1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18 #define ART_COMPILER_OPTIMIZING_NODES_H_
19
20 #include "base/arena_containers.h"
21 #include "base/arena_object.h"
22 #include "dex/compiler_enums.h"
23 #include "entrypoints/quick/quick_entrypoints_enum.h"
24 #include "handle.h"
25 #include "handle_scope.h"
26 #include "invoke_type.h"
27 #include "locations.h"
28 #include "mirror/class.h"
29 #include "offsets.h"
30 #include "primitive.h"
31 #include "utils/arena_bit_vector.h"
32 #include "utils/growable_array.h"
33
34 namespace art {
35
36 class GraphChecker;
37 class HBasicBlock;
38 class HDoubleConstant;
39 class HEnvironment;
40 class HFloatConstant;
41 class HGraphVisitor;
42 class HInstruction;
43 class HIntConstant;
44 class HInvoke;
45 class HLongConstant;
46 class HNullConstant;
47 class HPhi;
48 class HSuspendCheck;
49 class LiveInterval;
50 class LocationSummary;
51 class SlowPathCode;
52 class SsaBuilder;
53
54 static const int kDefaultNumberOfBlocks = 8;
55 static const int kDefaultNumberOfSuccessors = 2;
56 static const int kDefaultNumberOfPredecessors = 2;
57 static const int kDefaultNumberOfDominatedBlocks = 1;
58 static const int kDefaultNumberOfBackEdges = 1;
59
60 static constexpr uint32_t kMaxIntShiftValue = 0x1f;
61 static constexpr uint64_t kMaxLongShiftValue = 0x3f;
62
63 enum IfCondition {
64 kCondEQ,
65 kCondNE,
66 kCondLT,
67 kCondLE,
68 kCondGT,
69 kCondGE,
70 };
71
72 class HInstructionList {
73 public:
HInstructionList()74 HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
75
76 void AddInstruction(HInstruction* instruction);
77 void RemoveInstruction(HInstruction* instruction);
78
79 // Insert `instruction` before/after an existing instruction `cursor`.
80 void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
81 void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
82
83 // Return true if this list contains `instruction`.
84 bool Contains(HInstruction* instruction) const;
85
86 // Return true if `instruction1` is found before `instruction2` in
87 // this instruction list and false otherwise. Abort if none
88 // of these instructions is found.
89 bool FoundBefore(const HInstruction* instruction1,
90 const HInstruction* instruction2) const;
91
IsEmpty()92 bool IsEmpty() const { return first_instruction_ == nullptr; }
Clear()93 void Clear() { first_instruction_ = last_instruction_ = nullptr; }
94
95 // Update the block of all instructions to be `block`.
96 void SetBlockOfInstructions(HBasicBlock* block) const;
97
98 void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
99 void Add(const HInstructionList& instruction_list);
100
101 // Return the number of instructions in the list. This is an expensive operation.
102 size_t CountSize() const;
103
104 private:
105 HInstruction* first_instruction_;
106 HInstruction* last_instruction_;
107
108 friend class HBasicBlock;
109 friend class HGraph;
110 friend class HInstruction;
111 friend class HInstructionIterator;
112 friend class HBackwardInstructionIterator;
113
114 DISALLOW_COPY_AND_ASSIGN(HInstructionList);
115 };
116
117 // Control-flow graph of a method. Contains a list of basic blocks.
118 class HGraph : public ArenaObject<kArenaAllocMisc> {
119 public:
120 HGraph(ArenaAllocator* arena,
121 const DexFile& dex_file,
122 uint32_t method_idx,
123 InstructionSet instruction_set,
124 bool debuggable = false,
125 int start_instruction_id = 0)
arena_(arena)126 : arena_(arena),
127 blocks_(arena, kDefaultNumberOfBlocks),
128 reverse_post_order_(arena, kDefaultNumberOfBlocks),
129 linear_order_(arena, kDefaultNumberOfBlocks),
130 entry_block_(nullptr),
131 exit_block_(nullptr),
132 maximum_number_of_out_vregs_(0),
133 number_of_vregs_(0),
134 number_of_in_vregs_(0),
135 temporaries_vreg_slots_(0),
136 has_bounds_checks_(false),
137 debuggable_(debuggable),
138 current_instruction_id_(start_instruction_id),
139 dex_file_(dex_file),
140 method_idx_(method_idx),
141 instruction_set_(instruction_set),
142 cached_null_constant_(nullptr),
143 cached_int_constants_(std::less<int32_t>(), arena->Adapter()),
144 cached_float_constants_(std::less<int32_t>(), arena->Adapter()),
145 cached_long_constants_(std::less<int64_t>(), arena->Adapter()),
146 cached_double_constants_(std::less<int64_t>(), arena->Adapter()) {}
147
GetArena()148 ArenaAllocator* GetArena() const { return arena_; }
GetBlocks()149 const GrowableArray<HBasicBlock*>& GetBlocks() const { return blocks_; }
GetBlock(size_t id)150 HBasicBlock* GetBlock(size_t id) const { return blocks_.Get(id); }
151
GetEntryBlock()152 HBasicBlock* GetEntryBlock() const { return entry_block_; }
GetExitBlock()153 HBasicBlock* GetExitBlock() const { return exit_block_; }
154
SetEntryBlock(HBasicBlock * block)155 void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
SetExitBlock(HBasicBlock * block)156 void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
157
158 void AddBlock(HBasicBlock* block);
159
160 // Try building the SSA form of this graph, with dominance computation and loop
161 // recognition. Returns whether it was successful in doing all these steps.
TryBuildingSsa()162 bool TryBuildingSsa() {
163 BuildDominatorTree();
164 // The SSA builder requires loops to all be natural. Specifically, the dead phi
165 // elimination phase checks the consistency of the graph when doing a post-order
166 // visit for eliminating dead phis: a dead phi can only have loop header phi
167 // users remaining when being visited.
