1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_ 18 #define ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_ 19 20 #include "base/logging.h" 21 #include "dex/compiler_ir.h" 22 #include "dex/mir_graph.h" 23 #include "dex/quick/mir_to_lir.h" 24 #include "x86_lir.h" 25 26 #include <map> 27 #include <vector> 28 29 namespace art { 30 31 class X86Mir2Lir FINAL : public Mir2Lir { 32 protected: 33 class InToRegStorageX86_64Mapper : public InToRegStorageMapper { 34 public: InToRegStorageX86_64Mapper(Mir2Lir * m2l)35 explicit InToRegStorageX86_64Mapper(Mir2Lir* m2l) 36 : m2l_(m2l), cur_core_reg_(0), cur_fp_reg_(0) {} 37 virtual RegStorage GetNextReg(ShortyArg arg); Reset()38 virtual void Reset() OVERRIDE { 39 cur_core_reg_ = 0; 40 cur_fp_reg_ = 0; 41 } 42 protected: 43 Mir2Lir* m2l_; 44 size_t cur_core_reg_; 45 size_t cur_fp_reg_; 46 }; 47 48 class InToRegStorageX86Mapper : public InToRegStorageX86_64Mapper { 49 public: InToRegStorageX86Mapper(Mir2Lir * m2l)50 explicit InToRegStorageX86Mapper(Mir2Lir* m2l) 51 : InToRegStorageX86_64Mapper(m2l) { } 52 virtual RegStorage GetNextReg(ShortyArg arg); 53 }; 54 55 InToRegStorageX86_64Mapper in_to_reg_storage_x86_64_mapper_; 56 InToRegStorageX86Mapper in_to_reg_storage_x86_mapper_; GetResetedInToRegStorageMapper()57 InToRegStorageMapper* GetResetedInToRegStorageMapper() OVERRIDE { 58 InToRegStorageMapper* res; 59 if (cu_->target64) { 60 res = &in_to_reg_storage_x86_64_mapper_; 61 } else { 62 res = &in_to_reg_storage_x86_mapper_; 63 } 64 res->Reset(); 65 return res; 66 } 67 68 class ExplicitTempRegisterLock { 69 public: 70 ExplicitTempRegisterLock(X86Mir2Lir* mir_to_lir, int n_regs, ...); 71 ~ExplicitTempRegisterLock(); 72 protected: 73 std::vector<RegStorage> temp_regs_; 74 X86Mir2Lir* const mir_to_lir_; 75 }; 76 77 virtual int GenDalvikArgsBulkCopy(CallInfo* info, int first, int count) OVERRIDE; 78 79 public: 80 X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena); 81 82 // Required for target - codegen helpers. 83 bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, RegLocation rl_src, 84 RegLocation rl_dest, int lit) OVERRIDE; 85 bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) OVERRIDE; 86 void GenMultiplyByConstantFloat(RegLocation rl_dest, RegLocation rl_src1, 87 int32_t constant) OVERRIDE; 88 void GenMultiplyByConstantDouble(RegLocation rl_dest, RegLocation rl_src1, 89 int64_t constant) OVERRIDE; 90 LIR* CheckSuspendUsingLoad() OVERRIDE; 91 RegStorage LoadHelper(QuickEntrypointEnum trampoline) OVERRIDE; 92 LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest, 93 OpSize size, VolatileKind is_volatile) OVERRIDE; 94 LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale, 95 OpSize size) OVERRIDE; 96 LIR* LoadConstantNoClobber(RegStorage r_dest, int value); 97 LIR* LoadConstantWide(RegStorage r_dest, int64_t value); 98 void GenLongToInt(RegLocation rl_dest, RegLocation rl_src); 99 LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src, 100 OpSize size, VolatileKind is_volatile) OVERRIDE; 101 LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale, 102 OpSize size) OVERRIDE; 103 104 /// @copydoc Mir2Lir::UnconditionallyMarkGCCard(RegStorage) 105 void UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) OVERRIDE; 106 107 bool CanUseOpPcRelDexCacheArrayLoad() const OVERRIDE; 108 void OpPcRelDexCacheArrayLoad(const DexFile* dex_file, int offset, RegStorage r_dest, bool wide) 109 OVERRIDE; 110 111 void GenImplicitNullCheck(RegStorage reg, int opt_flags) OVERRIDE; 112 113 // Required for target - register utilities. 114 RegStorage TargetReg(SpecialTargetRegister reg) OVERRIDE; TargetReg(SpecialTargetRegister symbolic_reg,WideKind wide_kind)115 RegStorage TargetReg(SpecialTargetRegister symbolic_reg, WideKind wide_kind) OVERRIDE { 116 if (wide_kind == kWide) { 117 if (cu_->target64) { 118 return As64BitReg(TargetReg32(symbolic_reg)); 119 } else { 120 if (symbolic_reg >= kFArg0 && symbolic_reg <= kFArg3) { 121 // We want an XMM, not a pair. 122 return As64BitReg(TargetReg32(symbolic_reg)); 123 } 124 // x86: construct a pair. 125 DCHECK((kArg0 <= symbolic_reg && symbolic_reg < kArg3) || 126 (kRet0 == symbolic_reg)); 127 return RegStorage::MakeRegPair(TargetReg32(symbolic_reg), 128 TargetReg32(static_cast<SpecialTargetRegister>(symbolic_reg + 1))); 129 } 130 } else if (wide_kind == kRef && cu_->target64) { 131 return As64BitReg(TargetReg32(symbolic_reg)); 132 } else { 133 return TargetReg32(symbolic_reg); 134 } 135 } TargetPtrReg(SpecialTargetRegister symbolic_reg)136 RegStorage TargetPtrReg(SpecialTargetRegister symbolic_reg) OVERRIDE { 137 return TargetReg(symbolic_reg, cu_->target64 ? kWide : kNotWide); 138 } 139 140 RegLocation GetReturnAlt() OVERRIDE; 141 RegLocation GetReturnWideAlt() OVERRIDE; 142 RegLocation LocCReturn() OVERRIDE; 143 RegLocation LocCReturnRef() OVERRIDE; 144 RegLocation LocCReturnDouble() OVERRIDE; 145 RegLocation LocCReturnFloat() OVERRIDE; 146 RegLocation LocCReturnWide() OVERRIDE; 147 148 ResourceMask GetRegMaskCommon(const RegStorage& reg) const OVERRIDE; 149 void AdjustSpillMask() OVERRIDE; 150 void ClobberCallerSave() OVERRIDE; 151 void FreeCallTemps() OVERRIDE; 152 void LockCallTemps() OVERRIDE; 153 154 void CompilerInitializeRegAlloc() OVERRIDE; 155 int VectorRegisterSize() OVERRIDE; 156 int NumReservableVectorRegisters(bool long_or_fp) OVERRIDE; 157 158 // Required for target - miscellaneous. 