1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "codegen_x86.h"
18 
19 #include <cstdarg>
20 #include <inttypes.h>
21 #include <string>
22 
23 #include "arch/instruction_set_features.h"
24 #include "art_method.h"
25 #include "backend_x86.h"
26 #include "base/logging.h"
27 #include "dex/compiler_ir.h"
28 #include "dex/quick/mir_to_lir-inl.h"
29 #include "dex/reg_storage_eq.h"
30 #include "driver/compiler_driver.h"
31 #include "mirror/array-inl.h"
32 #include "mirror/string.h"
33 #include "oat.h"
34 #include "x86_lir.h"
35 
36 namespace art {
37 
38 static constexpr RegStorage core_regs_arr_32[] = {
39     rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
40 };
41 static constexpr RegStorage core_regs_arr_64[] = {
42     rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
43     rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
44 };
45 static constexpr RegStorage core_regs_arr_64q[] = {
46     rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
47     rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
48 };
49 static constexpr RegStorage sp_regs_arr_32[] = {
50     rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
51 };
52 static constexpr RegStorage sp_regs_arr_64[] = {
53     rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
54     rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
55 };
56 static constexpr RegStorage dp_regs_arr_32[] = {
57     rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
58 };
59 static constexpr RegStorage dp_regs_arr_64[] = {
60     rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
61     rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
62 };
63 static constexpr RegStorage xp_regs_arr_32[] = {
64     rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
65 };
66 static constexpr RegStorage xp_regs_arr_64[] = {
67     rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
68     rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
69 };
70 static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
71 static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
72 static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
73 static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
74 static constexpr RegStorage core_temps_arr_64[] = {
75     rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
76     rs_r8, rs_r9, rs_r10, rs_r11
77 };
78 
79 // How to add register to be available for promotion:
80 // 1) Remove register from array defining temp
81 // 2) Update ClobberCallerSave
82 // 3) Update JNI compiler ABI:
83 // 3.1) add reg in JniCallingConvention method
84 // 3.2) update CoreSpillMask/FpSpillMask
85 // 4) Update entrypoints
86 // 4.1) Update constants in asm_support_x86_64.h for new frame size
87 // 4.2) Remove entry in SmashCallerSaves
88 // 4.3) Update jni_entrypoints to spill/unspill new callee save reg
89 // 4.4) Update quick_entrypoints to spill/unspill new callee save reg
90 // 5) Update runtime ABI
91 // 5.1) Update quick_method_frame_info with new required spills
92 // 5.2) Update QuickArgumentVisitor with new offsets to gprs and xmms
93 // Note that you cannot use register corresponding to incoming args
94 // according to ABI and QCG needs one additional XMM temp for
95 // bulk copy in preparation to call.
96 static constexpr RegStorage core_temps_arr_64q[] = {
97     rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
98     rs_r8q, rs_r9q, rs_r10q, rs_r11q
99 };
100 static constexpr RegStorage sp_temps_arr_32[] = {
101     rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
102 };
103 static constexpr RegStorage sp_temps_arr_64[] = {
104     rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
105     rs_fr8, rs_fr9, rs_fr10, rs_fr11
106 };
107 static constexpr RegStorage dp_temps_arr_32[] = {
108     rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
109 };
110 static constexpr RegStorage dp_temps_arr_64[] = {
111     rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
112     rs_dr8, rs_dr9, rs_dr10, rs_dr11
113 };
114 
115 static constexpr RegStorage xp_temps_arr_32[] = {
116     rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
117 };
118 static constexpr RegStorage xp_temps_arr_64[] = {
119     rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
120     rs_xr8, rs_xr9, rs_xr10, rs_xr11
121 };
122 
123 static constexpr ArrayRef<const RegStorage> empty_pool;
124 static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
125 static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
126 static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
127 static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
128 static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
129 static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
130 static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
131 static constexpr ArrayRef<const RegStorage> xp_regs_32(xp_regs_arr_32);
132 static constexpr ArrayRef<const RegStorage> xp_regs_64(xp_regs_arr_64);
133 static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
134 static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
135 static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
136 static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
137 static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
138 static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
139 static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
140 static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
141 static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
142 static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
143 
144 static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
145 static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
146 
LocCReturn()147 RegLocation X86Mir2Lir::LocCReturn() {
148   return x86_loc_c_return;
149 }
150 
LocCReturnRef()151 RegLocation X86Mir2Lir::LocCReturnRef() {
152   return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref;
153 }
154 
LocCReturnWide()155 RegLocation X86Mir2Lir::LocCReturnWide() {
156   return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
157 }
158 
LocCReturnFloat()159 RegLocation X86Mir2Lir::LocCReturnFloat() {
160   return x86_loc_c_return_float;
161 }
162 
LocCReturnDouble()163 RegLocation X86Mir2Lir::LocCReturnDouble() {
164   return x86_loc_c_return_double;
165 }
166 
167 // 32-bit reg storage locations for 32-bit targets.
168 static const RegStorage RegStorage32FromSpecialTargetRegister_Target32[] {
169   RegStorage::InvalidReg(),  // kSelf - Thread pointer.
170   RegStorage::InvalidReg(),  // kSuspend - Used to reduce suspend checks for some targets.
171   RegStorage::InvalidReg(),  // kLr - no register as the return address is pushed on entry.
172   RegStorage::InvalidReg(),  // kPc - not exposed on X86 see kX86StartOfMethod.
173   rs_rX86_SP_32,             // kSp
174   rs_rAX,                    // kArg0
175   rs_rCX,                    // kArg1
176   rs_rDX,                    // kArg2
177   rs_rBX,                    // kArg3
178   RegStorage::InvalidReg(),  // kArg4
179   RegStorage::InvalidReg(),  // kArg5
180   RegStorage::InvalidReg(),  // kArg6
181   RegStorage::InvalidReg(),  // kArg7
182   rs_fr0,                    // kFArg0
183   rs_fr1,                    // kFArg1
184   rs_fr2,                    // kFArg2
185   rs_fr3,                    // kFArg3
186   RegStorage::InvalidReg(),  // kFArg4
187   RegStorage::InvalidReg(),  // kFArg5
188   RegStorage::InvalidReg(),  // kFArg6
189   RegStorage::InvalidReg(),  // kFArg7
190   RegStorage::InvalidReg(),  // kFArg8
191   RegStorage::InvalidReg(),  // kFArg9
192   RegStorage::InvalidReg(),  // kFArg10
193   RegStorage::InvalidReg(),  // kFArg11
194   RegStorage::InvalidReg(),  // kFArg12
195   RegStorage::InvalidReg(),  // kFArg13
196   RegStorage::InvalidReg(),  // kFArg14
197   RegStorage::InvalidReg(),  // kFArg15
198   rs_rAX,                    // kRet0
199   rs_rDX,                    // kRet1
200   rs_rAX,                    // kInvokeTgt
201   rs_rAX,                    // kHiddenArg - used to hold the method index before copying to fr0.
202   rs_fr7,                    // kHiddenFpArg
203   rs_rCX,                    // kCount
204 };
205 
206 // 32-bit reg storage locations for 64-bit targets.
207 static const RegStorage RegStorage32FromSpecialTargetRegister_Target64[] {
208   RegStorage::InvalidReg(),  // kSelf - Thread pointer.
209   RegStorage::InvalidReg(),  // kSuspend - Used to reduce suspend checks for some targets.
210   RegStorage::InvalidReg(),  // kLr - no register as the return address is pushed on entry.
211   RegStorage(kRIPReg),       // kPc
212   rs_rX86_SP_32,             // kSp
213   rs_rDI,                    // kArg0
214   rs_rSI,                    // kArg1
215   rs_rDX,                    // kArg2
216   rs_rCX,                    // kArg3
217   rs_r8,                     // kArg4
218   rs_r9,                     // kArg5
219   RegStorage::InvalidReg(),  // kArg6
220   RegStorage::InvalidReg(),  // kArg7
221   rs_fr0,                    // kFArg0
222   rs_fr1,                    // kFArg1
223   rs_fr2,                    // kFArg2
224   rs_fr3,                    // kFArg3
225   rs_fr4,                    // kFArg4
226   rs_fr5,                    // kFArg5
227   rs_fr6,                    // kFArg6
228   rs_fr7,                    // kFArg7
229   RegStorage::InvalidReg(),  // kFArg8
230   RegStorage::InvalidReg(),  // kFArg9
231   RegStorage::InvalidReg(),  // kFArg10
232   RegStorage::InvalidReg(),  // kFArg11
233   RegStorage::InvalidReg(),  // kFArg12
234   RegStorage::InvalidReg(),  // kFArg13
235   RegStorage::InvalidReg(),  // kFArg14
236   RegStorage::InvalidReg(),  // kFArg15
237   rs_rAX,                    // kRet0
238   rs_rDX,                    // kRet1
239   rs_rAX,                    // kInvokeTgt
240   rs_rAX,                    // kHiddenArg
241   RegStorage::InvalidReg(),  // kHiddenFpArg
242   rs_rCX,                    // kCount
243 };
244 static_assert(arraysize(RegStorage32FromSpecialTargetRegister_Target32) ==
245               arraysize(RegStorage32FromSpecialTargetRegister_Target64),
246               "Mismatch in RegStorage array sizes");
247 
248 // Return a target-dependent special register for 32-bit.
TargetReg32(SpecialTargetRegister reg) const249 RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) const {
250   DCHECK_EQ(RegStorage32FromSpecialTargetRegister_Target32[kCount], rs_rCX);
251   DCHECK_EQ(RegStorage32FromSpecialTargetRegister_Target64[kCount], rs_rCX);
252   DCHECK_LT(reg, arraysize(RegStorage32FromSpecialTargetRegister_Target32));
253   return cu_->target64 ? RegStorage32FromSpecialTargetRegister_Target64[reg]
254                        : RegStorage32FromSpecialTargetRegister_Target32[reg];
255 }
256 
TargetReg(SpecialTargetRegister reg)257 RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
258   UNUSED(reg);
259   LOG(FATAL) << "Do not use this function!!!";
260   UNREACHABLE();
261 }
262 
263 /*
264  * Decode the register id.
265  */
GetRegMaskCommon(const RegStorage & reg) const266 ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
267   /* Double registers in x86 are just a single FP register. This is always just a single bit. */
268   return ResourceMask::Bit(
269       /* FP register starts at bit position 16 */
270       ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
271 }
272 
GetPCUseDefEncoding() const273 ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
274   return kEncodeNone;
275 }
276 
SetupTargetResourceMasks(LIR * lir,uint64_t flags,ResourceMask * use_mask,ResourceMask * def_mask)277 void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
278                                           ResourceMask* use_mask, ResourceMask* def_mask) {
279   DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
280   DCHECK(!lir->flags.use_def_invalid);
281 
282   // X86-specific resource map setup here.
283   if (flags & REG_USE_SP) {
284     use_mask->SetBit(kX86RegSP);
285   }
286 
287   if (flags & REG_DEF_SP) {
288     def_mask->SetBit(kX86RegSP);
289   }
290 
291   if (flags & REG_DEFA) {
292     SetupRegMask(def_mask, rs_rAX.GetReg());
293   }
294 
295   if (flags & REG_DEFD) {
296     SetupRegMask(def_mask, rs_rDX.GetReg());
297   }
298   if (flags & REG_USEA) {
299     SetupRegMask(use_mask, rs_rAX.GetReg());
300   }
301 
302   if (flags & REG_USEC) {
303     SetupRegMask(use_mask, rs_rCX.GetReg());
304   }
305 
306   if (flags & REG_USED) {
307     SetupRegMask(use_mask, rs_rDX.GetReg());
308   }
309 
310   if (flags & REG_USEB) {
311     SetupRegMask(use_mask, rs_rBX.GetReg());
312   }
313 
314   // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
315   if (lir->opcode == kX86RepneScasw) {
316     SetupRegMask(use_mask, rs_rAX.GetReg());
317     SetupRegMask(use_mask, rs_rCX.GetReg());
318     SetupRegMask(use_mask, rs_rDI.GetReg());
319     SetupRegMask(def_mask, rs_rDI.GetReg());
320   }
321 
322   if (flags & USE_FP_STACK) {
323     use_mask->SetBit(kX86FPStack);
324     def_mask->SetBit(kX86FPStack);
325   }
326 }
327 
328 /* For dumping instructions */
329 static const char* x86RegName[] = {
330   "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
331   "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
332 };
333 
334 static const char* x86CondName[] = {
335   "O",
336   "NO",
337   "B/NAE/C",
338   "NB/AE/NC",
339   "Z/EQ",
340   "NZ/NE",
341   "BE/NA",
342   "NBE/A",
343   "S",
344   "NS",
345   "P/PE",
346   "NP/PO",
347   "L/NGE",
348   "NL/GE",
349   "LE/NG",
350   "NLE/G"
351 };
352 
353 /*
354  * Interpret a format string and build a string no longer than size
355  * See format key in Assemble.cc.
