1 /*
2  * To change this template, choose Tools | Templates
3  * and open the template in the editor.
4  */
5 package jme3tools.navigation;
6 
7 
8 
9 /**
10  * A utlity class for performing position calculations
11  *
12  * @author Benjamin Jakobus, based on JMarine (by Cormac Gebruers and Benjamin
13  *          Jakobus)
14  * @version 1.0
15  * @since 1.0
16  */
17 public class NavCalculator {
18 
19     private double distance;
20     private double trueCourse;
21 
22     /* The earth's radius in meters */
23     public static final int WGS84_EARTH_RADIUS = 6378137;
24     private String strCourse;
25 
26     /* The sailing calculation type */
27     public static final int MERCATOR = 0;
28     public static final int GC = 1;
29 
30     /* The degree precision to use for courses */
31     public static final int RL_CRS_PRECISION = 1;
32 
33     /* The distance precision to use for distances */
34     public static final int RL_DIST_PRECISION = 1;
35     public static final int METERS_PER_MINUTE = 1852;
36 
37     /**
38      * Constructor
39      * @param P1
40      * @param P2
41      * @param calcType
42      * @since 1.0
43      */
NavCalculator(Position P1, Position P2, int calcType)44     public NavCalculator(Position P1, Position P2, int calcType) {
45         switch (calcType) {
46             case MERCATOR:
47                 mercatorSailing(P1, P2);
48                 break;
49             case GC:
50                 greatCircleSailing(P1, P2);
51                 break;
52         }
53     }
54 
55     /**
56      * Constructor
57      * @since 1.0
58      */
NavCalculator()59     public NavCalculator() {
60     }
61 
62     /**
63      * Determines a great circle track between two positions
64      * @param p1 origin position
65      * @param p2 destination position
66      */
greatCircleSailing(Position p1, Position p2)67     public GCSailing greatCircleSailing(Position p1, Position p2) {
68         return new GCSailing(new int[0], new float[0]);
69     }
70 
71     /**
72      * Determines a Rhumb Line course and distance between two points
73      * @param p1 origin position
74      * @param p2 destination position
75      */
rhumbLineSailing(Position p1, Position p2)76     public RLSailing rhumbLineSailing(Position p1, Position p2) {
77         RLSailing rl = mercatorSailing(p1, p2);
78         return rl;
79     }
80 
81     /**
82      * Determines the rhumb line course  and distance between two positions
83      * @param p1 origin position
84      * @param p2 destination position
85      */
mercatorSailing(Position p1, Position p2)86     public RLSailing mercatorSailing(Position p1, Position p2) {
87 
88         double dLat = computeDLat(p1.getLatitude(), p2.getLatitude());
89         //plane sailing...
90         if (dLat == 0) {
91             RLSailing rl = planeSailing(p1, p2);
92             return rl;
93         }
94 
95         double dLong = computeDLong(p1.getLongitude(), p2.getLongitude());
96         double dmp = (float) computeDMPClarkeSpheroid(p1.getLatitude(), p2.getLatitude());
97 
98         trueCourse = (float) Math.toDegrees(Math.atan(dLong / dmp));
99         double degCrs = convertCourse((float) trueCourse, p1, p2);
100         distance = (float) Math.abs(dLat / Math.cos(Math.toRadians(trueCourse)));
101 
102         RLSailing rl = new RLSailing(degCrs, (float) distance);
103         trueCourse = rl.getCourse();
104         strCourse = (dLat < 0 ? "S" : "N");
105         strCourse += " " + trueCourse;
106         strCourse += " " + (dLong < 0 ? "W" : "E");
107         return rl;
108 
109     }
110 
111     /**
112      * Calculate a plane sailing situation - i.e. where Lats are the same
113      * @param p1
114      * @param p2
115      * @return
116      * @since 1.0
117      */
planeSailing(Position p1, Position p2)118     public RLSailing planeSailing(Position p1, Position p2) {
119         double dLong = computeDLong(p1.getLongitude(), p2.getLongitude());
120 
121         double sgnDLong = 0 - (dLong / Math.abs(dLong));
122         if (Math.abs(dLong) > 180 * 60) {
123             dLong = (360 * 60 - Math.abs(dLong)) * sgnDLong;
124         }
125 
126         double redist = 0;
127         double recourse = 0;
128         if (p1.getLatitude() == 0) {
129             redist = Math.abs(dLong);
130         } else {
131             redist = Math.abs(dLong * (float) Math.cos(p1.getLatitude() * 2 * Math.PI / 360));
132         }
133         recourse = (float) Math.asin(0 - sgnDLong);
134         recourse = recourse * 360 / 2 / (float) Math.PI;
135 
136         if (recourse < 0) {
137             recourse = recourse + 360;
138         }