159 void AssembleLIR() OVERRIDE; 160 void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) OVERRIDE; 161 void SetupTargetResourceMasks(LIR* lir, uint64_t flags, 162 ResourceMask* use_mask, ResourceMask* def_mask) OVERRIDE; 163 const char* GetTargetInstFmt(int opcode) OVERRIDE; 164 const char* GetTargetInstName(int opcode) OVERRIDE; 165 std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) OVERRIDE; 166 ResourceMask GetPCUseDefEncoding() const OVERRIDE; 167 uint64_t GetTargetInstFlags(int opcode) OVERRIDE; 168 size_t GetInsnSize(LIR* lir) OVERRIDE; 169 bool IsUnconditionalBranch(LIR* lir) OVERRIDE; 170 171 // Get the register class for load/store of a field. 172 RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) OVERRIDE; 173 174 // Required for target - Dalvik-level generators. 175 void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, RegLocation rl_index, 176 RegLocation rl_dest, int scale) OVERRIDE; 177 void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array, 178 RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) OVERRIDE; 179 180 void GenArithOpDouble(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, 181 RegLocation rl_src2) OVERRIDE; 182 void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, 183 RegLocation rl_src2) OVERRIDE; 184 void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, 185 RegLocation rl_src2) OVERRIDE; 186 void GenConversion(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src) OVERRIDE; 187 188 bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) OVERRIDE; 189 bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) OVERRIDE; 190 bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) OVERRIDE; 191 bool GenInlinedReverseBits(CallInfo* info, OpSize size) OVERRIDE; 192 bool GenInlinedSqrt(CallInfo* info) OVERRIDE; 193 bool GenInlinedAbsFloat(CallInfo* info) OVERRIDE; 194 bool GenInlinedAbsDouble(CallInfo* info) OVERRIDE; 195 bool GenInlinedPeek(CallInfo* info, OpSize size) OVERRIDE; 196 bool GenInlinedPoke(CallInfo* info, OpSize size) OVERRIDE; 197 bool GenInlinedCharAt(CallInfo* info) OVERRIDE; 198 199 // Long instructions. 200 void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, 201 RegLocation rl_src2, int flags) OVERRIDE; 202 void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, 203 RegLocation rl_src2, int flags) OVERRIDE; 204 void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest, 205 RegLocation rl_src1, RegLocation rl_shift, int flags) OVERRIDE; 206 void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) OVERRIDE; 207 void GenIntToLong(RegLocation rl_dest, RegLocation rl_src) OVERRIDE; 208 void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest, 209 RegLocation rl_src1, RegLocation rl_shift) OVERRIDE; 210 211 /* 212 * @brief Generate a two address long operation with a constant value 213 * @param rl_dest location of result 214 * @param rl_src constant source operand 215 * @param op Opcode to be generated 216 * @return success or not 217 */ 218 bool GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op); 219 220 /* 221 * @brief Generate a three address long operation with a constant value 222 * @param rl_dest location of result 223 * @param rl_src1 source operand 224 * @param rl_src2 constant source operand 225 * @param op Opcode to be generated 226 * @return success or not 227 */ 228 bool GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, 229 Instruction::Code op); 230 /** 231 * @brief Generate a long arithmetic operation. 232 * @param rl_dest The destination. 233 * @param rl_src1 First operand. 234 * @param rl_src2 Second operand. 235 * @param op The DEX opcode for the operation. 236 * @param is_commutative The sources can be swapped if needed. 237 */ 238 virtual void GenLongArith(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, 239 Instruction::Code op, bool is_commutative); 240 241 /** 242 * @brief Generate a two operand long arithmetic operation. 243 * @param rl_dest The destination. 244 * @param rl_src Second operand. 245 * @param op The DEX opcode for the operation. 246 */ 247 void GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op); 248 249 /** 250 * @brief Generate a long operation. 251 * @param rl_dest The destination. Must be in a register 252 * @param rl_src The other operand. May be in a register or in memory. 253 * @param op The DEX opcode for the operation. 