168 if (!AnalyzeNaturalLoops()) return false;
169 TransformToSsa();
170 return true;
171 }
172
173 void ComputeDominanceInformation();
174 void ClearDominanceInformation();
175
176 void BuildDominatorTree();
177 void TransformToSsa();
178 void SimplifyCFG();
179
180 // Analyze all natural loops in this graph. Returns false if one
181 // loop is not natural, that is the header does not dominate the
182 // back edge.
183 bool AnalyzeNaturalLoops() const;
184
185 // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
186 void InlineInto(HGraph* outer_graph, HInvoke* invoke);
187
188 // Need to add a couple of blocks to test if the loop body is entered and
189 // put deoptimization instructions, etc.
190 void TransformLoopHeaderForBCE(HBasicBlock* header);
191
192 // Removes `block` from the graph.
193 void DeleteDeadBlock(HBasicBlock* block);
194
195 void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
196 void SimplifyLoop(HBasicBlock* header);
197
GetNextInstructionId()198 int32_t GetNextInstructionId() {
199 DCHECK_NE(current_instruction_id_, INT32_MAX);
200 return current_instruction_id_++;
201 }
202
GetCurrentInstructionId()203 int32_t GetCurrentInstructionId() const {
204 return current_instruction_id_;
205 }
206
SetCurrentInstructionId(int32_t id)207 void SetCurrentInstructionId(int32_t id) {
208 current_instruction_id_ = id;
209 }
210
GetMaximumNumberOfOutVRegs()211 uint16_t GetMaximumNumberOfOutVRegs() const {
212 return maximum_number_of_out_vregs_;
213 }
214
SetMaximumNumberOfOutVRegs(uint16_t new_value)215 void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
216 maximum_number_of_out_vregs_ = new_value;
217 }
218
UpdateTemporariesVRegSlots(size_t slots)219 void UpdateTemporariesVRegSlots(size_t slots) {
220 temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
221 }
222
GetTemporariesVRegSlots()223 size_t GetTemporariesVRegSlots() const {
224 return temporaries_vreg_slots_;
225 }
226
SetNumberOfVRegs(uint16_t number_of_vregs)227 void SetNumberOfVRegs(uint16_t number_of_vregs) {
228 number_of_vregs_ = number_of_vregs;
229 }
230
GetNumberOfVRegs()231 uint16_t GetNumberOfVRegs() const {
232 return number_of_vregs_;
233 }
234
SetNumberOfInVRegs(uint16_t value)235 void SetNumberOfInVRegs(uint16_t value) {
236 number_of_in_vregs_ = value;
237 }
238
GetNumberOfLocalVRegs()239 uint16_t GetNumberOfLocalVRegs() const {
240 return number_of_vregs_ - number_of_in_vregs_;
241 }
242
GetReversePostOrder()243 const GrowableArray<HBasicBlock*>& GetReversePostOrder() const {
244 return reverse_post_order_;
245 }
246
GetLinearOrder()247 const GrowableArray<HBasicBlock*>& GetLinearOrder() const {
248 return linear_order_;
249 }
250
HasBoundsChecks()251 bool HasBoundsChecks() const {
252 return has_bounds_checks_;
253 }
254
SetHasBoundsChecks(bool value)255 void SetHasBoundsChecks(bool value) {
256 has_bounds_checks_ = value;
257 }
258
IsDebuggable()259 bool IsDebuggable() const { return debuggable_; }
260
261 // Returns a constant of the given type and value. If it does not exist
262 // already, it is created and inserted into the graph. This method is only for
263 // integral types.
264 HConstant* GetConstant(Primitive::Type type, int64_t value);
265 HNullConstant* GetNullConstant();
GetIntConstant(int32_t value)266 HIntConstant* GetIntConstant(int32_t value) {
267 return CreateConstant(value, &cached_int_constants_);
268 }
GetLongConstant(int64_t value)269 HLongConstant* GetLongConstant(int64_t value) {
270 return CreateConstant(value, &cached_long_constants_);
271 }
GetFloatConstant(float value)272 HFloatConstant* GetFloatConstant(float value) {
273 return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_);
274 }
GetDoubleConstant(double value)275 HDoubleConstant* GetDoubleConstant(double value) {
276 return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_);
277 }
278
279 HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
280
GetDexFile()281 const DexFile& GetDexFile() const {
282 return dex_file_;
283 }
284
GetMethodIdx()285 uint32_t GetMethodIdx() const {
286 return method_idx_;
287 }
288
289 private:
290 void VisitBlockForDominatorTree(HBasicBlock* block,
291 HBasicBlock* predecessor,
292 GrowableArray<size_t>* visits);
293 void FindBackEdges(ArenaBitVector* visited);
294 void VisitBlockForBackEdges(HBasicBlock* block,
295 ArenaBitVector* visited,
296 ArenaBitVector* visiting);
297 void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
298 void RemoveDeadBlocks(const ArenaBitVector& visited);
299
300 template <class InstructionType, typename ValueType>
CreateConstant(ValueType value,ArenaSafeMap<ValueType,InstructionType * > * cache)301 InstructionType* CreateConstant(ValueType value,
302 ArenaSafeMap<ValueType, InstructionType*>* cache) {
303 // Try to find an existing constant of the given value.
304 InstructionType* constant = nullptr;
305 auto cached_constant = cache->find(value);
306 if (cached_constant != cache->end()) {
307 constant = cached_constant->second;
308 }
309
310 // If not found or previously deleted, create and cache a new instruction.
