1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #ifndef EIGEN_INCOMPLETE_LUT_H
11 #define EIGEN_INCOMPLETE_LUT_H
12
13
14 namespace Eigen {
15
16 namespace internal {
17
18 /** \internal
19 * Compute a quick-sort split of a vector
20 * On output, the vector row is permuted such that its elements satisfy
21 * abs(row(i)) >= abs(row(ncut)) if i<ncut
22 * abs(row(i)) <= abs(row(ncut)) if i>ncut
23 * \param row The vector of values
24 * \param ind The array of index for the elements in @p row
25 * \param ncut The number of largest elements to keep
26 **/
27 template <typename VectorV, typename VectorI, typename Index>
QuickSplit(VectorV & row,VectorI & ind,Index ncut)28 Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
29 {
30 typedef typename VectorV::RealScalar RealScalar;
31 using std::swap;
32 using std::abs;
33 Index mid;
34 Index n = row.size(); /* length of the vector */
35 Index first, last ;
36
37 ncut--; /* to fit the zero-based indices */
38 first = 0;
39 last = n-1;
40 if (ncut < first || ncut > last ) return 0;
41
42 do {
43 mid = first;
44 RealScalar abskey = abs(row(mid));
45 for (Index j = first + 1; j <= last; j++) {
46 if ( abs(row(j)) > abskey) {
47 ++mid;
48 swap(row(mid), row(j));
49 swap(ind(mid), ind(j));
50 }
51 }
52 /* Interchange for the pivot element */
53 swap(row(mid), row(first));
54 swap(ind(mid), ind(first));
55
56 if (mid > ncut) last = mid - 1;
57 else if (mid < ncut ) first = mid + 1;
58 } while (mid != ncut );
59
60 return 0; /* mid is equal to ncut */
61 }
62
63 }// end namespace internal
64
65 /** \ingroup IterativeLinearSolvers_Module
66 * \class IncompleteLUT
67 * \brief Incomplete LU factorization with dual-threshold strategy
68 *
69 * During the numerical factorization, two dropping rules are used :
70 * 1) any element whose magnitude is less than some tolerance is dropped.
71 * This tolerance is obtained by multiplying the input tolerance @p droptol
72 * by the average magnitude of all the original elements in the current row.
73 * 2) After the elimination of the row, only the @p fill largest elements in
74 * the L part and the @p fill largest elements in the U part are kept
75 * (in addition to the diagonal element ). Note that @p fill is computed from
76 * the input parameter @p fillfactor which is used the ratio to control the fill_in
77 * relatively to the initial number of nonzero elements.
78 *
79 * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
80 * and when @p fill=n/2 with @p droptol being different to zero.
81 *
82 * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
83 * Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
84 *
85 * NOTE : The following implementation is derived from the ILUT implementation
86 * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
87 * released under the terms of the GNU LGPL:
88 * http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
89 * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
90 * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
91 * http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
92 * alternatively, on GMANE:
93 * http://comments.gmane.org/gmane.comp.lib.eigen/3302
94 */
95 template <typename _Scalar>
96 class IncompleteLUT : internal::noncopyable
97 {
98 typedef _Scalar Scalar;
99 typedef typename NumTraits<Scalar>::Real RealScalar;
100 typedef Matrix<Scalar,Dynamic,1> Vector;
101 typedef SparseMatrix<Scalar,RowMajor> FactorType;
102 typedef SparseMatrix<Scalar,ColMajor> PermutType;
103 typedef typename FactorType::Index Index;
104
105 public:
106 typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
107
IncompleteLUT()108 IncompleteLUT()
109 : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
110 m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
111 {}
112
113 template<typename MatrixType>
114 IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
m_droptol(droptol)115 : m_droptol(droptol),m_fillfactor(fillfactor),
116 m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
117 {
118 eigen_assert(fillfactor != 0);
119 compute(mat);
120 }
121
rows()122 Index rows() const { return m_lu.rows(); }
123
cols()124 Index cols() const { return m_lu.cols(); }
125
126 /** \brief Reports whether previous computation was successful.
127 *
128 * \returns \c Success if computation was succesful,
129 * \c NumericalIssue if the matrix.appears to be negative.