254 */ 255 virtual void GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op); 256 257 258 // TODO: collapse reg_lo, reg_hi 259 RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi, bool is_div) 260 OVERRIDE; 261 RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div) OVERRIDE; 262 void GenDivZeroCheckWide(RegStorage reg) OVERRIDE; 263 void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) OVERRIDE; 264 void GenExitSequence() OVERRIDE; 265 void GenSpecialExitSequence() OVERRIDE; 266 void GenSpecialEntryForSuspend() OVERRIDE; 267 void GenSpecialExitForSuspend() OVERRIDE; 268 void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) OVERRIDE; 269 void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) OVERRIDE; 270 void GenSelect(BasicBlock* bb, MIR* mir) OVERRIDE; 271 void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code, 272 int32_t true_val, int32_t false_val, RegStorage rs_dest, 273 RegisterClass dest_reg_class) OVERRIDE; 274 bool GenMemBarrier(MemBarrierKind barrier_kind) OVERRIDE; 275 void GenMoveException(RegLocation rl_dest) OVERRIDE; 276 void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit, 277 int first_bit, int second_bit) OVERRIDE; 278 void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) OVERRIDE; 279 void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) OVERRIDE; 280 void GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) OVERRIDE; 281 void GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) OVERRIDE; 282 283 /** 284 * @brief Implement instanceof a final class with x86 specific code. 285 * @param use_declaring_class 'true' if we can use the class itself. 286 * @param type_idx Type index to use if use_declaring_class is 'false'. 287 * @param rl_dest Result to be set to 0 or 1. 288 * @param rl_src Object to be tested. 289 */ 290 void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest, 291 RegLocation rl_src) OVERRIDE; 292 293 // Single operation generators. 294 LIR* OpUnconditionalBranch(LIR* target) OVERRIDE; 295 LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) OVERRIDE; 296 LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target) OVERRIDE; 297 LIR* OpCondBranch(ConditionCode cc, LIR* target) OVERRIDE; 298 LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) OVERRIDE; 299 LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) OVERRIDE; 300 LIR* OpIT(ConditionCode cond, const char* guide) OVERRIDE; 301 void OpEndIT(LIR* it) OVERRIDE; 302 LIR* OpMem(OpKind op, RegStorage r_base, int disp) OVERRIDE; 303 void OpPcRelLoad(RegStorage reg, LIR* target) OVERRIDE; 304 LIR* OpReg(OpKind op, RegStorage r_dest_src) OVERRIDE; 305 void OpRegCopy(RegStorage r_dest, RegStorage r_src) OVERRIDE; 306 LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) OVERRIDE; 307 LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) OVERRIDE; 308 LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) OVERRIDE; 309 LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) OVERRIDE; 310 LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) OVERRIDE; 311 LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) OVERRIDE; 312 LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) OVERRIDE; 313 LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2) OVERRIDE; 314 LIR* OpTestSuspend(LIR* target) OVERRIDE; 315 LIR* OpVldm(RegStorage r_base, int count) OVERRIDE; 316 LIR* OpVstm(RegStorage r_base, int count) OVERRIDE; 317 void OpRegCopyWide(RegStorage dest, RegStorage src) OVERRIDE; 318 bool GenInlinedCurrentThread(CallInfo* info) OVERRIDE; 319 320 bool InexpensiveConstantInt(int32_t value) OVERRIDE; 321 bool InexpensiveConstantFloat(int32_t value) OVERRIDE; 322 bool InexpensiveConstantLong(int64_t value) OVERRIDE; 323 bool InexpensiveConstantDouble(int64_t value) OVERRIDE; 324 325 /* 326 * @brief Should try to optimize for two address instructions? 327 * @return true if we try to avoid generating three operand instructions. 328 */ GenerateTwoOperandInstructions()329 virtual bool GenerateTwoOperandInstructions() const { return true; } 330 331 /* 332 * @brief x86 specific codegen for int operations. 333 * @param opcode Operation to perform. 334 * @param rl_dest Destination for the result. 335 * @param rl_lhs Left hand operand. 336 * @param rl_rhs Right hand operand. 337 * @param flags The instruction optimization flags. 338 */ 339 void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_lhs, 340 RegLocation rl_rhs, int flags) OVERRIDE; 341 342 /* 343 * @brief Load the Method* of a dex method into the register. 344 * @param target_method The MethodReference of the method to be invoked. 345 * @param type How the method will be invoked. 346 * @param register that will contain the code address. 347 * @note register will be passed to TargetReg to get physical register. 348 */ 349 void LoadMethodAddress(const MethodReference& target_method, InvokeType type, 350 SpecialTargetRegister symbolic_reg) OVERRIDE; 351 352 /* 353 * @brief Load the Class* of a Dex Class type into the register. 354 * @param dex DexFile that contains the class type. 355 * @param type How the method will be invoked. 356 * @param register that will contain the code address. 357 * @note register will be passed to TargetReg to get physical register. 358 */ 359 void LoadClassType(const DexFile& dex_file, uint32_t type_idx, 360 SpecialTargetRegister symbolic_reg) OVERRIDE; 361 362 NextCallInsn GetNextSDCallInsn() OVERRIDE; 363 364 /* 365 * @brief Generate a relative call to the method that will be patched at link time. 366 * @param target_method The MethodReference of the method to be invoked. 367 * @param type How the method will be invoked. 