311 if (constant == nullptr || constant->GetBlock() == nullptr) {
312 constant = new (arena_) InstructionType(value);
313 cache->Overwrite(value, constant);
314 InsertConstant(constant);
315 }
316 return constant;
317 }
318
319 void InsertConstant(HConstant* instruction);
320
321 // Cache a float constant into the graph. This method should only be
322 // called by the SsaBuilder when creating "equivalent" instructions.
323 void CacheFloatConstant(HFloatConstant* constant);
324
325 // See CacheFloatConstant comment.
326 void CacheDoubleConstant(HDoubleConstant* constant);
327
328 ArenaAllocator* const arena_;
329
330 // List of blocks in insertion order.
331 GrowableArray<HBasicBlock*> blocks_;
332
333 // List of blocks to perform a reverse post order tree traversal.
334 GrowableArray<HBasicBlock*> reverse_post_order_;
335
336 // List of blocks to perform a linear order tree traversal.
337 GrowableArray<HBasicBlock*> linear_order_;
338
339 HBasicBlock* entry_block_;
340 HBasicBlock* exit_block_;
341
342 // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
343 uint16_t maximum_number_of_out_vregs_;
344
345 // The number of virtual registers in this method. Contains the parameters.
346 uint16_t number_of_vregs_;
347
348 // The number of virtual registers used by parameters of this method.
349 uint16_t number_of_in_vregs_;
350
351 // Number of vreg size slots that the temporaries use (used in baseline compiler).
352 size_t temporaries_vreg_slots_;
353
354 // Has bounds checks. We can totally skip BCE if it's false.
355 bool has_bounds_checks_;
356
357 // Indicates whether the graph should be compiled in a way that
358 // ensures full debuggability. If false, we can apply more
359 // aggressive optimizations that may limit the level of debugging.
360 const bool debuggable_;
361
362 // The current id to assign to a newly added instruction. See HInstruction.id_.
363 int32_t current_instruction_id_;
364
365 // The dex file from which the method is from.
366 const DexFile& dex_file_;
367
368 // The method index in the dex file.
369 const uint32_t method_idx_;
370
371 const InstructionSet instruction_set_;
372
373 // Cached constants.
374 HNullConstant* cached_null_constant_;
375 ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
376 ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
377 ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
378 ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
379
380 friend class SsaBuilder; // For caching constants.
381 friend class SsaLivenessAnalysis; // For the linear order.
382 ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
383 DISALLOW_COPY_AND_ASSIGN(HGraph);
384 };
385
386 class HLoopInformation : public ArenaObject<kArenaAllocMisc> {
387 public:
HLoopInformation(HBasicBlock * header,HGraph * graph)388 HLoopInformation(HBasicBlock* header, HGraph* graph)
389 : header_(header),
390 suspend_check_(nullptr),
391 back_edges_(graph->GetArena(), kDefaultNumberOfBackEdges),
392 // Make bit vector growable, as the number of blocks may change.
393 blocks_(graph->GetArena(), graph->GetBlocks().Size(), true) {}
394
GetHeader()395 HBasicBlock* GetHeader() const {
396 return header_;
397 }
398
SetHeader(HBasicBlock * block)399 void SetHeader(HBasicBlock* block) {
400 header_ = block;
401 }
402
GetSuspendCheck()403 HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
SetSuspendCheck(HSuspendCheck * check)404 void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
HasSuspendCheck()405 bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
406
AddBackEdge(HBasicBlock * back_edge)407 void AddBackEdge(HBasicBlock* back_edge) {
408 back_edges_.Add(back_edge);
409 }
410
RemoveBackEdge(HBasicBlock * back_edge)411 void RemoveBackEdge(HBasicBlock* back_edge) {
412 back_edges_.Delete(back_edge);
413 }
414
IsBackEdge(const HBasicBlock & block)415 bool IsBackEdge(const HBasicBlock& block) const {
416 for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
417 if (back_edges_.Get(i) == &block) return true;
418 }
419 return false;
420 }
421
NumberOfBackEdges()422 size_t NumberOfBackEdges() const {
423 return back_edges_.Size();
424 }
425
426 HBasicBlock* GetPreHeader() const;
427
GetBackEdges()428 const GrowableArray<HBasicBlock*>& GetBackEdges() const {
429 return back_edges_;
430 }
431
432 // Returns the lifetime position of the back edge that has the
433 // greatest lifetime position.
434 size_t GetLifetimeEnd() const;
435
ReplaceBackEdge(HBasicBlock * existing,HBasicBlock * new_back_edge)436 void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
437 for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
438 if (back_edges_.Get(i) == existing) {
439 back_edges_.Put(i, new_back_edge);
440 return;
441 }
442 }
443 UNREACHABLE();
444 }
445
446 // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
447 // that is the header dominates the back edge.
448 bool Populate();
449
450 // Reanalyzes the loop by removing loop info from its blocks and re-running
451 // Populate(). If there are no back edges left, the loop info is completely
452 // removed as well as its SuspendCheck instruction. It must be run on nested
453 // inner loops first.
454 void Update();
455
456 // Returns whether this loop information contains `block`.
457 // Note that this loop information *must* be populated before entering this function.
458 bool Contains(const HBasicBlock& block) const;
459
460 // Returns whether this loop information is an inner loop of `other`.
461 // Note that `other` *must* be populated before entering this function.
462 bool IsIn(const HLoopInformation& other) const;
463
GetBlocks()464 const ArenaBitVector& GetBlocks() const { return blocks_; }
465
466 void Add(HBasicBlock* block);
467 void Remove(HBasicBlock* block);
468
469 private:
470 // Internal recursive implementation of `Populate`.