130 */
info()131 ComputationInfo info() const
132 {
133 eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
134 return m_info;
135 }
136
137 template<typename MatrixType>
138 void analyzePattern(const MatrixType& amat);
139
140 template<typename MatrixType>
141 void factorize(const MatrixType& amat);
142
143 /**
144 * Compute an incomplete LU factorization with dual threshold on the matrix mat
145 * No pivoting is done in this version
146 *
147 **/
148 template<typename MatrixType>
compute(const MatrixType & amat)149 IncompleteLUT<Scalar>& compute(const MatrixType& amat)
150 {
151 analyzePattern(amat);
152 factorize(amat);
153 m_isInitialized = m_factorizationIsOk;
154 return *this;
155 }
156
157 void setDroptol(const RealScalar& droptol);
158 void setFillfactor(int fillfactor);
159
160 template<typename Rhs, typename Dest>
_solve(const Rhs & b,Dest & x)161 void _solve(const Rhs& b, Dest& x) const
162 {
163 x = m_Pinv * b;
164 x = m_lu.template triangularView<UnitLower>().solve(x);
165 x = m_lu.template triangularView<Upper>().solve(x);
166 x = m_P * x;
167 }
168
169 template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
solve(const MatrixBase<Rhs> & b)170 solve(const MatrixBase<Rhs>& b) const
171 {
172 eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
173 eigen_assert(cols()==b.rows()
174 && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
175 return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
176 }
177
178 protected:
179
180 /** keeps off-diagonal entries; drops diagonal entries */
181 struct keep_diag {
operatorkeep_diag182 inline bool operator() (const Index& row, const Index& col, const Scalar&) const
183 {
184 return row!=col;
185 }
186 };
187
188 protected:
189
190 FactorType m_lu;
191 RealScalar m_droptol;
192 int m_fillfactor;
193 bool m_analysisIsOk;
194 bool m_factorizationIsOk;
195 bool m_isInitialized;
196 ComputationInfo m_info;
197 PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation
198 PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation
199 };
200
201 /**
202 * Set control parameter droptol
203 * \param droptol Drop any element whose magnitude is less than this tolerance
204 **/
205 template<typename Scalar>
setDroptol(const RealScalar & droptol)206 void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
207 {
208 this->m_droptol = droptol;
209 }
210
211 /**
212 * Set control parameter fillfactor
213 * \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
214 **/
215 template<typename Scalar>
setFillfactor(int fillfactor)216 void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
217 {
218 this->m_fillfactor = fillfactor;
219 }
220
221 template <typename Scalar>
222 template<typename _MatrixType>
analyzePattern(const _MatrixType & amat)223 void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
224 {
225 // Compute the Fill-reducing permutation
226 SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
227 SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
228 // Symmetrize the pattern
229 // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
230 // on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
231 SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
232 AtA.prune(keep_diag());
233 internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); // Then compute the AMD ordering...
234
235 m_Pinv = m_P.inverse(); // ... and the inverse permutation
236
237 m_analysisIsOk = true;
238 }
239
240 template <typename Scalar>
241 template<typename _MatrixType>
factorize(const _MatrixType & amat)242 void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
243 {
244 using std::sqrt;
245 using std::swap;
246 using std::abs;
247
248 eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
249 Index n = amat.cols(); // Size of the matrix
250 m_lu.resize(n,n);
251 // Declare Working vectors and variables
252 Vector u(n) ; // real values of the row -- maximum size is n --
253 VectorXi ju(n); // column position of the values in u -- maximum size is n
254 VectorXi jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
255
256 // Apply the fill-reducing permutation
257 eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
258 SparseMatrix<Scalar,RowMajor, Index> mat;
259 mat = amat.twistedBy(m_Pinv);
260
261 // Initialization
262 jr.fill(-1);
263 ju.fill(0);
264 u.fill(0);
265
266 // number of largest elements to keep in each row:
267 Index fill_in = static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
268 if (fill_in > n) fill_in = n;
269
270 // number of largest nonzero elements to keep in the L and the U part of the current row:
271 Index nnzL = fill_in/2;
272 Index nnzU = nnzL;
273 m_lu.reserve(n * (nnzL + nnzU + 1));
274
275 // global loop over the rows of the sparse matrix
276 for (Index ii = 0; ii < n; ii++)
277 {
278 // 1 - copy the lower and the upper part of the row i of mat in the working vector u