368 * @returns Call instruction 369 */ 370 LIR* CallWithLinkerFixup(const MethodReference& target_method, InvokeType type); 371 372 /* 373 * @brief Generate the actual call insn based on the method info. 374 * @param method_info the lowering info for the method call. 375 * @returns Call instruction 376 */ 377 LIR* GenCallInsn(const MirMethodLoweringInfo& method_info) OVERRIDE; 378 379 void AnalyzeMIR(RefCounts* core_counts, MIR* mir, uint32_t weight) OVERRIDE; 380 void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs) OVERRIDE; 381 void DoPromotion() OVERRIDE; 382 383 /* 384 * @brief Handle x86 specific literals 385 */ 386 void InstallLiteralPools() OVERRIDE; 387 388 LIR* InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) OVERRIDE; 389 390 protected: 391 RegStorage TargetReg32(SpecialTargetRegister reg) const; 392 // Casting of RegStorage As32BitReg(RegStorage reg)393 RegStorage As32BitReg(RegStorage reg) { 394 DCHECK(!reg.IsPair()); 395 if ((kFailOnSizeError || kReportSizeError) && !reg.Is64Bit()) { 396 if (kFailOnSizeError) { 397 LOG(FATAL) << "Expected 64b register " << reg.GetReg(); 398 } else { 399 LOG(WARNING) << "Expected 64b register " << reg.GetReg(); 400 return reg; 401 } 402 } 403 RegStorage ret_val = RegStorage(RegStorage::k32BitSolo, 404 reg.GetRawBits() & RegStorage::kRegTypeMask); 405 DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k32SoloStorageMask) 406 ->GetReg().GetReg(), 407 ret_val.GetReg()); 408 return ret_val; 409 } 410 As64BitReg(RegStorage reg)411 RegStorage As64BitReg(RegStorage reg) { 412 DCHECK(!reg.IsPair()); 413 if ((kFailOnSizeError || kReportSizeError) && !reg.Is32Bit()) { 414 if (kFailOnSizeError) { 415 LOG(FATAL) << "Expected 32b register " << reg.GetReg(); 416 } else { 417 LOG(WARNING) << "Expected 32b register " << reg.GetReg(); 418 return reg; 419 } 420 } 421 RegStorage ret_val = RegStorage(RegStorage::k64BitSolo, 422 reg.GetRawBits() & RegStorage::kRegTypeMask); 423 DCHECK_EQ(GetRegInfo(reg)->FindMatchingView(RegisterInfo::k64SoloStorageMask) 424 ->GetReg().GetReg(), 425 ret_val.GetReg()); 426 return ret_val; 427 } 428 429 LIR* LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement, 430 RegStorage r_dest, OpSize size); 431 LIR* StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale, int displacement, 432 RegStorage r_src, OpSize size, int opt_flags = 0); 433 434 int AssignInsnOffsets(); 435 void AssignOffsets(); 436 AssemblerStatus AssembleInstructions(LIR* first_lir_insn, CodeOffset start_addr); 437 438 size_t ComputeSize(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_index, 439 int32_t raw_base, int32_t displacement); 440 void CheckValidByteRegister(const X86EncodingMap* entry, int32_t raw_reg); 441 void EmitPrefix(const X86EncodingMap* entry, 442 int32_t raw_reg_r, int32_t raw_reg_x, int32_t raw_reg_b); 443 void EmitOpcode(const X86EncodingMap* entry); 444 void EmitPrefixAndOpcode(const X86EncodingMap* entry, 445 int32_t reg_r, int32_t reg_x, int32_t reg_b); 446 void EmitDisp(uint8_t base, int32_t disp); 447 void EmitModrmThread(uint8_t reg_or_opcode); 448 void EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int32_t disp); 449 void EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index, int scale, 450 int32_t disp); 451 void EmitImm(const X86EncodingMap* entry, int64_t imm); 452 void EmitNullary(const X86EncodingMap* entry); 453 void EmitOpRegOpcode(const X86EncodingMap* entry, int32_t raw_reg); 454 void EmitOpReg(const X86EncodingMap* entry, int32_t raw_reg); 455 void EmitOpMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp); 456 void EmitOpArray(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale, 457 int32_t disp); 458 void EmitMemReg(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_reg); 459 void EmitRegMem(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, int32_t disp); 460 void EmitRegArray(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base, 461 int32_t raw_index, int scale, int32_t disp); 462 void EmitArrayReg(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale, 463 int32_t disp, int32_t raw_reg); 464 void EmitMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm); 465 void EmitArrayImm(const X86EncodingMap* entry, int32_t raw_base, int32_t raw_index, int scale, 466 int32_t raw_disp, int32_t imm); 467 void EmitRegThread(const X86EncodingMap* entry, int32_t raw_reg, int32_t disp); 468 void EmitRegReg(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2); 469 void EmitRegRegImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t imm); 470 void EmitRegMemImm(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp, 471 int32_t imm); 472 void EmitMemRegImm(const X86EncodingMap* entry, int32_t base, int32_t disp, int32_t raw_reg1, 473 int32_t imm); 474 void EmitRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm); 475 void EmitThreadImm(const X86EncodingMap* entry, int32_t disp, int32_t imm); 476 void EmitMovRegImm(const X86EncodingMap* entry, int32_t raw_reg, int64_t imm); 477 void EmitShiftRegImm(const X86EncodingMap* entry, int32_t raw_reg, int32_t imm); 478 void