139         return new RLSailing(recourse, redist);
140     }
141 
142     /**
143      * Converts a course from cardinal XddY to ddd notation
144      * @param tc
145      * @param p1 position one
146      * @param p2 position two
147      * @return
148      * @since 1.0
149      */
convertCourse(float tc, Position p1, Position p2)150     public static double convertCourse(float tc, Position p1, Position p2) {
151 
152         double dLat = p1.getLatitude() - p2.getLatitude();
153         double dLong = p1.getLongitude() - p2.getLongitude();
154         //NE
155         if (dLong >= 0 & dLat >= 0) {
156             return Math.abs(tc);
157         }
158 
159         //SE
160         if (dLong >= 0 & dLat < 0) {
161             return 180 - Math.abs(tc);
162         }
163 
164         //SW
165         if (dLong < 0 & dLat < 0) {
166             return 180 + Math.abs(tc);
167         }
168 
169         //NW
170         if (dLong < 0 & dLat >= 0) {
171             return 360 - Math.abs(tc);
172         }
173         return -1;
174     }
175 
176     /**
177      * Getter method for the distance between two points
178      * @return distance
179      * @since 1.0
180      */
getDistance()181     public double getDistance() {
182         return distance;
183     }
184 
185     /**
186      * Getter method for the true course
187      * @return true course
188      * @since 1.0
189      */
getTrueCourse()190     public double getTrueCourse() {
191         return trueCourse;
192     }
193 
194     /**
195      * Getter method for the true course
196      * @return true course
197      * @since 1.0
198      */
getStrCourse()199     public String getStrCourse() {
200         return strCourse;
201     }
202 
203     /**
204      * Computes the difference in meridional parts for two latitudes in minutes
205      * (based on Clark 1880 spheroid)
206      * @param lat1
207      * @param lat2
208      * @return difference in minutes
209      * @since 1.0
210      */
computeDMPClarkeSpheroid(double lat1, double lat2)211     public static double computeDMPClarkeSpheroid(double lat1, double lat2) {
212         double absLat1 = Math.abs(lat1);
213         double absLat2 = Math.abs(lat2);
214 
215         double m1 = (7915.704468 * (Math.log(Math.tan(Math.toRadians(45
216                 + (absLat1 / 2)))) / Math.log(10))
217                 - 23.268932 * Math.sin(Math.toRadians(absLat1))
218                 - 0.052500 * Math.pow(Math.sin(Math.toRadians(absLat1)), 3)
219                 - 0.000213 * Math.pow(Math.sin(Math.toRadians(absLat1)), 5));
220 
221         double m2 = (7915.704468 * (Math.log(Math.tan(Math.toRadians(45
222                 + (absLat2 / 2)))) / Math.log(10))
223                 - 23.268932 * Math.sin(Math.toRadians(absLat2))
224                 - 0.052500 * Math.pow(Math.sin(Math.toRadians(absLat2)), 3)
225                 - 0.000213 * Math.pow(Math.sin(Math.toRadians(absLat2)), 5));
226         if ((lat1 <= 0 && lat2 <= 0) || (lat1 > 0 && lat2 > 0)) {
227             return Math.abs(m1 - m2);
228         } else {
229             return m1 + m2;
230         }
231     }
232 
233     /**
234      * Computes the difference in meridional parts for a perfect sphere between
235      * two degrees of latitude
236      * @param lat1
237      * @param lat2
238      * @return difference in meridional parts between lat1 and lat2 in minutes
239      * @since 1.0
240      */
computeDMPWGS84Spheroid(float lat1, float lat2)241     public static float computeDMPWGS84Spheroid(float lat1, float lat2) {
242         float absLat1 = Math.abs(lat1);
243         float absLat2 = Math.abs(lat2);
244 
245         float m1 = (float) (7915.7045 * Math.log10(Math.tan(Math.toRadians(45 + (absLat1 / 2))))
246                 - 23.01358 * Math.sin(absLat1 - 0.05135) * Math.pow(Math.sin(absLat1), 3));
247 
248         float m2 = (float) (7915.7045 * Math.log10(Math.tan(Math.toRadians(45 + (absLat2 / 2))))
249                 - 23.01358 * Math.sin(absLat2 - 0.05135) * Math.pow(Math.sin(absLat2), 3));
250 
251         if (lat1 <= 0 & lat2 <= 0 || lat1 > 0 & lat2 > 0) {
252             return Math.abs(m1 - m2);
253         } else {
254             return m1 + m2;
255         }
256     }
257 
258     /**
259      * Predicts the position of a target for a given time in the future
260      * @param time the number of seconds from now for which to predict the future
261      *        position
262      * @param speed the miles per minute that the target is traveling
263      * @param currentLat the target's current latitude
264      * @param currentLong the target's current longitude
265      * @param course the target's current course in degrees