356  */
BuildInsnString(const char * fmt,LIR * lir,unsigned char * base_addr)357 std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
358   std::string buf;
359   size_t i = 0;
360   size_t fmt_len = strlen(fmt);
361   while (i < fmt_len) {
362     if (fmt[i] != '!') {
363       buf += fmt[i];
364       i++;
365     } else {
366       i++;
367       DCHECK_LT(i, fmt_len);
368       char operand_number_ch = fmt[i];
369       i++;
370       if (operand_number_ch == '!') {
371         buf += "!";
372       } else {
373         int operand_number = operand_number_ch - '0';
374         DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
375         DCHECK_LT(i, fmt_len);
376         int operand = lir->operands[operand_number];
377         switch (fmt[i]) {
378           case 'c':
379             DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
380             buf += x86CondName[operand];
381             break;
382           case 'd':
383             buf += StringPrintf("%d", operand);
384             break;
385           case 'q': {
386              int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 |
387                              static_cast<uint32_t>(lir->operands[operand_number+1]));
388              buf +=StringPrintf("%" PRId64, value);
389              break;
390           }
391           case 'p': {
392             const EmbeddedData* tab_rec = UnwrapPointer<EmbeddedData>(operand);
393             buf += StringPrintf("0x%08x", tab_rec->offset);
394             break;
395           }
396           case 'r':
397             if (RegStorage::IsFloat(operand)) {
398               int fp_reg = RegStorage::RegNum(operand);
399               buf += StringPrintf("xmm%d", fp_reg);
400             } else {
401               int reg_num = RegStorage::RegNum(operand);
402               DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
403               buf += x86RegName[reg_num];
404             }
405             break;
406           case 't':
407             buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
408                                 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
409                                 lir->target);
410             break;
411           default:
412             buf += StringPrintf("DecodeError '%c'", fmt[i]);
413             break;
414         }
415         i++;
416       }
417     }
418   }
419   return buf;
420 }
421 
DumpResourceMask(LIR * x86LIR,const ResourceMask & mask,const char * prefix)422 void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
423   char buf[256];
424   buf[0] = 0;
425 
426   if (mask.Equals(kEncodeAll)) {
427     strcpy(buf, "all");
428   } else {
429     char num[8];
430     int i;
431 
432     for (i = 0; i < kX86RegEnd; i++) {
433       if (mask.HasBit(i)) {
434         snprintf(num, arraysize(num), "%d ", i);
435         strcat(buf, num);
436       }
437     }
438 
439     if (mask.HasBit(ResourceMask::kCCode)) {
440       strcat(buf, "cc ");
441     }
442     /* Memory bits */
443     if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
444       snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
445                DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
446                (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
447     }
448     if (mask.HasBit(ResourceMask::kLiteral)) {
449       strcat(buf, "lit ");
450     }
451 
452     if (mask.HasBit(ResourceMask::kHeapRef)) {
453       strcat(buf, "heap ");
454     }
455     if (mask.HasBit(ResourceMask::kMustNotAlias)) {
456       strcat(buf, "noalias ");
457     }
458   }
459   if (buf[0]) {
460     LOG(INFO) << prefix << ": " <<  buf;
461   }
462 }
463 
AdjustSpillMask()464 void X86Mir2Lir::AdjustSpillMask() {
465   // Adjustment for LR spilling, x86 has no LR so nothing to do here
466   core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
467   num_core_spills_++;
468 }
469 
AllocateByteRegister()470 RegStorage X86Mir2Lir::AllocateByteRegister() {
471   RegStorage reg = AllocTypedTemp(false, kCoreReg);
472   if (!cu_->target64) {
473     DCHECK_LT(reg.GetRegNum(), rs_rX86_SP_32.GetRegNum());
474   }
475   return reg;
476 }
477 
Get128BitRegister(RegStorage reg)478 RegStorage X86Mir2Lir::Get128BitRegister(RegStorage reg) {
479   return GetRegInfo(reg)->Master()->GetReg();
480 }
481 
IsByteRegister(RegStorage reg) const482 bool X86Mir2Lir::IsByteRegister(RegStorage reg) const {
483   return cu_->target64 || reg.GetRegNum() < rs_rX86_SP_32.GetRegNum();
484 }
485 
486 /* Clobber all regs that might be used by an external C call */
ClobberCallerSave()487 void X86Mir2Lir::ClobberCallerSave() {
488   if (cu_->target64) {
489     Clobber(rs_rAX);
490     Clobber(rs_rCX);
491     Clobber(rs_rDX);
492     Clobber(rs_rSI);
493     Clobber(rs_rDI);
494 
495     Clobber(rs_r8);
496     Clobber(rs_r9);
497     Clobber(rs_r10);
498     Clobber(rs_r11);
499 
500     Clobber(rs_fr8);
501     Clobber(rs_fr9);
502     Clobber(rs_fr10);
503     Clobber(rs_fr11);
504   } else {
505     Clobber(rs_rAX);
506     Clobber(rs_rCX);
507     Clobber(rs_rDX);
508     Clobber(rs_rBX);
509   }
510 
511   Clobber(rs_fr0);
512   Clobber(rs_fr1);
513   Clobber(rs_fr2);
514   Clobber(rs_fr3);
515   Clobber(rs_fr4);
516   Clobber(rs_fr5);
517   Clobber(rs_fr6);
518   Clobber(rs_fr7);
519 }
520 
GetReturnWideAlt()521 RegLocation X86Mir2Lir::GetReturnWideAlt() {
522   RegLocation res = LocCReturnWide();
523   DCHECK_EQ(res.reg.GetLowReg(), rs_rAX.GetReg());
524   DCHECK_EQ(res.reg.GetHighReg(), rs_rDX.GetReg());
525   Clobber(rs_rAX);
526   Clobber(rs_rDX);
527   MarkInUse(rs_rAX);
528   MarkInUse(rs_rDX);
529   MarkWide(res.reg);
530   return res;
531 }
532 
GetReturnAlt()533 RegLocation X86Mir2Lir::GetReturnAlt() {
534   RegLocation res = LocCReturn();
535   res.reg.SetReg(rs_rDX.GetReg());
536   Clobber(rs_rDX);
537   MarkInUse(rs_rDX);
538   return res;
539 }
540 
541 /* To be used when explicitly managing register use */
LockCallTemps()542 void X86Mir2Lir::LockCallTemps() {
543   LockTemp(TargetReg32(kArg0));
544   LockTemp(TargetReg32(kArg1));
545   LockTemp(TargetReg32(kArg2));
546   LockTemp(TargetReg32(kArg3));
547   LockTemp(TargetReg32(kFArg0));
548   LockTemp(TargetReg32(kFArg1));
549   LockTemp(TargetReg32(kFArg2));
550   LockTemp(TargetReg32(kFArg3));
551   if (cu_->target64) {
552     LockTemp(TargetReg32(kArg4));
553     LockTemp(TargetReg32(kArg5));
554     LockTemp(TargetReg32(kFArg4));
555     LockTemp(TargetReg32(kFArg5));
556     LockTemp(TargetReg32(kFArg6));
557     LockTemp(TargetReg32(kFArg7));
558   }
559 }
560 
561 /* To be used when explicitly managing register use */
FreeCallTemps()562 void X86Mir2Lir::FreeCallTemps() {
563   FreeTemp(TargetReg32(kArg0));
564   FreeTemp(TargetReg32(kArg1));
565   FreeTemp(TargetReg32(kArg2));
566   FreeTemp(TargetReg32(kArg3));
567   FreeTemp(TargetReg32(kHiddenArg));
568   FreeTemp(TargetReg32(kFArg0));
569   FreeTemp(TargetReg32(kFArg1));
570   FreeTemp(TargetReg32(kFArg2));
571   FreeTemp(TargetReg32(kFArg3));
572   if (cu_->target64) {
573     FreeTemp(TargetReg32(kArg4));
574     FreeTemp(TargetReg32(kArg5));
575     FreeTemp(TargetReg32(kFArg4));
576     FreeTemp(TargetReg32(kFArg5));
577     FreeTemp(TargetReg32(kFArg6));
578     FreeTemp(TargetReg32(kFArg7));
579   }
580 }
581 
ProvidesFullMemoryBarrier(X86OpCode opcode)582 bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
583     switch (opcode) {
584       case kX86LockCmpxchgMR:
585       case kX86LockCmpxchgAR:
586       case kX86LockCmpxchg64M:
587       case kX86LockCmpxchg64A:
588       case kX86XchgMR:
589       case kX86Mfence:
590         // Atomic memory instructions provide full barrier.
591         return true;
592       default:
593         break;
594     }
595 
596     // Conservative if cannot prove it provides full barrier.
597     return false;
598 }
599 
GenMemBarrier(MemBarrierKind barrier_kind)600 bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
601   if (!cu_->compiler_driver->GetInstructionSetFeatures()->IsSmp()) {
602     return false;
603   }
604   // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
605   LIR* mem_barrier = last_lir_insn_;
606 
607   bool ret = false;
608   /*
609    * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
610    * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
611    * For those cases, all we need to ensure is that there is a scheduling barrier in place.
612    */
613   if (barrier_kind == kAnyAny) {
614     // If no LIR exists already that can be used a barrier, then generate an mfence.
615     if (mem_barrier == nullptr) {
616       mem_barrier = NewLIR0(kX86Mfence);
617       ret = true;
618     }
619 
620     // If last instruction does not provide full barrier, then insert an mfence.
621     if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
622       mem_barrier = NewLIR0(kX86Mfence);
623       ret = true;
624     }
625   } else if (barrier_kind == kNTStoreStore) {
626       mem_barrier = NewLIR0(kX86Sfence);
627       ret = true;
628   }
629 
630   // Now ensure that a scheduling barrier is in place.
631   if (mem_barrier == nullptr) {
632     GenBarrier();
633   } else {
634     // Mark as a scheduling barrier.
635     DCHECK(!mem_barrier->flags.use_def_invalid);
636     mem_barrier->u.m.def_mask = &kEncodeAll;
637   }
638   return ret;
639 }
640 
CompilerInitializeRegAlloc()641 void X86Mir2Lir::CompilerInitializeRegAlloc() {
642   if (cu_->target64) {
643     reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
644                                               dp_regs_64, reserved_regs_64, reserved_regs_64q,
645                                               core_temps_64, core_temps_64q,
646                                               sp_temps_64, dp_temps_64));
647   } else {
648     reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
649                                               dp_regs_32, reserved_regs_32, empty_pool,
650                                               core_temps_32, empty_pool,
651                                               sp_temps_32, dp_temps_32));
652   }
653 
654   // Target-specific adjustments.
655 
656   // Add in XMM registers.
657   const ArrayRef<const RegStorage> *xp_regs = cu_->target64 ? &xp_regs_64 : &xp_regs_32;
658   for (RegStorage reg : *xp_regs) {
659     RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
660     reginfo_map_[reg.GetReg()] = info;
661   }
662   const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32;
663   for (RegStorage reg : *xp_temps) {
664     RegisterInfo* xp_reg_info = GetRegInfo(reg);
665     xp_reg_info->SetIsTemp(true);
666   }
667 
668   // Special Handling for x86_64 RIP addressing.
669   if (cu_->target64) {
670     RegisterInfo* info = new (arena_) RegisterInfo(RegStorage(kRIPReg), kEncodeNone);
671     reginfo_map_[kRIPReg] = info;
672   }
673 
674   // Alias single precision xmm to double xmms.
675   // TODO: as needed, add larger vector sizes - alias all to the largest.
676   for (RegisterInfo* info : reg_pool_->sp_regs_) {
677     int sp_reg_num = info->GetReg().GetRegNum();
678     RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
679     RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
680     // 128-bit xmm vector register's master storage should refer to itself.
681     DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
682 
683     // Redirect 32-bit vector's master storage to 128-bit vector.
684     info->SetMaster(xp_reg_info);
685 
686     RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
687     RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
688     // Redirect 64-bit vector's master storage to 128-bit vector.
689     dp_reg_info->SetMaster(xp_reg_info);
690     // Singles should show a single 32-bit mask bit, at first referring to the low half.
691     DCHECK_EQ(info->StorageMask(), 0x1U);
692   }
693 
694   if (cu_->target64) {
695     // Alias 32bit W registers to corresponding 64bit X registers.
696     for (RegisterInfo* info : reg_pool_->core_regs_) {
697       int x_reg_num = info->GetReg().GetRegNum();
698       RegStorage x_reg = RegStorage::Solo64(x_reg_num);
699       RegisterInfo* x_reg_info = GetRegInfo(x_reg);
700       // 64bit X register's master storage should refer to itself.
701       DCHECK_EQ(x_reg_info, x_reg_info->Master());
702       // Redirect 32bit W master storage to 64bit X.
703       info->SetMaster(x_reg_info);
704       // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
705       DCHECK_EQ(info->StorageMask(), 0x1U);
706     }
707   }
708 
709   // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
710   // TODO: adjust for x86/hard float calling convention.
711   reg_pool_->next_core_reg_ = 2;
712   reg_pool_->next_sp_reg_ = 2;
713   reg_pool_->next_dp_reg_ = 1;
714 }
715 
VectorRegisterSize()716 int X86Mir2Lir::VectorRegisterSize() {
717   return 128;
718 }
719 
NumReservableVectorRegisters(bool long_or_fp)720 int X86Mir2Lir::NumReservableVectorRegisters(bool long_or_fp) {
721   int num_vector_temps = cu_->target64 ? xp_temps_64.size() : xp_temps_32.size();
722 
723   // Leave a few temps for use by backend as scratch.