EmitShiftRegCl(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_cl); 479 void EmitShiftMemCl(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t raw_cl); 480 void EmitShiftRegRegCl(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, 481 int32_t raw_cl); 482 void EmitShiftMemImm(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t imm); 483 void EmitRegCond(const X86EncodingMap* entry, int32_t raw_reg, int32_t cc); 484 void EmitMemCond(const X86EncodingMap* entry, int32_t raw_base, int32_t disp, int32_t cc); 485 void EmitRegRegCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_reg2, int32_t cc); 486 void EmitRegMemCond(const X86EncodingMap* entry, int32_t raw_reg1, int32_t raw_base, int32_t disp, 487 int32_t cc); 488 489 void EmitJmp(const X86EncodingMap* entry, int32_t rel); 490 void EmitJcc(const X86EncodingMap* entry, int32_t rel, int32_t cc); 491 void EmitCallMem(const X86EncodingMap* entry, int32_t raw_base, int32_t disp); 492 void EmitCallImmediate(const X86EncodingMap* entry, int32_t disp); 493 void EmitCallThread(const X86EncodingMap* entry, int32_t disp); 494 void EmitPcRel(const X86EncodingMap* entry, int32_t raw_reg, int32_t raw_base_or_table, 495 int32_t raw_index, int scale, int32_t table_or_disp); 496 void EmitUnimplemented(const X86EncodingMap* entry, LIR* lir); 497 void GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1, 498 int64_t val, ConditionCode ccode); 499 void GenConstWide(RegLocation rl_dest, int64_t value); 500 void GenMultiplyVectorSignedByte(RegStorage rs_dest_src1, RegStorage rs_src2); 501 void GenMultiplyVectorLong(RegStorage rs_dest_src1, RegStorage rs_src2); 502 void GenShiftByteVector(MIR* mir); 503 void AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, 504 uint32_t m4); 505 void MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m1, uint32_t m2, 506 uint32_t m3, uint32_t m4); 507 void AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir); 508 virtual void LoadVectorRegister(RegStorage rs_dest, RegStorage rs_src, OpSize opsize, 509 int op_mov); 510 511 static bool ProvidesFullMemoryBarrier(X86OpCode opcode); 512 513 /* 514 * @brief Ensure that a temporary register is byte addressable. 515 * @returns a temporary guarenteed to be byte addressable. 516 */ 517 virtual RegStorage AllocateByteRegister(); 518 519 /* 520 * @brief Use a wide temporary as a 128-bit register 521 * @returns a 128-bit temporary register. 522 */ 523 virtual RegStorage Get128BitRegister(RegStorage reg); 524 525 /* 526 * @brief Check if a register is byte addressable. 527 * @returns true if a register is byte addressable. 528 */ 529 bool IsByteRegister(RegStorage reg) const; 530 531 void GenDivRemLongLit(RegLocation rl_dest, RegLocation rl_src, int64_t imm, bool is_div); 532 533 bool GenInlinedArrayCopyCharArray(CallInfo* info) OVERRIDE; 534 535 /* 536 * @brief generate inline code for fast case of Strng.indexOf. 537 * @param info Call parameters 538 * @param zero_based 'true' if the index into the string is 0. 539 * @returns 'true' if the call was inlined, 'false' if a regular call needs to be 540 * generated. 541 */ 542 bool GenInlinedIndexOf(CallInfo* info, bool zero_based); 543 544 /** 545 * @brief Used to reserve a range of vector registers. 546 * @see kMirOpReserveVectorRegisters 547 * @param mir The extended MIR for reservation. 548 */ 549 void ReserveVectorRegisters(MIR* mir); 550 551 /** 552 * @brief Used to return a range of vector registers. 553 * @see kMirOpReturnVectorRegisters 554 * @param mir The extended MIR for returning vector regs. 555 */ 556 void ReturnVectorRegisters(MIR* mir); 557 558 /* 559 * @brief Load 128 bit constant into vector register. 560 * @param mir The MIR whose opcode is kMirConstVector 561 * @note vA is the TypeSize for the register. 562 * @note vB is the destination XMM register. arg[0..3] are 32 bit constant values. 563 */ 564 void GenConst128(MIR* mir); 565 566 /* 567 * @brief MIR to move a vectorized register to another. 568 * @param mir The MIR whose opcode is kMirConstVector. 569 * @note vA: TypeSize 570 * @note vB: destination 571 * @note vC: source 572 */ 573 void GenMoveVector(MIR* mir); 574 575 /* 576 * @brief Packed multiply of units in two vector registers: vB = vB .* @note vC using vA to know 577 * the type of the vector. 578 * @param mir The MIR whose opcode is kMirConstVector. 579 * @note vA: TypeSize 580 * @note vB: destination and source 581 * @note vC: source 582 */ 583 void GenMultiplyVector(MIR* mir); 584 585 /* 586 * @brief Packed addition of units in two vector registers: vB = vB .+ vC using vA to know the 587 * type of the vector. 588 * @param mir The MIR whose opcode is kMirConstVector. 589 * @note vA: TypeSize 590 * @note vB: destination and source 591 * @note vC: source 592 */ 593 void GenAddVector(MIR* mir); 594 595 /* 596 * @brief Packed subtraction of units in two vector registers: vB = vB .- vC using vA to know the 597 * type of the vector. 598 * @param mir The MIR whose opcode is kMirConstVector. 599 * @note vA: TypeSize 600 * @note vB: destination and source 601 * @note vC: source 602 */ 603 void GenSubtractVector(MIR* mir); 604 605 /* 606 * @brief Packed shift left of units in two vector registers: vB = vB .