266      * @return the predicted future position
267      * @since 1.0
268      */
predictPosition(int time, double speed, double currentLat, double currentLong, double course)269     public static Position predictPosition(int time, double speed,
270             double currentLat, double currentLong, double course) {
271         Position futurePosition = null;
272         course = Math.toRadians(course);
273         double futureLong = currentLong + speed * time * Math.sin(course);
274         double futureLat = currentLat + speed * time * Math.cos(course);
275         try {
276             futurePosition = new Position(futureLat, futureLong);
277         } catch (InvalidPositionException ipe) {
278             ipe.printStackTrace();
279         }
280         return futurePosition;
281 
282     }
283 
284     /**
285      * Computes the coordinate of position B relative to an offset given
286      * a distance and an angle.
287      *
288      * @param offset        The offset position.
289      * @param bearing       The bearing between the offset and the coordinate
290      *                      that you want to calculate.
291      * @param distance      The distance, in meters, between the offset
292      *                      and point B.
293      * @return              The position of point B that is located from
294      *                      given offset at given distance and angle.
295      * @since 1.0
296      */
computePosition(Position initialPos, double heading, double distance)297     public static Position computePosition(Position initialPos, double heading,
298             double distance) {
299         if (initialPos == null) {
300             return null;
301         }
302         double angle;
303         if (heading < 90) {
304             angle = heading;
305         } else if (heading > 90 && heading < 180) {
306             angle = 180 - heading;
307         } else if (heading > 180 && heading < 270) {
308             angle = heading - 180;
309         } else {
310             angle = 360 - heading;
311         }
312 
313         Position newPosition = null;
314 
315         // Convert meters into nautical miles
316         distance = distance * 0.000539956803;
317         angle = Math.toRadians(angle);
318         double initialLat = initialPos.getLatitude();
319         double initialLong = initialPos.getLongitude();
320         double dlat = distance * Math.cos(angle);
321         dlat = dlat / 60;
322         dlat = Math.abs(dlat);
323         double newLat = 0;
324         if ((heading > 270 && heading < 360) || (heading > 0 && heading < 90)) {
325             newLat = initialLat + dlat;
326         } else if (heading < 270 && heading > 90) {
327             newLat = initialLat - dlat;
328         }
329         double meanLat = (Math.abs(dlat) / 2.0) + newLat;
330         double dep = (Math.abs(dlat * 60)) * Math.tan(angle);
331         double dlong = dep * (1.0 / Math.cos(Math.toRadians(meanLat)));
332         dlong = dlong / 60;
333         dlong = Math.abs(dlong);
334         double newLong;
335         if (heading > 180 && heading < 360) {
336             newLong = initialLong - dlong;
337         } else {
338             newLong = initialLong + dlong;
339         }
340 
341         if (newLong < -180) {
342             double diff = Math.abs(newLong + 180);
343             newLong = 180 - diff;
344         }
345 
346         if (newLong > 180) {
347             double diff = Math.abs(newLong + 180);
348             newLong = (180 - diff) * -1;
349         }
350 
351         if (heading == 0 || heading == 360 || heading == 180) {
352             newLong = initialLong;
353             newLat = initialLat + dlat;
354         } else if (heading == 90 || heading == 270) {
355             newLat = initialLat;
356 //            newLong = initialLong + dlong; THIS WAS THE ORIGINAL (IT WORKED)
357             newLong = initialLong - dlong;
358         }
359         try {
360             newPosition = new Position(newLat,
361                     newLong);
362         } catch (InvalidPositionException ipe) {
363             ipe.printStackTrace();
364             System.out.println(newLat + "," + newLong);
365         }
366         return newPosition;
367     }
368 
369     /**
370      * Computes the difference in Longitude between two positions and assigns the
371      * correct sign -westwards travel, + eastwards travel
372      * @param lng1
373      * @param lng2
374      * @return difference in longitude
375      * @since 1.0
376      */
computeDLong(double lng1, double lng2)377     public static double computeDLong(double lng1, double lng2) {
378         if (lng1 - lng2 == 0) {