724   return long_or_fp ? num_vector_temps - 2 : num_vector_temps - 1;
725 }
726 
DwarfCoreReg(bool is_x86_64,int num)727 static dwarf::Reg DwarfCoreReg(bool is_x86_64, int num) {
728   return is_x86_64 ? dwarf::Reg::X86_64Core(num) : dwarf::Reg::X86Core(num);
729 }
730 
DwarfFpReg(bool is_x86_64,int num)731 static dwarf::Reg DwarfFpReg(bool is_x86_64, int num) {
732   return is_x86_64 ? dwarf::Reg::X86_64Fp(num) : dwarf::Reg::X86Fp(num);
733 }
734 
SpillCoreRegs()735 void X86Mir2Lir::SpillCoreRegs() {
736   if (num_core_spills_ == 0) {
737     return;
738   }
739   // Spill mask not including fake return address register
740   uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
741   int offset =
742       frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
743   OpSize size = cu_->target64 ? k64 : k32;
744   const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
745   for (int reg = 0; mask != 0u; mask >>= 1, reg++) {
746     if ((mask & 0x1) != 0u) {
747       DCHECK_NE(offset, 0) << "offset 0 should be for method";
748       RegStorage r_src = cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg);
749       StoreBaseDisp(rs_rSP, offset, r_src, size, kNotVolatile);
750       cfi_.RelOffset(DwarfCoreReg(cu_->target64, reg), offset);
751       offset += GetInstructionSetPointerSize(cu_->instruction_set);
752     }
753   }
754 }
755 
UnSpillCoreRegs()756 void X86Mir2Lir::UnSpillCoreRegs() {
757   if (num_core_spills_ == 0) {
758     return;
759   }
760   // Spill mask not including fake return address register
761   uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
762   int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
763   OpSize size = cu_->target64 ? k64 : k32;
764   const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
765   for (int reg = 0; mask != 0u; mask >>= 1, reg++) {
766     if ((mask & 0x1) != 0u) {
767       RegStorage r_dest = cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg);
768       LoadBaseDisp(rs_rSP, offset, r_dest, size, kNotVolatile);
769       cfi_.Restore(DwarfCoreReg(cu_->target64, reg));
770       offset += GetInstructionSetPointerSize(cu_->instruction_set);
771     }
772   }
773 }
774 
SpillFPRegs()775 void X86Mir2Lir::SpillFPRegs() {
776   if (num_fp_spills_ == 0) {
777     return;
778   }
779   uint32_t mask = fp_spill_mask_;
780   int offset = frame_size_ -
781       (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
782   const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
783   for (int reg = 0; mask != 0u; mask >>= 1, reg++) {
784     if ((mask & 0x1) != 0u) {
785       StoreBaseDisp(rs_rSP, offset, RegStorage::FloatSolo64(reg), k64, kNotVolatile);
786       cfi_.RelOffset(DwarfFpReg(cu_->target64, reg), offset);
787       offset += sizeof(double);
788     }
789   }
790 }
UnSpillFPRegs()791 void X86Mir2Lir::UnSpillFPRegs() {
792   if (num_fp_spills_ == 0) {
793     return;
794   }
795   uint32_t mask = fp_spill_mask_;
796   int offset = frame_size_ -
797       (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
798   const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
799   for (int reg = 0; mask != 0u; mask >>= 1, reg++) {
800     if ((mask & 0x1) != 0u) {
801       LoadBaseDisp(rs_rSP, offset, RegStorage::FloatSolo64(reg),
802                    k64, kNotVolatile);
803       cfi_.Restore(DwarfFpReg(cu_->target64, reg));
804       offset += sizeof(double);
805     }
806   }
807 }
808 
809 
IsUnconditionalBranch(LIR * lir)810 bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
811   return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
812 }
813 
RegClassForFieldLoadStore(OpSize size,bool is_volatile)814 RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
815   // Prefer XMM registers.  Fixes a problem with iget/iput to a FP when cached temporary
816   // with same VR is a Core register.
817   if (size == kSingle || size == kDouble) {
818     return kFPReg;
819   }
820 
821   // X86_64 can handle any size.
822   if (cu_->target64) {
823     return RegClassBySize(size);
824   }
825 
826   if (UNLIKELY(is_volatile)) {
827     // On x86, atomic 64-bit load/store requires an fp register.
828     // Smaller aligned load/store is atomic for both core and fp registers.
829     if (size == k64 || size == kDouble) {
830       return kFPReg;
831     }
832   }
833   return RegClassBySize(size);
834 }
835 
X86Mir2Lir(CompilationUnit * cu,MIRGraph * mir_graph,ArenaAllocator * arena)836 X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
837     : Mir2Lir(cu, mir_graph, arena),
838       in_to_reg_storage_x86_64_mapper_(this), in_to_reg_storage_x86_mapper_(this),
839       pc_rel_base_reg_(RegStorage::InvalidReg()),
840       pc_rel_base_reg_used_(false),
841       setup_pc_rel_base_reg_(nullptr),
842       method_address_insns_(arena->Adapter()),
843       class_type_address_insns_(arena->Adapter()),
844       call_method_insns_(arena->Adapter()),
845       dex_cache_access_insns_(arena->Adapter()),
846       const_vectors_(nullptr) {
847   method_address_insns_.reserve(100);
848   class_type_address_insns_.reserve(100);
849   call_method_insns_.reserve(100);
850   for (int i = 0; i < kX86Last; i++) {
851     DCHECK_EQ(X86Mir2Lir::EncodingMap[i].opcode, i)
852         << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
853         << " is wrong: expecting " << i << ", seeing "
854         << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
855   }
856 }
857 
X86CodeGenerator(CompilationUnit * const cu,MIRGraph * const mir_graph,ArenaAllocator * const arena)858 Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
859                           ArenaAllocator* const arena) {
860   return new X86Mir2Lir(cu, mir_graph, arena);
861 }
862 
863 // Not used in x86(-64)
LoadHelper(QuickEntrypointEnum trampoline)864 RegStorage X86Mir2Lir::LoadHelper(QuickEntrypointEnum trampoline) {
865   UNUSED(trampoline);
866   LOG(FATAL) << "Unexpected use of LoadHelper in x86";
867   UNREACHABLE();
868 }
869 
CheckSuspendUsingLoad()870 LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
871   // First load the pointer in fs:[suspend-trigger] into eax
872   // Then use a test instruction to indirect via that address.
873   if (cu_->target64) {
874     NewLIR2(kX86Mov64RT, rs_rAX.GetReg(),
875         Thread::ThreadSuspendTriggerOffset<8>().Int32Value());
876   } else {
877     NewLIR2(kX86Mov32RT, rs_rAX.GetReg(),
878         Thread::ThreadSuspendTriggerOffset<4>().Int32Value());
879   }
880   return NewLIR3(kX86Test32RM, rs_rAX.GetReg(), rs_rAX.GetReg(), 0);
881 }
882 
GetTargetInstFlags(int opcode)883 uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
884   DCHECK(!IsPseudoLirOp(opcode));
885   return X86Mir2Lir::EncodingMap[opcode].flags;
886 }
887 
GetTargetInstName(int opcode)888 const char* X86Mir2Lir::GetTargetInstName(int opcode) {
889   DCHECK(!IsPseudoLirOp(opcode));
890   return X86Mir2Lir::EncodingMap[opcode].name;
891 }
892 
GetTargetInstFmt(int opcode)893 const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
894   DCHECK(!IsPseudoLirOp(opcode));
895   return X86Mir2Lir::EncodingMap[opcode].fmt;
896 }
897 
GenConstWide(RegLocation rl_dest,int64_t value)898 void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
899   // Can we do this directly to memory?
900   rl_dest = UpdateLocWide(rl_dest);
901   if ((rl_dest.location == kLocDalvikFrame) ||
902       (rl_dest.location == kLocCompilerTemp)) {
903     int32_t val_lo = Low32Bits(value);
904     int32_t val_hi = High32Bits(value);
905     int r_base = rs_rX86_SP_32.GetReg();
906     int displacement = SRegOffset(rl_dest.s_reg_low);
907 
908     ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
909     LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
910     AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
911                               false /* is_load */, true /* is64bit */);
912     store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
913     AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
914                               false /* is_load */, true /* is64bit */);
915     return;
916   }
917 
918   // Just use the standard code to do the generation.
919   Mir2Lir::GenConstWide(rl_dest, value);
920 }
921 
922 // TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
DumpRegLocation(RegLocation loc)923 void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
924   LOG(INFO)  << "location: " << loc.location << ','
925              << (loc.wide ? " w" : "  ")
926              << (loc.defined ? " D" : "  ")
927              << (loc.is_const ? " c" : "  ")
928              << (loc.fp ? " F" : "  ")
929              << (loc.core ? " C" : "  ")
930              << (loc.ref ? " r" : "  ")
931              << (loc.high_word ? " h" : "  ")
932              << (loc.home ? " H" : "  ")
933              << ", low: " << static_cast<int>(loc.reg.GetLowReg())
934              << ", high: " << static_cast<int>(loc.reg.GetHighReg())
935              << ", s_reg: " << loc.s_reg_low
936              << ", orig: " << loc.orig_sreg;
937 }
938 
LoadMethodAddress(const MethodReference & target_method,InvokeType type,SpecialTargetRegister symbolic_reg)939 void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
940                                    SpecialTargetRegister symbolic_reg) {
941   /*
942    * For x86, just generate a 32 bit move immediate instruction, that will be filled
943    * in at 'link time'.  For now, put a unique value based on target to ensure that
944    * code deduplication works.
945    */
946   int target_method_idx = target_method.dex_method_index;
947   const DexFile* target_dex_file = target_method.dex_file;
948   const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
949   uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
950 
951   // Generate the move instruction with the unique pointer and save index, dex_file, and type.
952   LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
953                      TargetReg(symbolic_reg, kNotWide).GetReg(),
954                      static_cast<int>(target_method_id_ptr), target_method_idx,
955                      WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
956   AppendLIR(move);
957   method_address_insns_.push_back(move);
958 }
959 
LoadClassType(const DexFile & dex_file,uint32_t type_idx,SpecialTargetRegister symbolic_reg)960 void X86Mir2Lir::LoadClassType(const DexFile& dex_file, uint32_t type_idx,
961                                SpecialTargetRegister symbolic_reg) {
962   /*
963    * For x86, just generate a 32 bit move immediate instruction, that will be filled
964    * in at 'link time'.  For now, put a unique value based on target to ensure that
965    * code deduplication works.
966    */
967   const DexFile::TypeId& id = dex_file.GetTypeId(type_idx);
968   uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
969 
970   // Generate the move instruction with the unique pointer and save index and type.
971   LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
972                      TargetReg(symbolic_reg, kNotWide).GetReg(),
973                      static_cast<int>(ptr), type_idx,
974                      WrapPointer(const_cast<DexFile*>(&dex_file)));
975   AppendLIR(move);
976   class_type_address_insns_.push_back(move);
977 }
978 
CallWithLinkerFixup(const MethodReference & target_method,InvokeType type)979 LIR* X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
980   /*
981    * For x86, just generate a 32 bit call relative instruction, that will be filled
982    * in at 'link time'.
983    */
984   int target_method_idx = target_method.dex_method_index;
985   const DexFile* target_dex_file = target_method.dex_file;
986 
987   // Generate the call instruction with the unique pointer and save index, dex_file, and type.
988   // NOTE: Method deduplication takes linker patches into account, so we can just pass 0
989   // as a placeholder for the offset.
990   LIR* call = RawLIR(current_dalvik_offset_, kX86CallI, 0,
991                      target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
992   AppendLIR(call);
993   call_method_insns_.push_back(call);
994   return call;
995 }
996 
GenInvokeNoInlineCall(Mir2Lir * mir_to_lir,InvokeType type)997 static LIR* GenInvokeNoInlineCall(Mir2Lir* mir_to_lir, InvokeType type) {
998   QuickEntrypointEnum trampoline;
999   switch (type) {
1000     case kInterface:
1001       trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck;
1002       break;
1003     case kDirect:
1004       trampoline = kQuickInvokeDirectTrampolineWithAccessCheck;
1005       break;
1006     case kStatic:
1007       trampoline = kQuickInvokeStaticTrampolineWithAccessCheck;
1008       break;
1009     case kSuper:
1010       trampoline = kQuickInvokeSuperTrampolineWithAccessCheck;
1011       break;
1012     case kVirtual:
1013       trampoline = kQuickInvokeVirtualTrampolineWithAccessCheck;
1014       break;
1015     default:
1016       LOG(FATAL) << "Unexpected invoke type";
1017       trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck;
1018   }
1019   return mir_to_lir->InvokeTrampoline(kOpBlx, RegStorage::InvalidReg(), trampoline);
1020 }
1021 
GenCallInsn(const MirMethodLoweringInfo & method_info)1022 LIR* X86Mir2Lir::GenCallInsn(const MirMethodLoweringInfo& method_info) {
1023   LIR* call_insn;
1024   if (method_info.FastPath()) {
1025     if (method_info.DirectCode() == static_cast<uintptr_t>(-1)) {
1026       // We can have the linker fixup a call relative.
1027       call_insn = CallWithLinkerFixup(method_info.GetTargetMethod(), method_info.GetSharpType());
1028     } else {
1029       call_insn = OpMem(kOpBlx, TargetReg(kArg0, kRef),
1030                         ArtMethod::EntryPointFromQuickCompiledCodeOffset(
1031                             cu_->target64 ? 8 : 4).Int32Value());
1032     }
1033   } else {
1034     call_insn = GenInvokeNoInlineCall(this, method_info.GetSharpType());
1035   }
1036   return call_insn;
1037 }
1038 
InstallLiteralPools()1039 void X86Mir2Lir::InstallLiteralPools() {
1040   // These are handled differently for x86.
1041   DCHECK(code_literal_list_ == nullptr);
1042   DCHECK(method_literal_list_ == nullptr);
1043   DCHECK(class_literal_list_ == nullptr);
1044 
1045 
1046   if (const_vectors_ != nullptr) {
1047     // Vector literals must be 16-byte aligned. The header that is placed
1048     // in the code section causes misalignment so we take it into account.
1049     // Otherwise, we are sure that for x86 method is aligned to 16.