471 void PopulateRecursive(HBasicBlock* block);
472
473 HBasicBlock* header_;
474 HSuspendCheck* suspend_check_;
475 GrowableArray<HBasicBlock*> back_edges_;
476 ArenaBitVector blocks_;
477
478 DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
479 };
480
481 static constexpr size_t kNoLifetime = -1;
482 static constexpr uint32_t kNoDexPc = -1;
483
484 // A block in a method. Contains the list of instructions represented
485 // as a double linked list. Each block knows its predecessors and
486 // successors.
487
488 class HBasicBlock : public ArenaObject<kArenaAllocMisc> {
489 public:
490 explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
graph_(graph)491 : graph_(graph),
492 predecessors_(graph->GetArena(), kDefaultNumberOfPredecessors),
493 successors_(graph->GetArena(), kDefaultNumberOfSuccessors),
494 loop_information_(nullptr),
495 dominator_(nullptr),
496 dominated_blocks_(graph->GetArena(), kDefaultNumberOfDominatedBlocks),
497 block_id_(-1),
498 dex_pc_(dex_pc),
499 lifetime_start_(kNoLifetime),
500 lifetime_end_(kNoLifetime),
501 is_catch_block_(false) {}
502
GetPredecessors()503 const GrowableArray<HBasicBlock*>& GetPredecessors() const {
504 return predecessors_;
505 }
506
GetSuccessors()507 const GrowableArray<HBasicBlock*>& GetSuccessors() const {
508 return successors_;
509 }
510
GetDominatedBlocks()511 const GrowableArray<HBasicBlock*>& GetDominatedBlocks() const {
512 return dominated_blocks_;
513 }
514
IsEntryBlock()515 bool IsEntryBlock() const {
516 return graph_->GetEntryBlock() == this;
517 }
518
IsExitBlock()519 bool IsExitBlock() const {
520 return graph_->GetExitBlock() == this;
521 }
522
523 bool IsSingleGoto() const;
524
AddBackEdge(HBasicBlock * back_edge)525 void AddBackEdge(HBasicBlock* back_edge) {
526 if (loop_information_ == nullptr) {
527 loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
528 }
529 DCHECK_EQ(loop_information_->GetHeader(), this);
530 loop_information_->AddBackEdge(back_edge);
531 }
532
GetGraph()533 HGraph* GetGraph() const { return graph_; }
SetGraph(HGraph * graph)534 void SetGraph(HGraph* graph) { graph_ = graph; }
535
GetBlockId()536 int GetBlockId() const { return block_id_; }
SetBlockId(int id)537 void SetBlockId(int id) { block_id_ = id; }
538
GetDominator()539 HBasicBlock* GetDominator() const { return dominator_; }
SetDominator(HBasicBlock * dominator)540 void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
AddDominatedBlock(HBasicBlock * block)541 void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.Add(block); }
RemoveDominatedBlock(HBasicBlock * block)542 void RemoveDominatedBlock(HBasicBlock* block) { dominated_blocks_.Delete(block); }
ReplaceDominatedBlock(HBasicBlock * existing,HBasicBlock * new_block)543 void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
544 for (size_t i = 0, e = dominated_blocks_.Size(); i < e; ++i) {
545 if (dominated_blocks_.Get(i) == existing) {
546 dominated_blocks_.Put(i, new_block);
547 return;
548 }
549 }
550 LOG(FATAL) << "Unreachable";
551 UNREACHABLE();
552 }
553 void ClearDominanceInformation();
554
NumberOfBackEdges()555 int NumberOfBackEdges() const {
556 return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
557 }
558
GetFirstInstruction()559 HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
GetLastInstruction()560 HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
GetInstructions()561 const HInstructionList& GetInstructions() const { return instructions_; }
GetFirstPhi()562 HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
GetLastPhi()563 HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
GetPhis()564 const HInstructionList& GetPhis() const { return phis_; }
565
AddSuccessor(HBasicBlock * block)566 void AddSuccessor(HBasicBlock* block) {
567 successors_.Add(block);
568 block->predecessors_.Add(this);
569 }
570
ReplaceSuccessor(HBasicBlock * existing,HBasicBlock * new_block)571 void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
572 size_t successor_index = GetSuccessorIndexOf(existing);
573 DCHECK_NE(successor_index, static_cast<size_t>(-1));
574 existing->RemovePredecessor(this);
575 new_block->predecessors_.Add(this);
576 successors_.Put(successor_index, new_block);
577 }
578
ReplacePredecessor(HBasicBlock * existing,HBasicBlock * new_block)579 void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
580 size_t predecessor_index = GetPredecessorIndexOf(existing);
581 DCHECK_NE(predecessor_index, static_cast<size_t>(-1));
582 existing->RemoveSuccessor(this);
583 new_block->successors_.Add(this);
584 predecessors_.Put(predecessor_index, new_block);
585 }
586
587 // Insert `this` between `predecessor` and `successor. This method
588 // preserves the indicies, and will update the first edge found between
589 // `predecessor` and `successor`.