379             return 0;
380         }
381 
382         // both easterly
383         if (lng1 >= 0 & lng2 >= 0) {
384             return -(lng1 - lng2) * 60;
385         }
386         //both westerly
387         if (lng1 < 0 & lng2 < 0) {
388             return -(lng1 - lng2) * 60;
389         }
390 
391         //opposite sides of Date line meridian
392 
393         //sum less than 180
394         if (Math.abs(lng1) + Math.abs(lng2) < 180) {
395             if (lng1 < 0 & lng2 > 0) {
396                 return -(Math.abs(lng1) + Math.abs(lng2)) * 60;
397             } else {
398                 return Math.abs(lng1) + Math.abs(lng2) * 60;
399             }
400         } else {
401             //sum greater than 180
402             if (lng1 < 0 & lng2 > 0) {
403                 return -(360 - (Math.abs(lng1) + Math.abs(lng2))) * 60;
404             } else {
405                 return (360 - (Math.abs(lng1) + Math.abs(lng2))) * 60;
406             }
407         }
408     }
409 
410     /**
411      * Computes the difference in Longitude between two positions and assigns the
412      * correct sign -westwards travel, + eastwards travel
413      * @param lng1
414      * @param lng2
415      * @return difference in longitude
416      * @since 1.0
417      */
computeLongDiff(double lng1, double lng2)418     public static double computeLongDiff(double lng1, double lng2) {
419         if (lng1 - lng2 == 0) {
420             return 0;
421         }
422 
423         // both easterly
424         if (lng1 >= 0 & lng2 >= 0) {
425             return Math.abs(-(lng1 - lng2) * 60);
426         }
427         //both westerly
428         if (lng1 < 0 & lng2 < 0) {
429             return Math.abs(-(lng1 - lng2) * 60);
430         }
431 
432         if (lng1 == 0) {
433             return Math.abs(lng2 * 60);
434         }
435 
436         if (lng2 == 0) {
437             return Math.abs(lng1 * 60);
438         }
439 
440         return (Math.abs(lng1) + Math.abs(lng2)) * 60;
441     }
442 
443     /**
444      * Compute the difference in latitude between two positions
445      * @param lat1
446      * @param lat2
447      * @return difference in latitude
448      * @since 1.0
449      */
computeDLat(double lat1, double lat2)450     public static double computeDLat(double lat1, double lat2) {
451         //same side of equator
452 
453         //plane sailing
454         if (lat1 - lat2 == 0) {
455             return 0;
456         }
457 
458         //both northerly
459         if (lat1 >= 0 & lat2 >= 0) {
460             return -(lat1 - lat2) * 60;
461         }
462         //both southerly
463         if (lat1 < 0 & lat2 < 0) {
464             return -(lat1 - lat2) * 60;
465         }
466 
467         //opposite sides of equator
468         if (lat1 >= 0) {
469             //heading south
470             return -(Math.abs(lat1) + Math.abs(lat2));
471         } else {
472             //heading north
473             return (Math.abs(lat1) + Math.abs(lat2));
474         }
475     }
476 
477     public static class Quadrant {
478 
479         private static final Quadrant FIRST = new Quadrant(1, 1);
480         private static final Quadrant SECOND = new Quadrant(-1, 1);
481         private static final Quadrant THIRD = new Quadrant(-1, -1);
482         private static final Quadrant FOURTH = new Quadrant(1, -1);
483         private final int lonMultiplier;
484         private final int latMultiplier;
485 
Quadrant(final int xMultiplier, final int yMultiplier)486         public Quadrant(final int xMultiplier, final int yMultiplier) {
487             this.lonMultiplier = xMultiplier;
488             this.latMultiplier = yMultiplier;
489         }
490 
getQuadrant(double degrees, boolean invert)491         static Quadrant getQuadrant(double degrees, boolean invert) {
492             if (invert) {
493                 if (degrees >= 0 && degrees <= 90) {
494                     return FOURTH;
495                 } else if (degrees > 90 && degrees <= 180) {
496                     return THIRD;
497                 } else if (degrees > 180 && degrees <= 270) {
498                     return SECOND;
499                 }
500                 return FIRST;
501             } else {
502                 if (degrees >= 0 && degrees <= 90) {
503                     return FIRST;
504                 } else if (degrees > 90 && degrees <= 180) {
505                     return SECOND;
506                 } else if (degrees > 180 && degrees <= 270) {
507                     return THIRD;
508                 }
509                 return FOURTH;
510             }
511         }
512     }
513 
514     /**
515      * Converts meters to degrees.