1050     DCHECK_EQ(GetInstructionSetAlignment(cu_->instruction_set), 16u);
1051     uint32_t bytes_to_fill = (0x10 - ((code_buffer_.size() + sizeof(OatQuickMethodHeader)) & 0xF)) & 0xF;
1052     while (bytes_to_fill > 0) {
1053       code_buffer_.push_back(0);
1054       bytes_to_fill--;
1055     }
1056 
1057     for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1058       Push32(&code_buffer_, p->operands[0]);
1059       Push32(&code_buffer_, p->operands[1]);
1060       Push32(&code_buffer_, p->operands[2]);
1061       Push32(&code_buffer_, p->operands[3]);
1062     }
1063   }
1064 
1065   patches_.reserve(method_address_insns_.size() + class_type_address_insns_.size() +
1066                    call_method_insns_.size() + dex_cache_access_insns_.size());
1067 
1068   // Handle the fixups for methods.
1069   for (LIR* p : method_address_insns_) {
1070       DCHECK_EQ(p->opcode, kX86Mov32RI);
1071       uint32_t target_method_idx = p->operands[2];
1072       const DexFile* target_dex_file = UnwrapPointer<DexFile>(p->operands[3]);
1073 
1074       // The offset to patch is the last 4 bytes of the instruction.
1075       int patch_offset = p->offset + p->flags.size - 4;
1076       patches_.push_back(LinkerPatch::MethodPatch(patch_offset,
1077                                                   target_dex_file, target_method_idx));
1078   }
1079 
1080   // Handle the fixups for class types.
1081   for (LIR* p : class_type_address_insns_) {
1082       DCHECK_EQ(p->opcode, kX86Mov32RI);
1083 
1084       const DexFile* class_dex_file = UnwrapPointer<DexFile>(p->operands[3]);
1085       uint32_t target_type_idx = p->operands[2];
1086 
1087       // The offset to patch is the last 4 bytes of the instruction.
1088       int patch_offset = p->offset + p->flags.size - 4;
1089       patches_.push_back(LinkerPatch::TypePatch(patch_offset,
1090                                                 class_dex_file, target_type_idx));
1091   }
1092 
1093   // And now the PC-relative calls to methods.
1094   for (LIR* p : call_method_insns_) {
1095       DCHECK_EQ(p->opcode, kX86CallI);
1096       uint32_t target_method_idx = p->operands[1];
1097       const DexFile* target_dex_file = UnwrapPointer<DexFile>(p->operands[2]);
1098 
1099       // The offset to patch is the last 4 bytes of the instruction.
1100       int patch_offset = p->offset + p->flags.size - 4;
1101       patches_.push_back(LinkerPatch::RelativeCodePatch(patch_offset,
1102                                                         target_dex_file, target_method_idx));
1103   }
1104 
1105   // PC-relative references to dex cache arrays.
1106   for (LIR* p : dex_cache_access_insns_) {
1107     DCHECK(p->opcode == kX86Mov32RM || p->opcode == kX86Mov64RM);
1108     const DexFile* dex_file = UnwrapPointer<DexFile>(p->operands[3]);
1109     uint32_t offset = p->operands[4];
1110     // The offset to patch is the last 4 bytes of the instruction.
1111     int patch_offset = p->offset + p->flags.size - 4;
1112     DCHECK(!p->flags.is_nop);
1113     patches_.push_back(LinkerPatch::DexCacheArrayPatch(patch_offset, dex_file,
1114                                                        p->target->offset, offset));
1115   }
1116 
1117   // And do the normal processing.
1118   Mir2Lir::InstallLiteralPools();
1119 }
1120 
GenInlinedArrayCopyCharArray(CallInfo * info)1121 bool X86Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
1122   RegLocation rl_src = info->args[0];
1123   RegLocation rl_srcPos = info->args[1];
1124   RegLocation rl_dst = info->args[2];
1125   RegLocation rl_dstPos = info->args[3];
1126   RegLocation rl_length = info->args[4];
1127   if (rl_srcPos.is_const && (mir_graph_->ConstantValue(rl_srcPos) < 0)) {
1128     return false;
1129   }
1130   if (rl_dstPos.is_const && (mir_graph_->ConstantValue(rl_dstPos) < 0)) {
1131     return false;
1132   }
1133   ClobberCallerSave();
1134   LockCallTemps();  // Using fixed registers.
1135   RegStorage tmp_reg = cu_->target64 ? rs_r11 : rs_rBX;
1136   LoadValueDirectFixed(rl_src, rs_rAX);
1137   LoadValueDirectFixed(rl_dst, rs_rCX);
1138   LIR* src_dst_same  = OpCmpBranch(kCondEq, rs_rAX, rs_rCX, nullptr);
1139   LIR* src_null_branch = OpCmpImmBranch(kCondEq, rs_rAX, 0, nullptr);
1140   LIR* dst_null_branch = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
1141   LoadValueDirectFixed(rl_length, rs_rDX);
1142   // If the length of the copy is > 128 characters (256 bytes) or negative then go slow path.
1143   LIR* len_too_big  = OpCmpImmBranch(kCondHi, rs_rDX, 128, nullptr);
1144   LoadValueDirectFixed(rl_src, rs_rAX);
1145   LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1146   LIR* src_bad_len  = nullptr;
1147   LIR* src_bad_off = nullptr;
1148   LIR* srcPos_negative  = nullptr;
1149   if (!rl_srcPos.is_const) {
1150     LoadValueDirectFixed(rl_srcPos, tmp_reg);
1151     srcPos_negative  = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr);
1152     // src_pos < src_len
1153     src_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr);
1154     // src_len - src_pos < copy_len
1155     OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg);
1156     src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1157   } else {
1158     int32_t pos_val = mir_graph_->ConstantValue(rl_srcPos.orig_sreg);
1159     if (pos_val == 0) {
1160       src_bad_len  = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr);
1161     } else {
1162       // src_pos < src_len
1163       src_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr);
1164       // src_len - src_pos < copy_len
1165       OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val);
1166       src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1167     }
1168   }
1169   LIR* dstPos_negative = nullptr;
1170   LIR* dst_bad_len = nullptr;
1171   LIR* dst_bad_off = nullptr;
1172   LoadValueDirectFixed(rl_dst, rs_rAX);
1173   LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1174   if (!rl_dstPos.is_const) {
1175     LoadValueDirectFixed(rl_dstPos, tmp_reg);
1176     dstPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr);
1177     // dst_pos < dst_len
1178     dst_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr);
1179     // dst_len - dst_pos < copy_len
1180     OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg);
1181     dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1182   } else {
1183     int32_t pos_val = mir_graph_->ConstantValue(rl_dstPos.orig_sreg);
1184     if (pos_val == 0) {
1185       dst_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr);
1186     } else {
1187       // dst_pos < dst_len
1188       dst_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr);
1189       // dst_len - dst_pos < copy_len
1190       OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val);
1191       dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
1192     }
1193   }
1194   // Everything is checked now.
1195   LoadValueDirectFixed(rl_src, rs_rAX);
1196   LoadValueDirectFixed(rl_dst, tmp_reg);
1197   LoadValueDirectFixed(rl_srcPos, rs_rCX);
1198   NewLIR5(kX86Lea32RA, rs_rAX.GetReg(), rs_rAX.GetReg(),
1199        rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value());
1200   // RAX now holds the address of the first src element to be copied.
1201 
1202   LoadValueDirectFixed(rl_dstPos, rs_rCX);
1203   NewLIR5(kX86Lea32RA, tmp_reg.GetReg(), tmp_reg.GetReg(),
1204        rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value() );
1205   // RBX now holds the address of the first dst element to be copied.
1206 
1207   // Check if the number of elements to be copied is odd or even. If odd
1208   // then copy the first element (so that the remaining number of elements
1209   // is even).
1210   LoadValueDirectFixed(rl_length, rs_rCX);
1211   OpRegImm(kOpAnd, rs_rCX, 1);
1212   LIR* jmp_to_begin_loop  = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
1213   OpRegImm(kOpSub, rs_rDX, 1);
1214   LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1215   StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1216 
1217   // Since the remaining number of elements is even, we will copy by
1218   // two elements at a time.
1219   LIR* beginLoop = NewLIR0(kPseudoTargetLabel);
1220   LIR* jmp_to_ret  = OpCmpImmBranch(kCondEq, rs_rDX, 0, nullptr);
1221   OpRegImm(kOpSub, rs_rDX, 2);
1222   LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSingle);
1223   StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSingle);
1224   OpUnconditionalBranch(beginLoop);
1225   LIR *check_failed = NewLIR0(kPseudoTargetLabel);
1226   LIR* launchpad_branch  = OpUnconditionalBranch(nullptr);
1227   LIR *return_point = NewLIR0(kPseudoTargetLabel);
1228   jmp_to_ret->target = return_point;
1229   jmp_to_begin_loop->target = beginLoop;
1230   src_dst_same->target = check_failed;
1231   len_too_big->target = check_failed;
1232   src_null_branch->target = check_failed;
1233   if (srcPos_negative != nullptr)
1234     srcPos_negative ->target = check_failed;
1235   if (src_bad_off != nullptr)
1236     src_bad_off->target = check_failed;
1237   if (src_bad_len != nullptr)
1238     src_bad_len->target = check_failed;
1239   dst_null_branch->target = check_failed;
1240   if (dstPos_negative != nullptr)
1241     dstPos_negative->target = check_failed;
1242   if (dst_bad_off != nullptr)
1243     dst_bad_off->target = check_failed;
1244   if (dst_bad_len != nullptr)
1245     dst_bad_len->target = check_failed;
1246   AddIntrinsicSlowPath(info, launchpad_branch, return_point);
1247   ClobberCallerSave();  // We must clobber everything because slow path will return here
1248   return true;
1249 }
1250 
1251 
1252 /*
1253  * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
1254  * otherwise bails to standard library code.
1255  */
GenInlinedIndexOf(CallInfo * info,bool zero_based)1256 bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1257   RegLocation rl_obj = info->args[0];
1258   RegLocation rl_char = info->args[1];
1259   RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
1260   // RBX is promotable in 64-bit mode.
1261   RegStorage rs_tmp = cu_->target64 ? rs_r11 : rs_rBX;
1262   int start_value = -1;
1263 
1264   uint32_t char_value =
1265     rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1266 
1267   if (char_value > 0xFFFF) {
1268     // We have to punt to the real String.indexOf.
1269     return false;
1270   }
1271 
1272   // Okay, we are commited to inlining this.
1273   // EAX: 16 bit character being searched.
1274   // ECX: count: number of words to be searched.
1275   // EDI: String being searched.
1276   // EDX: temporary during execution.
1277   // EBX or R11: temporary during execution (depending on mode).
1278   // REP SCASW: search instruction.
1279 
1280   FlushAllRegs();
1281 
1282   RegLocation rl_return = GetReturn(kCoreReg);
1283   RegLocation rl_dest = InlineTarget(info);
1284 
1285   // Is the string non-null?
1286   LoadValueDirectFixed(rl_obj, rs_rDX);
1287   GenNullCheck(rs_rDX, info->opt_flags);
1288   info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
1289 
1290   LIR *slowpath_branch = nullptr, *length_compare = nullptr;
1291 
1292   // We need the value in EAX.
1293   if (rl_char.is_const) {
1294     LoadConstantNoClobber(rs_rAX, char_value);
1295   } else {
1296     // Does the character fit in 16 bits? Compare it at runtime.
1297     LoadValueDirectFixed(rl_char, rs_rAX);
1298     slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
1299   }
1300 
1301   // From here down, we know that we are looking for a char that fits in 16 bits.
1302   // Location of reference to data array within the String object.
1303   int value_offset = mirror::String::ValueOffset().Int32Value();
1304   // Location of count within the String object.
1305   int count_offset = mirror::String::CountOffset().Int32Value();
1306 
1307   // Compute the number of words to search in to rCX.
1308   Load32Disp(rs_rDX, count_offset, rs_rCX);
1309 
1310   // Possible signal here due to null pointer dereference.
1311   // Note that the signal handler will expect the top word of
1312   // the stack to be the ArtMethod*.  If the PUSH edi instruction
1313   // below is ahead of the load above then this will not be true
1314   // and the signal handler will not work.
1315   MarkPossibleNullPointerException(0);
1316 
1317   if (!cu_->target64) {
1318     // EDI is promotable in 32-bit mode.
1319     NewLIR1(kX86Push32R, rs_rDI.GetReg());
1320     cfi_.AdjustCFAOffset(4);
1321     // Record cfi only if it is not already spilled.
1322     if (!CoreSpillMaskContains(rs_rDI.GetReg())) {
1323       cfi_.RelOffset(DwarfCoreReg(cu_->target64, rs_rDI.GetReg()), 0);
1324     }
1325   }
1326 
1327   if (zero_based) {
1328     // Start index is not present.
1329     // We have to handle an empty string.  Use special instruction JECXZ.
1330     length_compare = NewLIR0(kX86Jecxz8);
1331 
1332     // Copy the number of words to search in a temporary register.
1333     // We will use the register at the end to calculate result.
1334     OpRegReg(kOpMov, rs_tmp, rs_rCX);
1335   } else {
1336     // Start index is present.
1337     rl_start = info->args[2];
1338 
1339     // We have to offset by the start index.
1340     if (rl_start.is_const) {
1341       start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1342       start_value = std::max(start_value, 0);
1343 
1344       // Is the start > count?
1345       length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
1346       OpRegImm(kOpMov, rs_rDI, start_value);
1347 
1348       // Copy the number of words to search in a temporary register.
1349       // We will use the register at the end to calculate result.
1350       OpRegReg(kOpMov, rs_tmp, rs_rCX);
1351 
1352       if (start_value != 0) {
1353         // Decrease the number of words to search by the start index.