InsertBetween(HBasicBlock * predecessor,HBasicBlock * successor)590 void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
591 size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
592 DCHECK_NE(predecessor_index, static_cast<size_t>(-1));
593 size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
594 DCHECK_NE(successor_index, static_cast<size_t>(-1));
595 successor->predecessors_.Put(predecessor_index, this);
596 predecessor->successors_.Put(successor_index, this);
597 successors_.Add(successor);
598 predecessors_.Add(predecessor);
599 }
600
RemovePredecessor(HBasicBlock * block)601 void RemovePredecessor(HBasicBlock* block) {
602 predecessors_.Delete(block);
603 }
604
RemoveSuccessor(HBasicBlock * block)605 void RemoveSuccessor(HBasicBlock* block) {
606 successors_.Delete(block);
607 }
608
ClearAllPredecessors()609 void ClearAllPredecessors() {
610 predecessors_.Reset();
611 }
612
AddPredecessor(HBasicBlock * block)613 void AddPredecessor(HBasicBlock* block) {
614 predecessors_.Add(block);
615 block->successors_.Add(this);
616 }
617
SwapPredecessors()618 void SwapPredecessors() {
619 DCHECK_EQ(predecessors_.Size(), 2u);
620 HBasicBlock* temp = predecessors_.Get(0);
621 predecessors_.Put(0, predecessors_.Get(1));
622 predecessors_.Put(1, temp);
623 }
624
SwapSuccessors()625 void SwapSuccessors() {
626 DCHECK_EQ(successors_.Size(), 2u);
627 HBasicBlock* temp = successors_.Get(0);
628 successors_.Put(0, successors_.Get(1));
629 successors_.Put(1, temp);
630 }
631
GetPredecessorIndexOf(HBasicBlock * predecessor)632 size_t GetPredecessorIndexOf(HBasicBlock* predecessor) {
633 for (size_t i = 0, e = predecessors_.Size(); i < e; ++i) {
634 if (predecessors_.Get(i) == predecessor) {
635 return i;
636 }
637 }
638 return -1;
639 }
640
GetSuccessorIndexOf(HBasicBlock * successor)641 size_t GetSuccessorIndexOf(HBasicBlock* successor) {
642 for (size_t i = 0, e = successors_.Size(); i < e; ++i) {
643 if (successors_.Get(i) == successor) {
644 return i;
645 }
646 }
647 return -1;
648 }
649
650 // Split the block into two blocks just after `cursor`. Returns the newly
651 // created block. Note that this method just updates raw block information,
652 // like predecessors, successors, dominators, and instruction list. It does not
653 // update the graph, reverse post order, loop information, nor make sure the
654 // blocks are consistent (for example ending with a control flow instruction).
655 HBasicBlock* SplitAfter(HInstruction* cursor);
656
657 // Merge `other` at the end of `this`. Successors and dominated blocks of
658 // `other` are changed to be successors and dominated blocks of `this`. Note
659 // that this method does not update the graph, reverse post order, loop
660 // information, nor make sure the blocks are consistent (for example ending
661 // with a control flow instruction).
662 void MergeWithInlined(HBasicBlock* other);
663
664 // Replace `this` with `other`. Predecessors, successors, and dominated blocks
665 // of `this` are moved to `other`.
666 // Note that this method does not update the graph, reverse post order, loop
667 // information, nor make sure the blocks are consistent (for example ending
668 // with a control flow instruction).
669 void ReplaceWith(HBasicBlock* other);
670
671 // Merge `other` at the end of `this`. This method updates loops, reverse post
672 // order, links to predecessors, successors, dominators and deletes the block
673 // from the graph. The two blocks must be successive, i.e. `this` the only
674 // predecessor of `other` and vice versa.
675 void MergeWith(HBasicBlock* other);
676
677 // Disconnects `this` from all its predecessors, successors and dominator,
678 // removes it from all loops it is included in and eventually from the graph.
679 // The block must not dominate any other block. Predecessors and successors
680 // are safely updated.
681 void DisconnectAndDelete();
682
683 void AddInstruction(HInstruction* instruction);
684 // Insert `instruction` before/after an existing instruction `cursor`.
685 void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
686 void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
687 // Replace instruction `initial` with `replacement` within this block.
688 void ReplaceAndRemoveInstructionWith(HInstruction* initial,
689 HInstruction* replacement);
690 void AddPhi(HPhi* phi);
691 void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
692 // RemoveInstruction and RemovePhi delete a given instruction from the respective
693 // instruction list. With 'ensure_safety' set to true, it verifies that the
694 // instruction is not in use and removes it from the use lists of its inputs.
695 void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
696 void RemovePhi(HPhi* phi, bool ensure_safety = true);
697 void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
698
IsLoopHeader()699 bool IsLoopHeader() const {
700 return IsInLoop() && (loop_information_->GetHeader() == this);
701 }
702
IsLoopPreHeaderFirstPredecessor()703 bool IsLoopPreHeaderFirstPredecessor() const {
704 DCHECK(IsLoopHeader());
705 DCHECK(!GetPredecessors().IsEmpty());
706 return GetPredecessors().Get(0) == GetLoopInformation()->GetPreHeader();
707 }
708
GetLoopInformation()709 HLoopInformation* GetLoopInformation() const {
710 return loop_information_;
711 }
712
713 // Set the loop_information_ on this block. Overrides the current
714 // loop_information if it is an outer loop of the passed loop information.
715 // Note that this method is called while creating the loop information.
SetInLoop(HLoopInformation * info)716 void SetInLoop(HLoopInformation* info) {
717 if (IsLoopHeader()) {
718 // Nothing to do. This just means `info` is an outer loop.
719 } else if (!IsInLoop()) {
720 loop_information_ = info;
721 } else if (loop_information_->Contains(*info->GetHeader())) {
722 // Block is currently part of an outer loop. Make it part of this inner loop.
723 // Note that a non loop header having a loop information means this loop information
724 // has already been populated
725 loop_information_ = info;
726 } else {
727 // Block is part of an inner loop. Do not update the loop information.
728 // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
729 // at this point, because this method is being called while populating `info`.
730 }
731 }
732
733 // Raw update of the loop information.
SetLoopInformation(HLoopInformation * info)734 void SetLoopInformation(HLoopInformation* info) {
735 loop_information_ = info;
736 }
737
IsInLoop()738 bool IsInLoop() const { return loop_information_ != nullptr; }
739
740 // Returns whether this block dominates the blocked passed as parameter.