<< vC using vA to know the 607 * type of the vector. 608 * @param mir The MIR whose opcode is kMirConstVector. 609 * @note vA: TypeSize 610 * @note vB: destination and source 611 * @note vC: immediate 612 */ 613 void GenShiftLeftVector(MIR* mir); 614 615 /* 616 * @brief Packed signed shift right of units in two vector registers: vB = vB .>> vC using vA to 617 * know the type of the vector. 618 * @param mir The MIR whose opcode is kMirConstVector. 619 * @note vA: TypeSize 620 * @note vB: destination and source 621 * @note vC: immediate 622 */ 623 void GenSignedShiftRightVector(MIR* mir); 624 625 /* 626 * @brief Packed unsigned shift right of units in two vector registers: vB = vB .>>> vC using vA 627 * to know the type of the vector. 628 * @param mir The MIR whose opcode is kMirConstVector. 629 * @note vA: TypeSize 630 * @note vB: destination and source 631 * @note vC: immediate 632 */ 633 void GenUnsignedShiftRightVector(MIR* mir); 634 635 /* 636 * @brief Packed bitwise and of units in two vector registers: vB = vB .& vC using vA to know the 637 * type of the vector. 638 * @note vA: TypeSize 639 * @note vB: destination and source 640 * @note vC: source 641 */ 642 void GenAndVector(MIR* mir); 643 644 /* 645 * @brief Packed bitwise or of units in two vector registers: vB = vB .| vC using vA to know the 646 * type of the vector. 647 * @param mir The MIR whose opcode is kMirConstVector. 648 * @note vA: TypeSize 649 * @note vB: destination and source 650 * @note vC: source 651 */ 652 void GenOrVector(MIR* mir); 653 654 /* 655 * @brief Packed bitwise xor of units in two vector registers: vB = vB .^ vC using vA to know the 656 * type of the vector. 657 * @param mir The MIR whose opcode is kMirConstVector. 658 * @note vA: TypeSize 659 * @note vB: destination and source 660 * @note vC: source 661 */ 662 void GenXorVector(MIR* mir); 663 664 /* 665 * @brief Reduce a 128-bit packed element into a single VR by taking lower bits 666 * @param mir The MIR whose opcode is kMirConstVector. 667 * @details Instruction does a horizontal addition of the packed elements and then adds it to VR. 668 * @note vA: TypeSize 669 * @note vB: destination and source VR (not vector register) 670 * @note vC: source (vector register) 671 */ 672 void GenAddReduceVector(MIR* mir); 673 674 /* 675 * @brief Extract a packed element into a single VR. 676 * @param mir The MIR whose opcode is kMirConstVector. 677 * @note vA: TypeSize 678 * @note vB: destination VR (not vector register) 679 * @note vC: source (vector register) 680 * @note arg[0]: The index to use for extraction from vector register (which packed element). 681 */ 682 void GenReduceVector(MIR* mir); 683 684 /* 685 * @brief Create a vector value, with all TypeSize values equal to vC 686 * @param bb The basic block in which the MIR is from. 687 * @param mir The MIR whose opcode is kMirConstVector. 688 * @note vA: TypeSize. 689 * @note vB: destination vector register. 690 * @note vC: source VR (not vector register). 691 */ 692 void GenSetVector(MIR* mir); 693 694 /** 695 * @brief Used to generate code for kMirOpPackedArrayGet. 696 * @param bb The basic block of MIR. 697 * @param mir The mir whose opcode is kMirOpPackedArrayGet. 698 */ 699 void GenPackedArrayGet(BasicBlock* bb, MIR* mir); 700 701 /** 702 * @brief Used to generate code for kMirOpPackedArrayPut. 703 * @param bb The basic block of MIR. 704 * @param mir The mir whose opcode is kMirOpPackedArrayPut. 705 */ 706 void GenPackedArrayPut(BasicBlock* bb, MIR* mir); 707 708 /* 709 * @brief Generate code for a vector opcode. 710 * @param bb The basic block in which the MIR is from. 711 * @param mir The MIR whose opcode is a non-standard opcode. 712 */ 713 void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir); 714 715 /* 716 * @brief Return the correct x86 opcode for the Dex operation 717 * @param op Dex opcode for the operation 718 * @param loc Register location of the operand 719 * @param is_high_op 'true' if this is an operation on the high word 720 * @param value Immediate value for the operation. Used for byte variants 721 * @returns the correct x86 opcode to perform the operation 722 */ 723 X86OpCode GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op, int32_t value); 724 725 /* 726 * @brief Return the correct x86 opcode for the Dex operation 727 * @param op Dex opcode for the operation 728 * @param dest location of the destination. May be register or memory. 729 * @param rhs Location for the rhs of the operation. May be in register or memory. 730 * @param is_high_op 'true' if this is an operation on the high word 731 * @returns the correct x86 opcode to perform the operation 732 * @note at most one location may refer to memory 733 */ 734 X86OpCode GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs, 735 bool is_high_op); 736 737 /* 738 * @brief Is this operation a no-op for this opcode and value 739 * @param op Dex opcode for the operation 740 * @param value Immediate value for the operation. 