1354         OpRegImm(kOpSub, rs_rCX, start_value);
1355       }
1356     } else {
1357       // Handle "start index < 0" case.
1358       if (!cu_->target64 && rl_start.location != kLocPhysReg) {
1359         // Load the start index from stack, remembering that we pushed EDI.
1360         int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
1361         ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1362         Load32Disp(rs_rX86_SP_32, displacement, rs_rDI);
1363         // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
1364         DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
1365         int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - 1;
1366         AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
1367       } else {
1368         LoadValueDirectFixed(rl_start, rs_rDI);
1369       }
1370       OpRegReg(kOpXor, rs_tmp, rs_tmp);
1371       OpRegReg(kOpCmp, rs_rDI, rs_tmp);
1372       OpCondRegReg(kOpCmov, kCondLt, rs_rDI, rs_tmp);
1373 
1374       // The length of the string should be greater than the start index.
1375       length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rDI, nullptr);
1376 
1377       // Copy the number of words to search in a temporary register.
1378       // We will use the register at the end to calculate result.
1379       OpRegReg(kOpMov, rs_tmp, rs_rCX);
1380 
1381       // Decrease the number of words to search by the start index.
1382       OpRegReg(kOpSub, rs_rCX, rs_rDI);
1383     }
1384   }
1385 
1386   // Load the address of the string into EDI.
1387   // In case of start index we have to add the address to existing value in EDI.
1388   if (zero_based || (!zero_based && rl_start.is_const && start_value == 0)) {
1389     OpRegRegImm(kOpAdd, rs_rDI, rs_rDX, value_offset);
1390   } else {
1391     OpRegImm(kOpLsl, rs_rDI, 1);
1392     OpRegReg(kOpAdd, rs_rDI, rs_rDX);
1393     OpRegImm(kOpAdd, rs_rDI, value_offset);
1394   }
1395 
1396   // EDI now contains the start of the string to be searched.
1397   // We are all prepared to do the search for the character.
1398   NewLIR0(kX86RepneScasw);
1399 
1400   // Did we find a match?
1401   LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1402 
1403   // yes, we matched.  Compute the index of the result.
1404   OpRegReg(kOpSub, rs_tmp, rs_rCX);
1405   NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_tmp.GetReg(), -1);
1406 
1407   LIR *all_done = NewLIR1(kX86Jmp8, 0);
1408 
1409   // Failed to match; return -1.
1410   LIR *not_found = NewLIR0(kPseudoTargetLabel);
1411   length_compare->target = not_found;
1412   failed_branch->target = not_found;
1413   LoadConstantNoClobber(rl_return.reg, -1);
1414 
1415   // And join up at the end.
1416   all_done->target = NewLIR0(kPseudoTargetLabel);
1417 
1418   if (!cu_->target64) {
1419     NewLIR1(kX86Pop32R, rs_rDI.GetReg());
1420     cfi_.AdjustCFAOffset(-4);
1421     if (!CoreSpillMaskContains(rs_rDI.GetReg())) {
1422       cfi_.Restore(DwarfCoreReg(cu_->target64, rs_rDI.GetReg()));
1423     }
1424   }
1425 
1426   // Out of line code returns here.
1427   if (slowpath_branch != nullptr) {
1428     LIR *return_point = NewLIR0(kPseudoTargetLabel);
1429     AddIntrinsicSlowPath(info, slowpath_branch, return_point);
1430     ClobberCallerSave();  // We must clobber everything because slow path will return here
1431   }
1432 
1433   StoreValue(rl_dest, rl_return);
1434   return true;
1435 }
1436 
GenMachineSpecificExtendedMethodMIR(BasicBlock * bb,MIR * mir)1437 void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1438   switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1439     case kMirOpReserveVectorRegisters:
1440       ReserveVectorRegisters(mir);
1441       break;
1442     case kMirOpReturnVectorRegisters:
1443       ReturnVectorRegisters(mir);
1444       break;
1445     case kMirOpConstVector:
1446       GenConst128(mir);
1447       break;
1448     case kMirOpMoveVector:
1449       GenMoveVector(mir);
1450       break;
1451     case kMirOpPackedMultiply:
1452       GenMultiplyVector(mir);
1453       break;
1454     case kMirOpPackedAddition:
1455       GenAddVector(mir);
1456       break;
1457     case kMirOpPackedSubtract:
1458       GenSubtractVector(mir);
1459       break;
1460     case kMirOpPackedShiftLeft:
1461       GenShiftLeftVector(mir);
1462       break;
1463     case kMirOpPackedSignedShiftRight:
1464       GenSignedShiftRightVector(mir);
1465       break;
1466     case kMirOpPackedUnsignedShiftRight:
1467       GenUnsignedShiftRightVector(mir);
1468       break;
1469     case kMirOpPackedAnd:
1470       GenAndVector(mir);
1471       break;
1472     case kMirOpPackedOr:
1473       GenOrVector(mir);
1474       break;
1475     case kMirOpPackedXor:
1476       GenXorVector(mir);
1477       break;
1478     case kMirOpPackedAddReduce:
1479       GenAddReduceVector(mir);
1480       break;
1481     case kMirOpPackedReduce:
1482       GenReduceVector(mir);
1483       break;
1484     case kMirOpPackedSet:
1485       GenSetVector(mir);
1486       break;
1487     case kMirOpMemBarrier:
1488       GenMemBarrier(static_cast<MemBarrierKind>(mir->dalvikInsn.vA));
1489       break;
1490     case kMirOpPackedArrayGet:
1491       GenPackedArrayGet(bb, mir);
1492       break;
1493     case kMirOpPackedArrayPut:
1494       GenPackedArrayPut(bb, mir);
1495       break;
1496     default:
1497       break;
1498   }
1499 }
1500 
ReserveVectorRegisters(MIR * mir)1501 void X86Mir2Lir::ReserveVectorRegisters(MIR* mir) {
1502   for (uint32_t i = mir->dalvikInsn.vA; i <= mir->dalvikInsn.vB; i++) {
1503     RegStorage xp_reg = RegStorage::Solo128(i);
1504     RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1505     Clobber(xp_reg);
1506 
1507     for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1508                        info != nullptr;
1509                        info = info->GetAliasChain()) {
1510       ArenaVector<RegisterInfo*>* regs =
1511           info->GetReg().IsSingle() ? &reg_pool_->sp_regs_ : &reg_pool_->dp_regs_;
1512       auto it = std::find(regs->begin(), regs->end(), info);
1513       DCHECK(it != regs->end());
1514       regs->erase(it);
1515     }
1516   }
1517 }
1518 
ReturnVectorRegisters(MIR * mir)1519 void X86Mir2Lir::ReturnVectorRegisters(MIR* mir) {
1520   for (uint32_t i = mir->dalvikInsn.vA; i <= mir->dalvikInsn.vB; i++) {
1521     RegStorage xp_reg = RegStorage::Solo128(i);
1522     RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
1523 
1524     for (RegisterInfo *info = xp_reg_info->GetAliasChain();
1525                        info != nullptr;
1526                        info = info->GetAliasChain()) {
1527       if (info->GetReg().IsSingle()) {
1528         reg_pool_->sp_regs_.push_back(info);
1529       } else {
1530         reg_pool_->dp_regs_.push_back(info);
1531       }
1532     }
1533   }
1534 }
1535 
GenConst128(MIR * mir)1536 void X86Mir2Lir::GenConst128(MIR* mir) {
1537   RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1538   Clobber(rs_dest);
1539 
1540   uint32_t *args = mir->dalvikInsn.arg;
1541   int reg = rs_dest.GetReg();
1542   // Check for all 0 case.
1543   if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1544     NewLIR2(kX86XorpsRR, reg, reg);
1545     return;
1546   }
1547 
1548   // Append the mov const vector to reg opcode.
1549   AppendOpcodeWithConst(kX86MovdqaRM, reg, mir);
1550 }
1551 
AppendOpcodeWithConst(X86OpCode opcode,int reg,MIR * mir)1552 void X86Mir2Lir::AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir) {
1553   // To deal with correct memory ordering, reverse order of constants.
1554   int32_t constants[4];
1555   constants[3] = mir->dalvikInsn.arg[0];
1556   constants[2] = mir->dalvikInsn.arg[1];
1557   constants[1] = mir->dalvikInsn.arg[2];
1558   constants[0] = mir->dalvikInsn.arg[3];
1559 
1560   // Search if there is already a constant in pool with this value.
1561   LIR *data_target = ScanVectorLiteral(constants);
1562   if (data_target == nullptr) {
1563     data_target = AddVectorLiteral(constants);
1564   }
1565 
1566   // Load the proper value from the literal area.
1567   // We don't know the proper offset for the value, so pick one that will force
1568   // 4 byte offset.  We will fix this up in the assembler later to have the
1569   // right value.
1570   LIR* load;
1571   ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
1572   if (cu_->target64) {
1573     load = NewLIR3(opcode, reg, kRIPReg, kDummy32BitOffset);
1574   } else {
1575     // Get the PC to a register and get the anchor.
1576     LIR* anchor;
1577     RegStorage r_pc = GetPcAndAnchor(&anchor);
1578 
1579     load = NewLIR3(opcode, reg, r_pc.GetReg(), kDummy32BitOffset);
1580     load->operands[4] = WrapPointer(anchor);
1581     if (IsTemp(r_pc)) {
1582       FreeTemp(r_pc);
1583     }
1584   }
1585   load->flags.fixup = kFixupLoad;
1586   load->target = data_target;
1587 }
1588 
GenMoveVector(MIR * mir)1589 void X86Mir2Lir::GenMoveVector(MIR* mir) {
1590   // We only support 128 bit registers.
1591   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1592   RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
1593   Clobber(rs_dest);
1594   RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1595   NewLIR2(kX86MovdqaRR, rs_dest.GetReg(), rs_src.GetReg());
1596 }
1597 
GenMultiplyVectorSignedByte(RegStorage rs_dest_src1,RegStorage rs_src2)1598 void X86Mir2Lir::GenMultiplyVectorSignedByte(RegStorage rs_dest_src1, RegStorage rs_src2) {
1599   /*
1600    * Emulate the behavior of a kSignedByte by separating out the 16 values in the two XMM
1601    * and multiplying 8 at a time before recombining back into one XMM register.
1602    *
1603    *   let xmm1, xmm2 be real srcs (keep low bits of 16bit lanes)
1604    *       xmm3 is tmp             (operate on high bits of 16bit lanes)
1605    *
1606    *    xmm3 = xmm1
1607    *    xmm1 = xmm1 .* xmm2
1608    *    xmm1 = xmm1 & 0x00ff00ff00ff00ff00ff00ff00ff00ff  // xmm1 now has low bits
1609    *    xmm3 = xmm3 .>> 8
1610    *    xmm2 = xmm2 & 0xff00ff00ff00ff00ff00ff00ff00ff00
1611    *    xmm2 = xmm2 .* xmm3                               // xmm2 now has high bits
1612    *    xmm1 = xmm1 | xmm2                                // combine results
1613    */
1614 
1615   // Copy xmm1.
1616   RegStorage rs_src1_high_tmp = Get128BitRegister(AllocTempDouble());
1617   RegStorage rs_dest_high_tmp = Get128BitRegister(AllocTempDouble());
1618   NewLIR2(kX86MovdqaRR, rs_src1_high_tmp.GetReg(), rs_src2.GetReg());
1619   NewLIR2(kX86MovdqaRR, rs_dest_high_tmp.GetReg(), rs_dest_src1.GetReg());
1620 
1621   // Multiply low bits.
1622   // x7 *= x3
1623   NewLIR2(kX86PmullwRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1624 
1625   // xmm1 now has low bits.
1626   AndMaskVectorRegister(rs_dest_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
1627 
1628   // Prepare high bits for multiplication.
1629   NewLIR2(kX86PsrlwRI, rs_src1_high_tmp.GetReg(), 0x8);
1630   AndMaskVectorRegister(rs_dest_high_tmp,  0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
1631 
1632   // Multiply high bits and xmm2 now has high bits.
1633   NewLIR2(kX86PmullwRR, rs_src1_high_tmp.GetReg(), rs_dest_high_tmp.GetReg());
1634 
1635   // Combine back into dest XMM register.
1636   NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src1_high_tmp.GetReg());
1637 }
1638 
GenMultiplyVectorLong(RegStorage rs_dest_src1,RegStorage rs_src2)1639 void X86Mir2Lir::GenMultiplyVectorLong(RegStorage rs_dest_src1, RegStorage rs_src2) {
1640   /*
1641    * We need to emulate the packed long multiply.
1642    * For kMirOpPackedMultiply xmm1, xmm0:
1643    * - xmm1 is src/dest
1644    * - xmm0 is src
1645    * - Get xmm2 and xmm3 as temp
1646    * - Idea is to multiply the lower 32 of each operand with the higher 32 of the other.
1647    * - Then add the two results.
1648    * - Move it to the upper 32 of the destination
1649    * - Then multiply the lower 32-bits of the operands and add the result to the destination.