741 bool Dominates(HBasicBlock* block) const;
742
GetLifetimeStart()743 size_t GetLifetimeStart() const { return lifetime_start_; }
GetLifetimeEnd()744 size_t GetLifetimeEnd() const { return lifetime_end_; }
745
SetLifetimeStart(size_t start)746 void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
SetLifetimeEnd(size_t end)747 void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
748
GetDexPc()749 uint32_t GetDexPc() const { return dex_pc_; }
750
IsCatchBlock()751 bool IsCatchBlock() const { return is_catch_block_; }
SetIsCatchBlock()752 void SetIsCatchBlock() { is_catch_block_ = true; }
753
754 bool EndsWithControlFlowInstruction() const;
755 bool EndsWithIf() const;
756 bool HasSinglePhi() const;
757
758 private:
759 HGraph* graph_;
760 GrowableArray<HBasicBlock*> predecessors_;
761 GrowableArray<HBasicBlock*> successors_;
762 HInstructionList instructions_;
763 HInstructionList phis_;
764 HLoopInformation* loop_information_;
765 HBasicBlock* dominator_;
766 GrowableArray<HBasicBlock*> dominated_blocks_;
767 int block_id_;
768 // The dex program counter of the first instruction of this block.
769 const uint32_t dex_pc_;
770 size_t lifetime_start_;
771 size_t lifetime_end_;
772 bool is_catch_block_;
773
774 friend class HGraph;
775 friend class HInstruction;
776
777 DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
778 };
779
780 // Iterates over the LoopInformation of all loops which contain 'block'
781 // from the innermost to the outermost.
782 class HLoopInformationOutwardIterator : public ValueObject {
783 public:
HLoopInformationOutwardIterator(const HBasicBlock & block)784 explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
785 : current_(block.GetLoopInformation()) {}
786
Done()787 bool Done() const { return current_ == nullptr; }
788
Advance()789 void Advance() {
790 DCHECK(!Done());
791 current_ = current_->GetPreHeader()->GetLoopInformation();
792 }
793
Current()794 HLoopInformation* Current() const {
795 DCHECK(!Done());
796 return current_;
797 }
798
799 private:
800 HLoopInformation* current_;
801
802 DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
803 };
804
805 #define FOR_EACH_CONCRETE_INSTRUCTION(M) \
806 M(Add, BinaryOperation) \
807 M(And, BinaryOperation) \
808 M(ArrayGet, Instruction) \
809 M(ArrayLength, Instruction) \
810 M(ArraySet, Instruction) \
811 M(BooleanNot, UnaryOperation) \
812 M(BoundsCheck, Instruction) \
813 M(BoundType, Instruction) \
814 M(CheckCast, Instruction) \
815 M(ClinitCheck, Instruction) \
816 M(Compare, BinaryOperation) \
817 M(Condition, BinaryOperation) \
818 M(Deoptimize, Instruction) \
819 M(Div, BinaryOperation) \
820 M(DivZeroCheck, Instruction) \
821 M(DoubleConstant, Constant) \
822 M(Equal, Condition) \
823 M(Exit, Instruction) \
824 M(FloatConstant, Constant) \
825 M(Goto, Instruction) \
826 M(GreaterThan, Condition) \
827 M(GreaterThanOrEqual, Condition) \
828 M(If, Instruction) \
829 M(InstanceFieldGet, Instruction) \
830 M(InstanceFieldSet, Instruction) \
831 M(InstanceOf, Instruction) \
832 M(IntConstant, Constant) \
833 M(InvokeInterface, Invoke) \
834 M(InvokeStaticOrDirect, Invoke) \
835 M(InvokeVirtual, Invoke) \
836 M(LessThan, Condition) \
837 M(LessThanOrEqual, Condition) \
838 M(LoadClass, Instruction) \
839 M(LoadException, Instruction) \
840 M(LoadLocal, Instruction) \
841 M(LoadString, Instruction) \
842 M(Local, Instruction) \
843 M(LongConstant, Constant) \
844 M(MemoryBarrier, Instruction) \
845 M(MonitorOperation, Instruction) \
846 M(Mul, BinaryOperation) \
847 M(Neg, UnaryOperation) \
848 M(NewArray, Instruction) \
849 M(NewInstance, Instruction) \
850 M(Not, UnaryOperation) \
851 M(NotEqual, Condition) \
852 M(NullConstant, Instruction) \
853 M(NullCheck, Instruction) \
854 M(Or, BinaryOperation) \
855 M(ParallelMove, Instruction) \
856 M(ParameterValue, Instruction) \
857 M(Phi, Instruction) \
858 M(Rem, BinaryOperation) \
859 M(Return, Instruction) \
860 M(ReturnVoid, Instruction) \
861 M(Shl, BinaryOperation) \
862 M(Shr, BinaryOperation) \
863 M(StaticFieldGet, Instruction) \
864 M(StaticFieldSet, Instruction) \
865 M(StoreLocal, Instruction) \
866 M(Sub, BinaryOperation) \
867 M(SuspendCheck, Instruction) \
868 M(Temporary, Instruction) \
869 M(Throw, Instruction) \
870 M(TypeConversion, Instruction) \
871 M(UShr, BinaryOperation) \
872 M(Xor, BinaryOperation) \
873
874 #define FOR_EACH_INSTRUCTION(M) \
875 FOR_EACH_CONCRETE_INSTRUCTION(M) \
876 M(Constant, Instruction) \
877 M(UnaryOperation, Instruction) \
878 M(BinaryOperation, Instruction) \
879 M(Invoke, Instruction)
880
881 #define FORWARD_DECLARATION(type, super) class H##type;
882 FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
883 #undef FORWARD_DECLARATION
884
885 #define DECLARE_INSTRUCTION(type) \
886 InstructionKind GetKind() const OVERRIDE { return k##type; } \
887 const char* DebugName() const OVERRIDE { return #type; } \
888 const H##type* As##type() const OVERRIDE { return this; } \
889 H##type* As##type() OVERRIDE { return this; } \
890 bool InstructionTypeEquals(HInstruction* other) const OVERRIDE { \
891 return other->Is##type(); \
892 } \
893 void Accept(HGraphVisitor* visitor) OVERRIDE
894
895 template <typename T> class HUseList;
896
897 template <typename T>
898 class HUseListNode : public ArenaObject<kArenaAllocMisc> {
899 public:
GetPrevious()900 HUseListNode* GetPrevious() const { return prev_; }
GetNext()901 HUseListNode* GetNext() const { return next_; }
GetUser()902 T GetUser() const { return user_; }
GetIndex()903 size_t GetIndex() const { return index_; }
SetIndex(size_t index)904 void SetIndex(size_t index) { index_ = index; }
905
906 private:
HUseListNode(T user,size_t index)907 HUseListNode(T user, size_t index)
908 : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
909
910 T const user_;
911 size_t index_;
912 HUseListNode<T>* prev_;
913 HUseListNode<T>* next_;
914
915 friend class HUseList<T>;
916
917 DISALLOW_COPY_AND_ASSIGN(HUseListNode);
918 };
919
920 template <typename T>
921 class HUseList : public ValueObject {
922 public:
HUseList()923 HUseList() : first_(nullptr) {}
924
Clear()925 void Clear() {
926 first_ = nullptr;
927 }
928
929 // Adds a new entry at the beginning of the use list and returns
930 // the newly created node.