741 * @returns 'true' if the operation will have no effect 742 */ 743 bool IsNoOp(Instruction::Code op, int32_t value); 744 745 /** 746 * @brief Calculate magic number and shift for a given divisor 747 * @param divisor divisor number for calculation 748 * @param magic hold calculated magic number 749 * @param shift hold calculated shift 750 * @param is_long 'true' if divisor is jlong, 'false' for jint. 751 */ 752 void CalculateMagicAndShift(int64_t divisor, int64_t& magic, int& shift, bool is_long); 753 754 /* 755 * @brief Generate an integer div or rem operation. 756 * @param rl_dest Destination Location. 757 * @param rl_src1 Numerator Location. 758 * @param rl_src2 Divisor Location. 759 * @param is_div 'true' if this is a division, 'false' for a remainder. 760 * @param flags The instruction optimization flags. It can include information 761 * if exception check can be elided. 762 */ 763 RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, 764 bool is_div, int flags); 765 766 /* 767 * @brief Generate an integer div or rem operation by a literal. 768 * @param rl_dest Destination Location. 769 * @param rl_src Numerator Location. 770 * @param lit Divisor. 771 * @param is_div 'true' if this is a division, 'false' for a remainder. 772 */ 773 RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src, int lit, bool is_div); 774 775 /* 776 * Generate code to implement long shift operations. 777 * @param opcode The DEX opcode to specify the shift type. 778 * @param rl_dest The destination. 779 * @param rl_src The value to be shifted. 780 * @param shift_amount How much to shift. 781 * @param flags The instruction optimization flags. 782 * @returns the RegLocation of the result. 783 */ 784 RegLocation GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest, 785 RegLocation rl_src, int shift_amount, int flags); 786 /* 787 * Generate an imul of a register by a constant or a better sequence. 788 * @param dest Destination Register. 789 * @param src Source Register. 790 * @param val Constant multiplier. 791 */ 792 void GenImulRegImm(RegStorage dest, RegStorage src, int val); 793 794 /* 795 * Generate an imul of a memory location by a constant or a better sequence. 796 * @param dest Destination Register. 797 * @param sreg Symbolic register. 798 * @param displacement Displacement on stack of Symbolic Register. 799 * @param val Constant multiplier. 800 */ 801 void GenImulMemImm(RegStorage dest, int sreg, int displacement, int val); 802 803 /* 804 * @brief Compare memory to immediate, and branch if condition true. 805 * @param cond The condition code that when true will branch to the target. 806 * @param temp_reg A temporary register that can be used if compare memory is not 807 * supported by the architecture. 808 * @param base_reg The register holding the base address. 809 * @param offset The offset from the base. 810 * @param check_value The immediate to compare to. 811 * @param target branch target (or nullptr) 812 * @param compare output for getting LIR for comparison (or nullptr) 813 */ 814 LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg, 815 int offset, int check_value, LIR* target, LIR** compare); 816 817 void GenRemFP(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, bool is_double); 818 819 /* 820 * Can this operation be using core registers without temporaries? 821 * @param rl_lhs Left hand operand. 822 * @param rl_rhs Right hand operand. 823 * @returns 'true' if the operation can proceed without needing temporary regs. 824 */ 825 bool IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs); 826 827 /** 828 * @brief Generates inline code for conversion of long to FP by using x87/ 829 * @param rl_dest The destination of the FP. 830 * @param rl_src The source of the long. 831 * @param is_double 'true' if dealing with double, 'false' for float. 832 */ 833 virtual void GenLongToFP(RegLocation rl_dest, RegLocation rl_src, bool is_double); 834 835 void GenArrayBoundsCheck(RegStorage index, RegStorage array_base, int32_t len_offset); 836 void GenArrayBoundsCheck(int32_t index, RegStorage array_base, int32_t len_offset); 837 838 LIR* OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset); 839 LIR* OpRegMem(OpKind op, RegStorage r_dest, RegLocation value); 840 LIR* OpMemReg(OpKind op, RegLocation rl_dest, int value); 841 LIR* OpThreadMem(OpKind op, ThreadOffset<4> thread_offset); 842 LIR* OpThreadMem(OpKind op, ThreadOffset<8> thread_offset); 843 void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<4> thread_offset); 844 void OpRegThreadMem(OpKind op, RegStorage r_dest, ThreadOffset<8> thread_offset); 845 void OpTlsCmp(ThreadOffset<4> offset, int val); 846 void OpTlsCmp(ThreadOffset<8> offset, int val); 847 848 void OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset); 849 850 // Try to do a long multiplication where rl_src2 is a constant. This simplified setup might fail, 851 // in which case false will be returned. 