1650    *
1651    * (op     dest   src )
1652    * movdqa  %xmm2, %xmm1
1653    * movdqa  %xmm3, %xmm0
1654    * psrlq   %xmm3, $0x20
1655    * pmuludq %xmm3, %xmm2
1656    * psrlq   %xmm1, $0x20
1657    * pmuludq %xmm1, %xmm0
1658    * paddq   %xmm1, %xmm3
1659    * psllq   %xmm1, $0x20
1660    * pmuludq %xmm2, %xmm0
1661    * paddq   %xmm1, %xmm2
1662    *
1663    * When both the operands are the same, then we need to calculate the lower-32 * higher-32
1664    * calculation only once. Thus we don't need the xmm3 temp above. That sequence becomes:
1665    *
1666    * (op     dest   src )
1667    * movdqa  %xmm2, %xmm1
1668    * psrlq   %xmm1, $0x20
1669    * pmuludq %xmm1, %xmm0
1670    * paddq   %xmm1, %xmm1
1671    * psllq   %xmm1, $0x20
1672    * pmuludq %xmm2, %xmm0
1673    * paddq   %xmm1, %xmm2
1674    *
1675    */
1676 
1677   bool both_operands_same = (rs_dest_src1.GetReg() == rs_src2.GetReg());
1678 
1679   RegStorage rs_tmp_vector_1;
1680   RegStorage rs_tmp_vector_2;
1681   rs_tmp_vector_1 = Get128BitRegister(AllocTempDouble());
1682   NewLIR2(kX86MovdqaRR, rs_tmp_vector_1.GetReg(), rs_dest_src1.GetReg());
1683 
1684   if (both_operands_same == false) {
1685     rs_tmp_vector_2 = Get128BitRegister(AllocTempDouble());
1686     NewLIR2(kX86MovdqaRR, rs_tmp_vector_2.GetReg(), rs_src2.GetReg());
1687     NewLIR2(kX86PsrlqRI, rs_tmp_vector_2.GetReg(), 0x20);
1688     NewLIR2(kX86PmuludqRR, rs_tmp_vector_2.GetReg(), rs_tmp_vector_1.GetReg());
1689   }
1690 
1691   NewLIR2(kX86PsrlqRI, rs_dest_src1.GetReg(), 0x20);
1692   NewLIR2(kX86PmuludqRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1693 
1694   if (both_operands_same == false) {
1695     NewLIR2(kX86PaddqRR, rs_dest_src1.GetReg(), rs_tmp_vector_2.GetReg());
1696   } else {
1697     NewLIR2(kX86PaddqRR, rs_dest_src1.GetReg(), rs_dest_src1.GetReg());
1698   }
1699 
1700   NewLIR2(kX86PsllqRI, rs_dest_src1.GetReg(), 0x20);
1701   NewLIR2(kX86PmuludqRR, rs_tmp_vector_1.GetReg(), rs_src2.GetReg());
1702   NewLIR2(kX86PaddqRR, rs_dest_src1.GetReg(), rs_tmp_vector_1.GetReg());
1703 }
1704 
GenMultiplyVector(MIR * mir)1705 void X86Mir2Lir::GenMultiplyVector(MIR* mir) {
1706   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1707   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1708   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1709   Clobber(rs_dest_src1);
1710   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1711   int opcode = 0;
1712   switch (opsize) {
1713     case k32:
1714       opcode = kX86PmulldRR;
1715       break;
1716     case kSignedHalf:
1717       opcode = kX86PmullwRR;
1718       break;
1719     case kSingle:
1720       opcode = kX86MulpsRR;
1721       break;
1722     case kDouble:
1723       opcode = kX86MulpdRR;
1724       break;
1725     case kSignedByte:
1726       // HW doesn't support 16x16 byte multiplication so emulate it.
1727       GenMultiplyVectorSignedByte(rs_dest_src1, rs_src2);
1728       return;
1729     case k64:
1730       GenMultiplyVectorLong(rs_dest_src1, rs_src2);
1731       return;
1732     default:
1733       LOG(FATAL) << "Unsupported vector multiply " << opsize;
1734       break;
1735   }
1736   NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1737 }
1738 
GenAddVector(MIR * mir)1739 void X86Mir2Lir::GenAddVector(MIR* mir) {
1740   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1741   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1742   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1743   Clobber(rs_dest_src1);
1744   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1745   int opcode = 0;
1746   switch (opsize) {
1747     case k32:
1748       opcode = kX86PadddRR;
1749       break;
1750     case k64:
1751       opcode = kX86PaddqRR;
1752       break;
1753     case kSignedHalf:
1754     case kUnsignedHalf:
1755       opcode = kX86PaddwRR;
1756       break;
1757     case kUnsignedByte:
1758     case kSignedByte:
1759       opcode = kX86PaddbRR;
1760       break;
1761     case kSingle:
1762       opcode = kX86AddpsRR;
1763       break;
1764     case kDouble:
1765       opcode = kX86AddpdRR;
1766       break;
1767     default:
1768       LOG(FATAL) << "Unsupported vector addition " << opsize;
1769       break;
1770   }
1771   NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1772 }
1773 
GenSubtractVector(MIR * mir)1774 void X86Mir2Lir::GenSubtractVector(MIR* mir) {
1775   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1776   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1777   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1778   Clobber(rs_dest_src1);
1779   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1780   int opcode = 0;
1781   switch (opsize) {
1782     case k32:
1783       opcode = kX86PsubdRR;
1784       break;
1785     case k64:
1786       opcode = kX86PsubqRR;
1787       break;
1788     case kSignedHalf:
1789     case kUnsignedHalf:
1790       opcode = kX86PsubwRR;
1791       break;
1792     case kUnsignedByte:
1793     case kSignedByte:
1794       opcode = kX86PsubbRR;
1795       break;
1796     case kSingle:
1797       opcode = kX86SubpsRR;
1798       break;
1799     case kDouble:
1800       opcode = kX86SubpdRR;
1801       break;
1802     default:
1803       LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1804       break;
1805   }
1806   NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1807 }
1808 
GenShiftByteVector(MIR * mir)1809 void X86Mir2Lir::GenShiftByteVector(MIR* mir) {
1810   // Destination does not need clobbered because it has already been as part
1811   // of the general packed shift handler (caller of this method).
1812   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1813 
1814   int opcode = 0;
1815   switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1816     case kMirOpPackedShiftLeft:
1817       opcode = kX86PsllwRI;
1818       break;
1819     case kMirOpPackedSignedShiftRight:
1820     case kMirOpPackedUnsignedShiftRight:
1821       // TODO Add support for emulated byte shifts.
1822     default:
1823       LOG(FATAL) << "Unsupported shift operation on byte vector " << opcode;
1824       break;
1825   }
1826 
1827   // Clear xmm register and return if shift more than byte length.
1828   int imm = mir->dalvikInsn.vB;
1829   if (imm >= 8) {
1830     NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_dest_src1.GetReg());
1831     return;
1832   }
1833 
1834   // Shift lower values.
1835   NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1836 
1837   /*
1838    * The above shift will shift the whole word, but that means
1839    * both the bytes will shift as well. To emulate a byte level
1840    * shift, we can just throw away the lower (8 - N) bits of the
1841    * upper byte, and we are done.
1842    */
1843   uint8_t byte_mask = 0xFF << imm;
1844   uint32_t int_mask = byte_mask;
1845   int_mask = int_mask << 8 | byte_mask;
1846   int_mask = int_mask << 8 | byte_mask;
1847   int_mask = int_mask << 8 | byte_mask;
1848 
1849   // And the destination with the mask
1850   AndMaskVectorRegister(rs_dest_src1, int_mask, int_mask, int_mask, int_mask);
1851 }
1852 
GenShiftLeftVector(MIR * mir)1853 void X86Mir2Lir::GenShiftLeftVector(MIR* mir) {
1854   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1855   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1856   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1857   Clobber(rs_dest_src1);
1858   int imm = mir->dalvikInsn.vB;
1859   int opcode = 0;
1860   switch (opsize) {
1861     case k32:
1862       opcode = kX86PslldRI;
1863       break;
1864     case k64:
1865       opcode = kX86PsllqRI;
1866       break;
1867     case kSignedHalf:
1868     case kUnsignedHalf:
1869       opcode = kX86PsllwRI;
1870       break;
1871     case kSignedByte:
1872     case kUnsignedByte:
1873       GenShiftByteVector(mir);
1874       return;
1875     default:
1876       LOG(FATAL) << "Unsupported vector shift left " << opsize;
1877       break;
1878   }
1879   NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1880 }
1881 
GenSignedShiftRightVector(MIR * mir)1882 void X86Mir2Lir::GenSignedShiftRightVector(MIR* mir) {
1883   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1884   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1885   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1886   Clobber(rs_dest_src1);
1887   int imm = mir->dalvikInsn.vB;
1888   int opcode = 0;
1889   switch (opsize) {
1890     case k32:
1891       opcode = kX86PsradRI;
1892       break;
1893     case kSignedHalf:
1894     case kUnsignedHalf:
1895       opcode = kX86PsrawRI;
1896       break;
1897     case kSignedByte:
1898     case kUnsignedByte:
1899       GenShiftByteVector(mir);
1900       return;
1901     case k64:
1902       // TODO Implement emulated shift algorithm.
1903     default:
1904       LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1905       UNREACHABLE();
1906   }
1907   NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1908 }
1909 
GenUnsignedShiftRightVector(MIR * mir)1910 void X86Mir2Lir::GenUnsignedShiftRightVector(MIR* mir) {
1911   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1912   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1913   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1914   Clobber(rs_dest_src1);
1915   int imm = mir->dalvikInsn.vB;
1916   int opcode = 0;
1917   switch (opsize) {
1918     case k32:
1919       opcode = kX86PsrldRI;
1920       break;
1921     case k64:
1922       opcode = kX86PsrlqRI;
1923       break;
1924     case kSignedHalf:
1925     case kUnsignedHalf:
1926       opcode = kX86PsrlwRI;
1927       break;
1928     case kSignedByte:
1929     case kUnsignedByte:
1930       GenShiftByteVector(mir);
1931       return;
1932     default:
1933       LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1934       break;
1935   }
1936   NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1937 }
1938 
GenAndVector(MIR * mir)1939 void X86Mir2Lir::GenAndVector(MIR* mir) {
1940   // We only support 128 bit registers.
1941   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1942   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1943   Clobber(rs_dest_src1);
1944   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1945   NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1946 }
1947 
GenOrVector(MIR * mir)1948 void X86Mir2Lir::GenOrVector(MIR* mir) {
1949   // We only support 128 bit registers.
1950   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1951   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1952   Clobber(rs_dest_src1);
1953   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1954   NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1955 }
1956 
GenXorVector(MIR * mir)1957 void X86Mir2Lir::GenXorVector(MIR* mir) {
1958   // We only support 128 bit registers.
1959   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
1960   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
1961   Clobber(rs_dest_src1);
1962   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
1963   NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1964 }
1965 
AndMaskVectorRegister(RegStorage rs_src1,uint32_t m1,uint32_t m2,uint32_t m3,uint32_t m4)1966 void X86Mir2Lir::AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4) {
1967   MaskVectorRegister(kX86PandRM, rs_src1, m1, m2, m3, m4);
1968 }
1969 
MaskVectorRegister(X86OpCode opcode,RegStorage rs_src1,uint32_t m0,uint32_t m1,uint32_t m2,uint32_t m3)1970 void X86Mir2Lir::MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m0, uint32_t m1, uint32_t m2, uint32_t m3) {
1971   // Create temporary MIR as container for 128-bit binary mask.
1972   MIR const_mir;
1973   MIR* const_mirp = &const_mir;
1974   const_mirp->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpConstVector);
1975   const_mirp->dalvikInsn.arg[0] = m0;
1976   const_mirp->dalvikInsn.arg[1] = m1;
1977   const_mirp->dalvikInsn.arg[2] = m2;
1978   const_mirp->dalvikInsn.arg[3] = m3;
1979 
1980   // Mask vector with const from literal pool.
1981   AppendOpcodeWithConst(opcode, rs_src1.GetReg(), const_mirp);
1982 }
1983 
GenAddReduceVector(MIR * mir)1984 void X86Mir2Lir::GenAddReduceVector(MIR* mir) {
1985   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1986   RegStorage vector_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1987   bool is_wide = opsize == k64 || opsize == kDouble;
1988 
1989   // Get the location of the virtual register. Since this bytecode is overloaded
1990   // for different types (and sizes), we need different logic for each path.
1991   // The design of bytecode uses same VR for source and destination.
1992   RegLocation rl_src, rl_dest, rl_result;
1993   if (is_wide) {
1994     rl_src = mir_graph_->GetSrcWide(mir, 0);
1995     rl_dest = mir_graph_->GetDestWide(mir);
1996   } else {
1997     rl_src = mir_graph_->GetSrc(mir, 0);
1998     rl_dest = mir_graph_->GetDest(mir);
1999   }
2000 
2001   // We need a temp for byte and short values
2002   RegStorage temp;
2003 
2004   // There is a different path depending on type and size.
2005   if (opsize == kSingle) {
2006     // Handle float case.
2007     // TODO Add support for fast math (not value safe) and do horizontal add in that case.
2008 
2009     rl_src = LoadValue(rl_src, kFPReg);
2010     rl_result = EvalLoc(rl_dest, kFPReg, true);
2011 
2012     // Since we are doing an add-reduce, we move the reg holding the VR
2013     // into the result so we include it in result.
2014     OpRegCopy(rl_result.reg, rl_src.reg);
2015     NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg());
2016 
2017     // Since FP must keep order of operation for value safety, we shift to low
2018     // 32-bits and add to result.
2019     for (int i = 0; i < 3; i++) {
2020       NewLIR3(kX86ShufpsRRI, vector_src.GetReg(), vector_src.GetReg(), 0x39);
2021       NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg());
2022     }
2023 
2024     StoreValue(rl_dest, rl_result);
2025   } else if (opsize == kDouble) {
2026     // Handle double case.