279
280 Index sizeu = 1; // number of nonzero elements in the upper part of the current row
281 Index sizel = 0; // number of nonzero elements in the lower part of the current row
282 ju(ii) = ii;
283 u(ii) = 0;
284 jr(ii) = ii;
285 RealScalar rownorm = 0;
286
287 typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
288 for (; j_it; ++j_it)
289 {
290 Index k = j_it.index();
291 if (k < ii)
292 {
293 // copy the lower part
294 ju(sizel) = k;
295 u(sizel) = j_it.value();
296 jr(k) = sizel;
297 ++sizel;
298 }
299 else if (k == ii)
300 {
301 u(ii) = j_it.value();
302 }
303 else
304 {
305 // copy the upper part
306 Index jpos = ii + sizeu;
307 ju(jpos) = k;
308 u(jpos) = j_it.value();
309 jr(k) = jpos;
310 ++sizeu;
311 }
312 rownorm += numext::abs2(j_it.value());
313 }
314
315 // 2 - detect possible zero row
316 if(rownorm==0)
317 {
318 m_info = NumericalIssue;
319 return;
320 }
321 // Take the 2-norm of the current row as a relative tolerance
322 rownorm = sqrt(rownorm);
323
324 // 3 - eliminate the previous nonzero rows
325 Index jj = 0;
326 Index len = 0;
327 while (jj < sizel)
328 {
329 // In order to eliminate in the correct order,
330 // we must select first the smallest column index among ju(jj:sizel)
331 Index k;
332 Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
333 k += jj;
334 if (minrow != ju(jj))
335 {
336 // swap the two locations
337 Index j = ju(jj);
338 swap(ju(jj), ju(k));
339 jr(minrow) = jj; jr(j) = k;
340 swap(u(jj), u(k));
341 }
342 // Reset this location
343 jr(minrow) = -1;
344
345 // Start elimination
346 typename FactorType::InnerIterator ki_it(m_lu, minrow);
347 while (ki_it && ki_it.index() < minrow) ++ki_it;
348 eigen_internal_assert(ki_it && ki_it.col()==minrow);
349 Scalar fact = u(jj) / ki_it.value();
350
351 // drop too small elements
352 if(abs(fact) <= m_droptol)
353 {
354 jj++;
355 continue;
356 }
357
358 // linear combination of the current row ii and the row minrow
359 ++ki_it;
360 for (; ki_it; ++ki_it)
361 {
362 Scalar prod = fact * ki_it.value();
363 Index j = ki_it.index();
364 Index jpos = jr(j);
365 if (jpos == -1) // fill-in element
366 {
367 Index newpos;
368 if (j >= ii) // dealing with the upper part
369 {
370 newpos = ii + sizeu;
371 sizeu++;
372 eigen_internal_assert(sizeu<=n);
373 }
374 else // dealing with the lower part
375 {
376 newpos = sizel;
377 sizel++;
378 eigen_internal_assert(sizel<=ii);
379 }
380 ju(newpos) = j;
381 u(newpos) = -prod;
382 jr(j) = newpos;
383 }
384 else
385 u(jpos) -= prod;
386 }
387 // store the pivot element
388 u(len) = fact;
389 ju(len) = minrow;
390 ++len;
391
392 jj++;
393 } // end of the elimination on the row ii
394
395 // reset the upper part of the pointer jr to zero
396 for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
397
398 // 4 - partially sort and insert the elements in the m_lu matrix
399
400 // sort the L-part of the row
401 sizel = len;
402 len = (std::min)(sizel, nnzL);
403 typename Vector::SegmentReturnType ul(u.segment(0, sizel));
404 typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
405 internal::QuickSplit(ul, jul, len);
406
407 // store the largest m_fill elements of the L part
408 m_lu.startVec(ii);
409 for(Index k = 0; k < len; k++)
410 m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
411
412 // store the diagonal element
413 // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
414 if (u(ii) == Scalar(0))
415 u(ii) = sqrt(m_droptol) * rownorm;
416 m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
417
418 // sort the U-part of the row
419 // apply the dropping rule first
420 len = 0;
421 for(Index k = 1; k < sizeu; k++)
422 {
423 if(abs(u(ii+k)) > m_droptol * rownorm )
424 {
425 ++len;
426 u(ii + len) = u(ii + k);
427 ju(ii + len) = ju(ii + k);
428 }
429 }
430 sizeu = len + 1; // +1 to take into account the diagonal element
431 len = (std::min)(sizeu, nnzU);
432 typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
433 typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
434 internal::QuickSplit(uu, juu, len);
435
436 // store the largest elements of the U part
437 for(Index k = ii + 1; k < ii + len; k++)
438 m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
439 }
440
441 m_lu.finalize();
442 m_lu.makeCompressed();
443
444 m_factorizationIsOk = true;
445 m_info = Success;
446 }
447
448 namespace internal {
449
450 template<typename _MatrixType, typename Rhs>
451 struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
452 : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
453 {
454 typedef IncompleteLUT<_MatrixType> Dec;
455 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
456
457 template<typename Dest> void evalTo(Dest& dst) const
458 {
459 dec()._solve(rhs(),dst);
460 }
461 };
462
463 } // end namespace internal
464
465 } // end namespace Eigen
466
467 #endif // EIGEN_INCOMPLETE_LUT_H
468