852 bool GenMulLongConst(RegLocation rl_dest, RegLocation rl_src1, int64_t val, int flags); 853 void GenMulLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, 854 RegLocation rl_src2, int flags); 855 void GenNotLong(RegLocation rl_dest, RegLocation rl_src); 856 void GenNegLong(RegLocation rl_dest, RegLocation rl_src); 857 void GenDivRemLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1, 858 RegLocation rl_src2, bool is_div, int flags); 859 860 void SpillCoreRegs(); 861 void UnSpillCoreRegs(); 862 void UnSpillFPRegs(); 863 void SpillFPRegs(); 864 865 /* 866 * Mir2Lir's UpdateLoc() looks to see if the Dalvik value is currently live in any temp register 867 * without regard to data type. In practice, this can result in UpdateLoc returning a 868 * location record for a Dalvik float value in a core register, and vis-versa. For targets 869 * which can inexpensively move data between core and float registers, this can often be a win. 870 * However, for x86 this is generally not a win. These variants of UpdateLoc() 871 * take a register class argument - and will return an in-register location record only if 872 * the value is live in a temp register of the correct class. Additionally, if the value is in 873 * a temp register of the wrong register class, it will be clobbered. 874 */ 875 RegLocation UpdateLocTyped(RegLocation loc); 876 RegLocation UpdateLocWideTyped(RegLocation loc); 877 878 /* 879 * @brief Analyze one MIR float/double instruction 880 * @param opcode MIR instruction opcode. 881 * @param mir Instruction to analyze. 882 * @return true iff the instruction needs to load a literal using PC-relative addressing. 883 */ 884 bool AnalyzeFPInstruction(int opcode, MIR* mir); 885 886 /* 887 * @brief Analyze one use of a double operand. 888 * @param rl_use Double RegLocation for the operand. 889 * @return true iff the instruction needs to load a literal using PC-relative addressing. 890 */ 891 bool AnalyzeDoubleUse(RegLocation rl_use); 892 893 /* 894 * @brief Analyze one invoke-static MIR instruction 895 * @param mir Instruction to analyze. 896 * @return true iff the instruction needs to load a literal using PC-relative addressing. 897 */ 898 bool AnalyzeInvokeStaticIntrinsic(MIR* mir); 899 900 // Information derived from analysis of MIR 901 902 // The base register for PC-relative addressing if promoted (32-bit only). 903 RegStorage pc_rel_base_reg_; 904 905 // Have we actually used the pc_rel_base_reg_? 906 bool pc_rel_base_reg_used_; 907 908 // Pointer to the "call +0" insn that sets up the promoted register for PC-relative addressing. 909 // The anchor "pop" insn is NEXT_LIR(setup_pc_rel_base_reg_). The whole "call +0; pop <reg>" 910 // sequence will be removed in AssembleLIR() if we do not actually use PC-relative addressing. 911 LIR* setup_pc_rel_base_reg_; // There are 2 chained insns (no reordering allowed). 912 913 // Instructions needing patching with Method* values. 914 ArenaVector<LIR*> method_address_insns_; 915 916 // Instructions needing patching with Class Type* values. 917 ArenaVector<LIR*> class_type_address_insns_; 918 919 // Instructions needing patching with PC relative code addresses. 920 ArenaVector<LIR*> call_method_insns_; 921 922 // Instructions needing patching with PC relative code addresses. 923 ArenaVector<LIR*> dex_cache_access_insns_; 924 925 // The list of const vector literals. 926 LIR* const_vectors_; 927 928 /* 929 * @brief Search for a matching vector literal 930 * @param constants An array of size 4 which contains all of 32-bit constants. 931 * @returns pointer to matching LIR constant, or nullptr if not found. 932 */ 933 LIR* ScanVectorLiteral(int32_t* constants); 934 935 /* 936 * @brief Add a constant vector literal 937 * @param constants An array of size 4 which contains all of 32-bit constants. 938 */ 939 LIR* AddVectorLiteral(int32_t* constants); 940 WideGPRsAreAliases()941 bool WideGPRsAreAliases() const OVERRIDE { 942 return cu_->target64; // On 64b, we have 64b GPRs. 943 } 944 WideFPRsAreAliases()945 bool WideFPRsAreAliases() const OVERRIDE { 946 return true; // xmm registers have 64b views even on x86. 947 } 948 949 /* 950 * @brief Dump a RegLocation using printf 951 * @param loc Register location to dump 952 */ 953 static void DumpRegLocation(RegLocation loc); 954 955 private: 956 void SwapBits(RegStorage result_reg, int shift, int32_t value); 957 void SwapBits64(RegStorage result_reg, int shift, int64_t value); 958 959 static int X86NextSDCallInsn(CompilationUnit* cu, CallInfo* info, 960 int state, const MethodReference& target_method, 961 uint32_t, 962 uintptr_t direct_code, uintptr_t direct_method, 963 InvokeType type); 964 965 LIR* OpLoadPc(RegStorage r_dest); 966 RegStorage GetPcAndAnchor(LIR** anchor, RegStorage r_tmp = RegStorage::InvalidReg()); 967 968 // When we don't know the proper offset for the value, pick one that will force 969 // 4 byte offset. We will fix this up in the assembler or linker later to have 970 // the right value. 971 static constexpr int kDummy32BitOffset = 256; 972 973 static const X86EncodingMap EncodingMap[kX86Last]; 974 975 friend std::ostream& operator<<(std::ostream& os, const X86OpCode& rhs); 976 friend class QuickAssembleX86Test; 977 friend class QuickAssembleX86MacroTest; 978 friend class QuickAssembleX86LowLevelTest; 979 980 DISALLOW_COPY_AND_ASSIGN(X86Mir2Lir); 981 }; 982 983 } // namespace art 984 985 #endif // ART_COMPILER_DEX_QUICK_X86_CODEGEN_X86_H_ 986