2027     rl_src = LoadValueWide(rl_src, kFPReg);
2028     rl_result = EvalLocWide(rl_dest, kFPReg, true);
2029     LOG(FATAL) << "Unsupported vector add reduce for double.";
2030   } else if (opsize == k64) {
2031     /*
2032      * Handle long case:
2033      * 1) Reduce the vector register to lower half (with addition).
2034      * 1-1) Get an xmm temp and fill it with vector register.
2035      * 1-2) Shift the xmm temp by 8-bytes.
2036      * 1-3) Add the xmm temp to vector register that is being reduced.
2037      * 2) Allocate temp GP / GP pair.
2038      * 2-1) In 64-bit case, use movq to move result to a 64-bit GP.
2039      * 2-2) In 32-bit case, use movd twice to move to 32-bit GP pair.
2040      * 3) Finish the add reduction by doing what add-long/2addr does,
2041      * but instead of having a VR as one of the sources, we have our temp GP.
2042      */
2043     RegStorage rs_tmp_vector = Get128BitRegister(AllocTempDouble());
2044     NewLIR2(kX86MovdqaRR, rs_tmp_vector.GetReg(), vector_src.GetReg());
2045     NewLIR2(kX86PsrldqRI, rs_tmp_vector.GetReg(), 8);
2046     NewLIR2(kX86PaddqRR, vector_src.GetReg(), rs_tmp_vector.GetReg());
2047     FreeTemp(rs_tmp_vector);
2048 
2049     // We would like to be able to reuse the add-long implementation, so set up a fake
2050     // register location to pass it.
2051     RegLocation temp_loc = mir_graph_->GetBadLoc();
2052     temp_loc.core = 1;
2053     temp_loc.wide = 1;
2054     temp_loc.location = kLocPhysReg;
2055     temp_loc.reg = AllocTempWide();
2056 
2057     if (cu_->target64) {
2058       DCHECK(!temp_loc.reg.IsPair());
2059       NewLIR2(kX86MovqrxRR, temp_loc.reg.GetReg(), vector_src.GetReg());
2060     } else {
2061       NewLIR2(kX86MovdrxRR, temp_loc.reg.GetLowReg(), vector_src.GetReg());
2062       NewLIR2(kX86PsrlqRI, vector_src.GetReg(), 0x20);
2063       NewLIR2(kX86MovdrxRR, temp_loc.reg.GetHighReg(), vector_src.GetReg());
2064     }
2065 
2066     GenArithOpLong(Instruction::ADD_LONG_2ADDR, rl_dest, temp_loc, temp_loc, mir->optimization_flags);
2067   } else if (opsize == kSignedByte || opsize == kUnsignedByte) {
2068     RegStorage rs_tmp = Get128BitRegister(AllocTempDouble());
2069     NewLIR2(kX86PxorRR, rs_tmp.GetReg(), rs_tmp.GetReg());
2070     NewLIR2(kX86PsadbwRR, vector_src.GetReg(), rs_tmp.GetReg());
2071     NewLIR3(kX86PshufdRRI, rs_tmp.GetReg(), vector_src.GetReg(), 0x4e);
2072     NewLIR2(kX86PaddbRR, vector_src.GetReg(), rs_tmp.GetReg());
2073     // Move to a GPR
2074     temp = AllocTemp();
2075     NewLIR2(kX86MovdrxRR, temp.GetReg(), vector_src.GetReg());
2076   } else {
2077     // Handle and the int and short cases together
2078 
2079     // Initialize as if we were handling int case. Below we update
2080     // the opcode if handling byte or short.
2081     int vec_bytes = (mir->dalvikInsn.vC & 0xFFFF) / 8;
2082     int vec_unit_size;
2083     int horizontal_add_opcode;
2084     int extract_opcode;
2085 
2086     if (opsize == kSignedHalf || opsize == kUnsignedHalf) {
2087       extract_opcode = kX86PextrwRRI;
2088       horizontal_add_opcode = kX86PhaddwRR;
2089       vec_unit_size = 2;
2090     } else if (opsize == k32) {
2091       vec_unit_size = 4;
2092       horizontal_add_opcode = kX86PhadddRR;
2093       extract_opcode = kX86PextrdRRI;
2094     } else {
2095       LOG(FATAL) << "Unsupported vector add reduce " << opsize;
2096       return;
2097     }
2098 
2099     int elems = vec_bytes / vec_unit_size;
2100 
2101     while (elems > 1) {
2102       NewLIR2(horizontal_add_opcode, vector_src.GetReg(), vector_src.GetReg());
2103       elems >>= 1;
2104     }
2105 
2106     // Handle this as arithmetic unary case.
2107     ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2108 
2109     // Extract to a GP register because this is integral typed.
2110     temp = AllocTemp();
2111     NewLIR3(extract_opcode, temp.GetReg(), vector_src.GetReg(), 0);
2112   }
2113 
2114   if (opsize != k64 && opsize != kSingle && opsize != kDouble) {
2115     // The logic below looks very similar to the handling of ADD_INT_2ADDR
2116     // except the rhs is not a VR but a physical register allocated above.
2117     // No load of source VR is done because it assumes that rl_result will
2118     // share physical register / memory location.
2119     rl_result = UpdateLocTyped(rl_dest);
2120     if (rl_result.location == kLocPhysReg) {
2121       // Ensure res is in a core reg.
2122       rl_result = EvalLoc(rl_dest, kCoreReg, true);
2123       OpRegReg(kOpAdd, rl_result.reg, temp);
2124       StoreFinalValue(rl_dest, rl_result);
2125     } else {
2126       // Do the addition directly to memory.
2127       ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2128       OpMemReg(kOpAdd, rl_result, temp.GetReg());
2129     }
2130   }
2131 }
2132 
GenReduceVector(MIR * mir)2133 void X86Mir2Lir::GenReduceVector(MIR* mir) {
2134   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2135   RegLocation rl_dest = mir_graph_->GetDest(mir);
2136   RegStorage vector_src = RegStorage::Solo128(mir->dalvikInsn.vB);
2137   RegLocation rl_result;
2138   bool is_wide = false;
2139 
2140   // There is a different path depending on type and size.
2141   if (opsize == kSingle) {
2142     // Handle float case.
2143     // TODO Add support for fast math (not value safe) and do horizontal add in that case.
2144 
2145     int extract_index = mir->dalvikInsn.arg[0];
2146 
2147     rl_result = EvalLoc(rl_dest, kFPReg, true);
2148     NewLIR2(kX86PxorRR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
2149 
2150     if (LIKELY(extract_index != 0)) {
2151       // We know the index of element which we want to extract. We want to extract it and
2152       // keep values in vector register correct for future use. So the way we act is:
2153       // 1. Generate shuffle mask that allows to swap zeroth and required elements;
2154       // 2. Shuffle vector register with this mask;
2155       // 3. Extract zeroth element where required value lies;
2156       // 4. Shuffle with same mask again to restore original values in vector register.
2157       // The mask is generated from equivalence mask 0b11100100 swapping 0th and extracted
2158       // element indices.
2159       int shuffle[4] = {0b00, 0b01, 0b10, 0b11};
2160       shuffle[0] = extract_index;
2161       shuffle[extract_index] = 0;
2162       int mask = 0;
2163       for (int i = 0; i < 4; i++) {
2164         mask |= (shuffle[i] << (2 * i));
2165       }
2166       NewLIR3(kX86ShufpsRRI, vector_src.GetReg(), vector_src.GetReg(), mask);
2167       NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg());
2168       NewLIR3(kX86ShufpsRRI, vector_src.GetReg(), vector_src.GetReg(), mask);
2169     } else {
2170       // We need to extract zeroth element and don't need any complex stuff to do it.
2171       NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg());
2172     }
2173 
2174     StoreFinalValue(rl_dest, rl_result);
2175   } else if (opsize == kDouble) {
2176     // TODO Handle double case.
2177     LOG(FATAL) << "Unsupported add reduce for double.";
2178   } else if (opsize == k64) {
2179     /*
2180      * Handle long case:
2181      * 1) Reduce the vector register to lower half (with addition).
2182      * 1-1) Get an xmm temp and fill it with vector register.
2183      * 1-2) Shift the xmm temp by 8-bytes.
2184      * 1-3) Add the xmm temp to vector register that is being reduced.
2185      * 2) Evaluate destination to a GP / GP pair.
2186      * 2-1) In 64-bit case, use movq to move result to a 64-bit GP.
2187      * 2-2) In 32-bit case, use movd twice to move to 32-bit GP pair.
2188      * 3) Store the result to the final destination.
2189      */
2190     NewLIR2(kX86PsrldqRI, vector_src.GetReg(), 8);
2191     rl_result = EvalLocWide(rl_dest, kCoreReg, true);
2192     if (cu_->target64) {
2193       DCHECK(!rl_result.reg.IsPair());
2194       NewLIR2(kX86MovqrxRR, rl_result.reg.GetReg(), vector_src.GetReg());
2195     } else {
2196       NewLIR2(kX86MovdrxRR, rl_result.reg.GetLowReg(), vector_src.GetReg());
2197       NewLIR2(kX86PsrlqRI, vector_src.GetReg(), 0x20);
2198       NewLIR2(kX86MovdrxRR, rl_result.reg.GetHighReg(), vector_src.GetReg());
2199     }
2200 
2201     StoreValueWide(rl_dest, rl_result);
2202   } else {
2203     int extract_index = mir->dalvikInsn.arg[0];
2204     int extr_opcode = 0;
2205     rl_result = UpdateLocTyped(rl_dest);
2206 
2207     // Handle the rest of integral types now.
2208     switch (opsize) {
2209       case k32:
2210         extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrdRRI : kX86PextrdMRI;
2211         break;
2212       case kSignedHalf:
2213       case kUnsignedHalf:
2214         extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrwRRI : kX86PextrwMRI;
2215         break;
2216       case kSignedByte:
2217         extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrbRRI : kX86PextrbMRI;
2218         break;
2219       default:
2220         LOG(FATAL) << "Unsupported vector reduce " << opsize;
2221         UNREACHABLE();
2222     }
2223 
2224     if (rl_result.location == kLocPhysReg) {
2225       NewLIR3(extr_opcode, rl_result.reg.GetReg(), vector_src.GetReg(), extract_index);
2226       StoreFinalValue(rl_dest, rl_result);
2227     } else {
2228       int displacement = SRegOffset(rl_result.s_reg_low);
2229       ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2230       LIR *l = NewLIR4(extr_opcode, rs_rX86_SP_32.GetReg(), displacement, vector_src.GetReg(),
2231                        extract_index);
2232       AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is_wide /* is_64bit */);
2233     }
2234   }
2235 }
2236 
LoadVectorRegister(RegStorage rs_dest,RegStorage rs_src,OpSize opsize,int op_mov)2237 void X86Mir2Lir::LoadVectorRegister(RegStorage rs_dest, RegStorage rs_src,
2238                                     OpSize opsize, int op_mov) {
2239   if (!cu_->target64 && opsize == k64) {
2240     // Logic assumes that longs are loaded in GP register pairs.
2241     NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rs_src.GetLowReg());
2242     RegStorage r_tmp = AllocTempDouble();
2243     NewLIR2(kX86MovdxrRR, r_tmp.GetReg(), rs_src.GetHighReg());
2244     NewLIR2(kX86PunpckldqRR, rs_dest.GetReg(), r_tmp.GetReg());
2245     FreeTemp(r_tmp);
2246   } else {
2247     NewLIR2(op_mov, rs_dest.GetReg(), rs_src.GetReg());
2248   }
2249 }
2250 
GenSetVector(MIR * mir)2251 void X86Mir2Lir::GenSetVector(MIR* mir) {
2252   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
2253   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
2254   RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
2255   Clobber(rs_dest);
2256   int op_shuffle = 0, op_shuffle_high = 0, op_mov = kX86MovdxrRR;
2257   RegisterClass reg_type = kCoreReg;
2258   bool is_wide = false;
2259 
2260   switch (opsize) {
2261     case k32:
2262       op_shuffle = kX86PshufdRRI;
2263       break;
2264     case kSingle:
2265       op_shuffle = kX86PshufdRRI;
2266       op_mov = kX86MovdqaRR;
2267       reg_type = kFPReg;
2268       break;
2269     case k64:
2270       op_shuffle = kX86PunpcklqdqRR;
2271       op_mov = kX86MovqxrRR;
2272       is_wide = true;
2273       break;
2274     case kSignedByte:
2275     case kUnsignedByte:
2276       // We will have the source loaded up in a
2277       // double-word before we use this shuffle
2278       op_shuffle = kX86PshufdRRI;
2279       break;
2280     case kSignedHalf:
2281     case kUnsignedHalf:
2282       // Handles low quadword.
2283       op_shuffle = kX86PshuflwRRI;
2284       // Handles upper quadword.
2285       op_shuffle_high = kX86PshufdRRI;
2286       break;
2287     default:
2288       LOG(FATAL) << "Unsupported vector set " << opsize;
2289       break;
2290   }
2291 
2292   // Load the value from the VR into a physical register.
2293   RegLocation rl_src;
2294   if (!is_wide) {
2295     rl_src = mir_graph_->GetSrc(mir, 0);
2296     rl_src = LoadValue(rl_src, reg_type);
2297   } else {
2298     rl_src = mir_graph_->GetSrcWide(mir, 0);
2299     rl_src = LoadValueWide(rl_src, reg_type);
2300   }
2301   RegStorage reg_to_shuffle = rl_src.reg;
2302 
2303   // Load the value into the XMM register.