516      *
517      * @param meters            The meters that you want to convert into degrees.
518      * @return                  The degree equivalent of the given meters.
519      * @since 1.0
520      */
toDegrees(double meters)521     public static double toDegrees(double meters) {
522         return (meters / METERS_PER_MINUTE) / 60;
523     }
524 
525     /**
526      * Computes the bearing between two points.
527      *
528      * @param p1
529      * @param p2
530      * @return
531      * @since 1.0
532      */
computeBearing(Position p1, Position p2)533     public static int computeBearing(Position p1, Position p2) {
534         int bearing;
535         double dLon = computeDLong(p1.getLongitude(), p2.getLongitude());
536         double y = Math.sin(dLon) * Math.cos(p2.getLatitude());
537         double x = Math.cos(p1.getLatitude()) * Math.sin(p2.getLatitude())
538                 - Math.sin(p1.getLatitude()) * Math.cos(p2.getLatitude()) * Math.cos(dLon);
539         bearing = (int) Math.toDegrees(Math.atan2(y, x));
540         return bearing;
541     }
542 
543     /**
544      * Computes the angle between two points.
545      *
546      * @param p1
547      * @param p2
548      * @return
549      */
computeAngle(Position p1, Position p2)550     public static int computeAngle(Position p1, Position p2) {
551         // cos (adj / hyp)
552         double adj = Math.abs(p1.getLongitude() - p2.getLongitude());
553         double opp = Math.abs(p1.getLatitude() - p2.getLatitude());
554         return (int) Math.toDegrees(Math.atan(opp / adj));
555 
556 //        int angle = (int)Math.atan2(p2.getLatitude() - p1.getLatitude(),
557 //                p2.getLongitude() - p1.getLongitude());
558         //Actually it's ATan2(dy , dx) where dy = y2 - y1 and dx = x2 - x1, or ATan(dy / dx)
559     }
560 
computeHeading(Position p1, Position p2)561     public static int computeHeading(Position p1, Position p2) {
562         int angle = computeAngle(p1, p2);
563         // NE
564         if (p2.getLongitude() >= p1.getLongitude() && p2.getLatitude() >= p1.getLatitude()) {
565             return angle;
566         } else if (p2.getLongitude() >= p1.getLongitude() && p2.getLatitude() <= p1.getLatitude()) {
567             // SE
568             return 90 + angle;
569         } else if (p2.getLongitude() <= p1.getLongitude() && p2.getLatitude() <= p1.getLatitude()) {
570             // SW
571             return 270 - angle;
572         } else {
573             // NW
574             return 270 + angle;
575         }
576     }
577 
main(String[] args)578     public static void main(String[] args) {
579         try {
580             int pos = NavCalculator.computeHeading(new Position(0, 0), new Position(10, -10));
581 //            System.out.println(pos.getLatitude() + "," + pos.getLongitude());
582             System.out.println(pos);
583         } catch (Exception e) {
584         }
585 
586 
587 
588 
589 
590     }
591 }
592