AddUse(T user,size_t index,ArenaAllocator * arena)931 HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
932 HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
933 if (IsEmpty()) {
934 first_ = new_node;
935 } else {
936 first_->prev_ = new_node;
937 new_node->next_ = first_;
938 first_ = new_node;
939 }
940 return new_node;
941 }
942
GetFirst()943 HUseListNode<T>* GetFirst() const {
944 return first_;
945 }
946
Remove(HUseListNode<T> * node)947 void Remove(HUseListNode<T>* node) {
948 DCHECK(node != nullptr);
949 DCHECK(Contains(node));
950
951 if (node->prev_ != nullptr) {
952 node->prev_->next_ = node->next_;
953 }
954 if (node->next_ != nullptr) {
955 node->next_->prev_ = node->prev_;
956 }
957 if (node == first_) {
958 first_ = node->next_;
959 }
960 }
961
Contains(const HUseListNode<T> * node)962 bool Contains(const HUseListNode<T>* node) const {
963 if (node == nullptr) {
964 return false;
965 }
966 for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
967 if (current == node) {
968 return true;
969 }
970 }
971 return false;
972 }
973
IsEmpty()974 bool IsEmpty() const {
975 return first_ == nullptr;
976 }
977
HasOnlyOneUse()978 bool HasOnlyOneUse() const {
979 return first_ != nullptr && first_->next_ == nullptr;
980 }
981
SizeSlow()982 size_t SizeSlow() const {
983 size_t count = 0;
984 for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
985 ++count;
986 }
987 return count;
988 }
989
990 private:
991 HUseListNode<T>* first_;
992 };
993
994 template<typename T>
995 class HUseIterator : public ValueObject {
996 public:
HUseIterator(const HUseList<T> & uses)997 explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
998
Done()999 bool Done() const { return current_ == nullptr; }
1000
Advance()1001 void Advance() {
1002 DCHECK(!Done());
1003 current_ = current_->GetNext();
1004 }
1005
Current()1006 HUseListNode<T>* Current() const {
1007 DCHECK(!Done());
1008 return current_;
1009 }
1010
1011 private:
1012 HUseListNode<T>* current_;
1013
1014 friend class HValue;
1015 };
1016
1017 // This class is used by HEnvironment and HInstruction classes to record the
1018 // instructions they use and pointers to the corresponding HUseListNodes kept
1019 // by the used instructions.
1020 template <typename T>
1021 class HUserRecord : public ValueObject {
1022 public:
HUserRecord()1023 HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
HUserRecord(HInstruction * instruction)1024 explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1025
HUserRecord(const HUserRecord<T> & old_record,HUseListNode<T> * use_node)1026 HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1027 : instruction_(old_record.instruction_), use_node_(use_node) {
1028 DCHECK(instruction_ != nullptr);
1029 DCHECK(use_node_ != nullptr);
1030 DCHECK(old_record.use_node_ == nullptr);
1031 }
1032
GetInstruction()1033 HInstruction* GetInstruction() const { return instruction_; }
GetUseNode()1034 HUseListNode<T>* GetUseNode() const { return use_node_; }
1035
1036 private:
1037 // Instruction used by the user.
1038 HInstruction* instruction_;
1039
1040 // Corresponding entry in the use list kept by 'instruction_'.
1041 HUseListNode<T>* use_node_;
1042 };
1043
1044 // TODO: Add better documentation to this class and maybe refactor with more suggestive names.
1045 // - Has(All)SideEffects suggests that all the side effects are present but only ChangesSomething
1046 // flag is consider.
1047 // - DependsOn suggests that there is a real dependency between side effects but it only
1048 // checks DependendsOnSomething flag.
1049 //
1050 // Represents the side effects an instruction may have.
