }
856 #endif
857
exitPending() const858 bool Thread::exitPending() const
859 {
860 Mutex::Autolock _l(mLock);
861 return mExitPending;
862 }
863
864
865
866 }; // namespace android
867