2304   LoadVectorRegister(rs_dest, reg_to_shuffle, opsize, op_mov);
2305 
2306   if (opsize == kSignedByte || opsize == kUnsignedByte) {
2307     // In the byte case, first duplicate it to be a word
2308     // Then duplicate it to be a double-word
2309     NewLIR2(kX86PunpcklbwRR, rs_dest.GetReg(), rs_dest.GetReg());
2310     NewLIR2(kX86PunpcklwdRR, rs_dest.GetReg(), rs_dest.GetReg());
2311   }
2312 
2313   // Now shuffle the value across the destination.
2314   if (op_shuffle == kX86PunpcklqdqRR) {
2315     NewLIR2(op_shuffle, rs_dest.GetReg(), rs_dest.GetReg());
2316   } else {
2317     NewLIR3(op_shuffle, rs_dest.GetReg(), rs_dest.GetReg(), 0);
2318   }
2319 
2320   // And then repeat as needed.
2321   if (op_shuffle_high != 0) {
2322     NewLIR3(op_shuffle_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
2323   }
2324 }
2325 
GenPackedArrayGet(BasicBlock * bb,MIR * mir)2326 void X86Mir2Lir::GenPackedArrayGet(BasicBlock* bb, MIR* mir) {
2327   UNUSED(bb, mir);
2328   UNIMPLEMENTED(FATAL) << "Extended opcode kMirOpPackedArrayGet not supported.";
2329 }
2330 
GenPackedArrayPut(BasicBlock * bb,MIR * mir)2331 void X86Mir2Lir::GenPackedArrayPut(BasicBlock* bb, MIR* mir) {
2332   UNUSED(bb, mir);
2333   UNIMPLEMENTED(FATAL) << "Extended opcode kMirOpPackedArrayPut not supported.";
2334 }
2335 
ScanVectorLiteral(int32_t * constants)2336 LIR* X86Mir2Lir::ScanVectorLiteral(int32_t* constants) {
2337   for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
2338     if (constants[0] == p->operands[0] && constants[1] == p->operands[1] &&
2339         constants[2] == p->operands[2] && constants[3] == p->operands[3]) {
2340       return p;
2341     }
2342   }
2343   return nullptr;
2344 }
2345 
AddVectorLiteral(int32_t * constants)2346 LIR* X86Mir2Lir::AddVectorLiteral(int32_t* constants) {
2347   LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
2348   new_value->operands[0] = constants[0];
2349   new_value->operands[1] = constants[1];
2350   new_value->operands[2] = constants[2];
2351   new_value->operands[3] = constants[3];
2352   new_value->next = const_vectors_;
2353   if (const_vectors_ == nullptr) {
2354     estimated_native_code_size_ += 12;  // Maximum needed to align to 16 byte boundary.
2355   }
2356   estimated_native_code_size_ += 16;  // Space for one vector.
2357   const_vectors_ = new_value;
2358   return new_value;
2359 }
2360 
2361 // ------------ ABI support: mapping of args to physical registers -------------
GetNextReg(ShortyArg arg)2362 RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(ShortyArg arg) {
2363   const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5};
2364   const size_t coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg);
2365   const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3,
2366                                                              kFArg4, kFArg5, kFArg6, kFArg7};
2367   const size_t fpArgMappingToPhysicalRegSize = arraysize(fpArgMappingToPhysicalReg);
2368 
2369   if (arg.IsFP()) {
2370     if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
2371       return m2l_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++],
2372                              arg.IsWide() ? kWide : kNotWide);
2373     }
2374   } else {
2375     if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
2376       return m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++],
2377                              arg.IsRef() ? kRef : (arg.IsWide() ? kWide : kNotWide));
2378     }
2379   }
2380   return RegStorage::InvalidReg();
2381 }
2382 
GetNextReg(ShortyArg arg)2383 RegStorage X86Mir2Lir::InToRegStorageX86Mapper::GetNextReg(ShortyArg arg) {
2384   const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3};
2385   const size_t coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg);
2386   const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3};
2387   const size_t fpArgMappingToPhysicalRegSize = arraysize(fpArgMappingToPhysicalReg);
2388 
2389   RegStorage result = RegStorage::InvalidReg();
2390   if (arg.IsFP()) {
2391     if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
2392       return m2l_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++],
2393                              arg.IsWide() ? kWide : kNotWide);
2394     }
2395   } else if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
2396     result = m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++],
2397                              arg.IsRef() ? kRef : kNotWide);
2398     if (arg.IsWide()) {
2399       // This must be a long, as double is handled above.
2400       // Ensure that we don't split a long across the last register and the stack.
2401       if (cur_core_reg_ == coreArgMappingToPhysicalRegSize) {
2402         // Leave the last core register unused and force the whole long to the stack.
2403         cur_core_reg_++;
2404         result = RegStorage::InvalidReg();
2405       } else if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
2406         result = RegStorage::MakeRegPair(
2407             result, m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], kNotWide));
2408       }
2409     }
2410   }
2411   return result;
2412 }
2413 
2414 // ---------End of ABI support: mapping of args to physical registers -------------
2415 
GenInlinedCharAt(CallInfo * info)2416 bool X86Mir2Lir::GenInlinedCharAt(CallInfo* info) {
2417   // Location of reference to data array
2418   int value_offset = mirror::String::ValueOffset().Int32Value();
2419   // Location of count
2420   int count_offset = mirror::String::CountOffset().Int32Value();
2421 
2422   RegLocation rl_obj = info->args[0];
2423   RegLocation rl_idx = info->args[1];
2424   rl_obj = LoadValue(rl_obj, kRefReg);
2425   rl_idx = LoadValue(rl_idx, kCoreReg);
2426   RegStorage reg_max;
2427   GenNullCheck(rl_obj.reg, info->opt_flags);
2428   bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
2429   LIR* range_check_branch = nullptr;
2430   if (range_check) {
2431     // On x86, we can compare to memory directly
2432     // Set up a launch pad to allow retry in case of bounds violation */
2433     if (rl_idx.is_const) {
2434       LIR* comparison;
2435       range_check_branch = OpCmpMemImmBranch(
2436           kCondLs, RegStorage::InvalidReg(), rl_obj.reg, count_offset,
2437           mir_graph_->ConstantValue(rl_idx.orig_sreg), nullptr, &comparison);
2438       MarkPossibleNullPointerExceptionAfter(0, comparison);
2439     } else {
2440       OpRegMem(kOpCmp, rl_idx.reg, rl_obj.reg, count_offset);
2441       MarkPossibleNullPointerException(0);
2442       range_check_branch = OpCondBranch(kCondUge, nullptr);
2443     }
2444   }
2445   RegLocation rl_dest = InlineTarget(info);
2446   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
2447   LoadBaseIndexedDisp(rl_obj.reg, rl_idx.reg, 1, value_offset, rl_result.reg, kUnsignedHalf);
2448   FreeTemp(rl_idx.reg);
2449   FreeTemp(rl_obj.reg);
2450   StoreValue(rl_dest, rl_result);
2451   if (range_check) {
2452     DCHECK(range_check_branch != nullptr);
2453     info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've already null checked.
2454     AddIntrinsicSlowPath(info, range_check_branch);
2455   }
2456   return true;
2457 }
2458 
GenInlinedCurrentThread(CallInfo * info)2459 bool X86Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
2460   RegLocation rl_dest = InlineTarget(info);
2461 
2462   // Early exit if the result is unused.
2463   if (rl_dest.orig_sreg < 0) {
2464     return true;
2465   }
2466 
2467   RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
2468 
2469   if (cu_->target64) {
2470     OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<8>());
2471   } else {
2472     OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<4>());
2473   }
2474 
2475   StoreValue(rl_dest, rl_result);
2476   return true;
2477 }
2478 
2479 /**
2480  * Lock temp registers for explicit usage. Registers will be freed in destructor.
2481  */
ExplicitTempRegisterLock(X86Mir2Lir * mir_to_lir,int n_regs,...)2482 X86Mir2Lir::ExplicitTempRegisterLock::ExplicitTempRegisterLock(X86Mir2Lir* mir_to_lir,
2483                                                                int n_regs, ...) :
2484     temp_regs_(n_regs),
2485     mir_to_lir_(mir_to_lir) {
2486   va_list regs;
2487   va_start(regs, n_regs);
2488   for (int i = 0; i < n_regs; i++) {
2489     RegStorage reg = *(va_arg(regs, RegStorage*));
2490     RegisterInfo* info = mir_to_lir_->GetRegInfo(reg);
2491 
2492     // Make sure we don't have promoted register here.
2493     DCHECK(info->IsTemp());
2494 
2495     temp_regs_.push_back(reg);
2496     mir_to_lir_->FlushReg(reg);
2497 
2498     if (reg.IsPair()) {
2499       RegStorage partner = info->Partner();
2500       temp_regs_.push_back(partner);
2501       mir_to_lir_->FlushReg(partner);
2502     }
2503 
2504     mir_to_lir_->Clobber(reg);
2505     mir_to_lir_->LockTemp(reg);
2506   }
2507 
2508   va_end(regs);
2509 }
2510 
2511 /*
2512  * Free all locked registers.
2513  */
~ExplicitTempRegisterLock()2514 X86Mir2Lir::ExplicitTempRegisterLock::~ExplicitTempRegisterLock() {
2515   // Free all locked temps.
2516   for (auto it : temp_regs_) {
2517     mir_to_lir_->FreeTemp(it);
2518   }
2519 }
2520 
GenDalvikArgsBulkCopy(CallInfo * info,int first,int count)2521 int X86Mir2Lir::GenDalvikArgsBulkCopy(CallInfo* info, int first, int count) {
2522   if (count < 4) {
2523     // It does not make sense to use this utility if we have no chance to use
2524     // 128-bit move.
2525     return count;
2526   }
2527   GenDalvikArgsFlushPromoted(info, first);
2528 
2529   // The rest can be copied together
2530   int current_src_offset = SRegOffset(info->args[first].s_reg_low);
2531   int current_dest_offset = StackVisitor::GetOutVROffset(first, cu_->instruction_set);
2532 
2533   // Only davik regs are accessed in this loop; no next_call_insn() calls.
2534   ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2535   while (count > 0) {
2536     // This is based on the knowledge that the stack itself is 16-byte aligned.
2537     bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2538     bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2539     size_t bytes_to_move;
2540 
2541     /*
2542      * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2543      * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2544      * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2545      * We do this because we could potentially do a smaller move to align.
2546      */
2547     if (count == 4 || (count > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2548       // Moving 128-bits via xmm register.
2549       bytes_to_move = sizeof(uint32_t) * 4;
2550 
2551       // Allocate a free xmm temp. Since we are working through the calling sequence,
2552       // we expect to have an xmm temporary available. AllocTempDouble will abort if
2553       // there are no free registers.
2554       RegStorage temp = AllocTempDouble();
2555 
2556       LIR* ld1 = nullptr;
2557       LIR* ld2 = nullptr;
2558       LIR* st1 = nullptr;
2559       LIR* st2 = nullptr;
2560 
2561       /*
2562        * The logic is similar for both loads and stores. If we have 16-byte alignment,
2563        * do an aligned move. If we have 8-byte alignment, then do the move in two
2564        * parts. This approach prevents possible cache line splits. Finally, fall back
2565        * to doing an unaligned move. In most cases we likely won't split the cache
2566        * line but we cannot prove it and thus take a conservative approach.
2567        */
2568       bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2569       bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2570 
2571       if (src_is_16b_aligned) {
2572         ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovA128FP);
2573       } else if (src_is_8b_aligned) {
2574         ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovLo128FP);
2575         ld2 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset + (bytes_to_move >> 1),
2576                           kMovHi128FP);
2577       } else {
2578         ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovU128FP);
2579       }
2580 
2581       if (dest_is_16b_aligned) {
2582         st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovA128FP);
2583       } else if (dest_is_8b_aligned) {
2584         st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovLo128FP);
2585         st2 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset + (bytes_to_move >> 1),
2586                           temp, kMovHi128FP);
2587       } else {
2588         st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovU128FP);
2589       }
2590 
2591       // TODO If we could keep track of aliasing information for memory accesses that are wider
2592       // than 64-bit, we wouldn't need to set up a barrier.
2593       if (ld1 != nullptr) {
2594         if (ld2 != nullptr) {
2595           // For 64-bit load we can actually set up the aliasing information.
2596           AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2597           AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true,
2598                                   true);
2599         } else {
2600           // Set barrier for 128-bit load.
2601           ld1->u.m.def_mask = &kEncodeAll;
2602         }
2603       }
2604       if (st1 != nullptr) {
2605         if (st2 != nullptr) {
2606           // For 64-bit store we can actually set up the aliasing information.
2607           AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2608           AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false,
2609                                   true);
2610         } else {
2611           // Set barrier for 128-bit store.
2612           st1->u.m.def_mask = &kEncodeAll;
2613         }
2614       }
2615 
2616       // Free the temporary used for the data movement.
2617       FreeTemp(temp);
2618     } else {
2619       // Moving 32-bits via general purpose register.
2620       bytes_to_move = sizeof(uint32_t);
2621 
2622       // Instead of allocating a new temp, simply reuse one of the registers being used
2623       // for argument passing.
2624       RegStorage temp = TargetReg(kArg3, kNotWide);
2625 
2626       // Now load the argument VR and store to the outs.
2627       Load32Disp(TargetPtrReg(kSp), current_src_offset, temp);
2628       Store32Disp(TargetPtrReg(kSp), current_dest_offset, temp);
2629     }
2630 
2631     current_src_offset += bytes_to_move;
2632     current_dest_offset += bytes_to_move;
2633     count -= (bytes_to_move >> 2);
2634   }
2635   DCHECK_EQ(count, 0);
2636   return count;
2637 }
2638 
2639 }  // namespace art
2640