1051 class SideEffects : public ValueObject {
1052 public:
SideEffects()1053 SideEffects() : flags_(0) {}
1054
None()1055 static SideEffects None() {
1056 return SideEffects(0);
1057 }
1058
All()1059 static SideEffects All() {
1060 return SideEffects(ChangesSomething().flags_ | DependsOnSomething().flags_);
1061 }
1062
ChangesSomething()1063 static SideEffects ChangesSomething() {
1064 return SideEffects((1 << kFlagChangesCount) - 1);
1065 }
1066
DependsOnSomething()1067 static SideEffects DependsOnSomething() {
1068 int count = kFlagDependsOnCount - kFlagChangesCount;
1069 return SideEffects(((1 << count) - 1) << kFlagChangesCount);
1070 }
1071
Union(SideEffects other)1072 SideEffects Union(SideEffects other) const {
1073 return SideEffects(flags_ | other.flags_);
1074 }
1075
HasSideEffects()1076 bool HasSideEffects() const {
1077 size_t all_bits_set = (1 << kFlagChangesCount) - 1;
1078 return (flags_ & all_bits_set) != 0;
1079 }
1080
HasAllSideEffects()1081 bool HasAllSideEffects() const {
1082 size_t all_bits_set = (1 << kFlagChangesCount) - 1;
1083 return all_bits_set == (flags_ & all_bits_set);
1084 }
1085
DependsOn(SideEffects other)1086 bool DependsOn(SideEffects other) const {
1087 size_t depends_flags = other.ComputeDependsFlags();
1088 return (flags_ & depends_flags) != 0;
1089 }
1090
HasDependencies()1091 bool HasDependencies() const {
1092 int count = kFlagDependsOnCount - kFlagChangesCount;
1093 size_t all_bits_set = (1 << count) - 1;
1094 return ((flags_ >> kFlagChangesCount) & all_bits_set) != 0;
1095 }
1096
1097 private:
1098 static constexpr int kFlagChangesSomething = 0;
1099 static constexpr int kFlagChangesCount = kFlagChangesSomething + 1;
1100
1101 static constexpr int kFlagDependsOnSomething = kFlagChangesCount;
1102 static constexpr int kFlagDependsOnCount = kFlagDependsOnSomething + 1;
1103
SideEffects(size_t flags)1104 explicit SideEffects(size_t flags) : flags_(flags) {}
1105
ComputeDependsFlags()1106 size_t ComputeDependsFlags() const {
1107 return flags_ << kFlagChangesCount;
1108 }
1109
1110 size_t flags_;
1111 };
1112
1113 // A HEnvironment object contains the values of virtual registers at a given location.
1114 class HEnvironment : public ArenaObject<kArenaAllocMisc> {
1115 public:
HEnvironment(ArenaAllocator * arena,size_t number_of_vregs,const DexFile & dex_file,uint32_t method_idx,uint32_t dex_pc)1116 HEnvironment(ArenaAllocator* arena,
1117 size_t number_of_vregs,
1118 const DexFile& dex_file,
1119 uint32_t method_idx,
1120 uint32_t dex_pc)
1121 : vregs_(arena, number_of_vregs),
1122 locations_(arena, number_of_vregs),
1123 parent_(nullptr),
1124 dex_file_(dex_file),
1125 method_idx_(method_idx),
1126 dex_pc_(dex_pc) {
1127 vregs_.SetSize(number_of_vregs);
1128 for (size_t i = 0; i < number_of_vregs; i++) {
1129 vregs_.Put(i, HUserRecord<HEnvironment*>());
1130 }
1131
1132 locations_.SetSize(number_of_vregs);
1133 for (size_t i = 0; i < number_of_vregs; ++i) {
1134 locations_.Put(i, Location());
1135 }
1136 }
1137
SetAndCopyParentChain(ArenaAllocator * allocator,HEnvironment * parent)1138 void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1139 parent_ = new (allocator) HEnvironment(allocator,
1140 parent->Size(),
1141 parent->GetDexFile(),
1142 parent->GetMethodIdx(),
1143 parent->GetDexPc());
1144 if (parent->GetParent() != nullptr) {
1145 parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1146 }
1147 parent_->CopyFrom(parent);
1148 }
1149
1150 void CopyFrom(const GrowableArray<HInstruction*>& locals);
1151 void CopyFrom(HEnvironment* environment);
1152
1153 // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1154 // input to the loop phi instead. This is for inserting instructions that
1155 // require an environment (like HDeoptimization) in the loop pre-header.
1156 void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1157
SetRawEnvAt(size_t index,HInstruction * instruction)1158 void SetRawEnvAt(size_t index, HInstruction* instruction) {
1159 vregs_.Put(index, HUserRecord<HEnvironment*>(instruction));
1160 }
1161
GetInstructionAt(size_t index)1162 HInstruction* GetInstructionAt(size_t index) const {
1163 return vregs_.Get(index).GetInstruction();
1164 }
1165
1166 void RemoveAsUserOfInput(size_t index) const;
1167
Size()1168 size_t Size() const { return vregs_.Size(); }
1169
GetParent()1170 HEnvironment* GetParent() const { return parent_; }
1171
SetLocationAt(size_t index,Location location)1172 void SetLocationAt(size_t index, Location location) {
1173 locations_.Put(index, location);
1174 }
1175
GetLocationAt(size_t index)1176 Location GetLocationAt(size_t index) const {
1177 return locations_.Get(index);
1178 }
1179
GetDexPc()1180 uint32_t GetDexPc() const {
1181 return dex_pc_;
1182 }
1183
GetMethodIdx()1184 uint32_t GetMethodIdx() const {
1185 return method_idx_;
1186 }
1187
GetDexFile()1188 const DexFile& GetDexFile() const {
1189 return dex_file_;
1190 }
1191
1192 private:
1193 // Record instructions' use entries of this environment for constant-time removal.
1194 // It should only be called by HInstruction when a new environment use is added.
RecordEnvUse(HUseListNode<HEnvironment * > * env_use)1195 void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1196 DCHECK(env_use->GetUser() == this);
1197 size_t index = env_use->GetIndex();
1198 vregs_.Put(index, HUserRecord<HEnvironment*>(vregs_.Get(index), env_use));
1199 }
1200
1201 GrowableArray<HUserRecord<HEnvironment*> > vregs_;
1202 GrowableArray<Location> locations_;
1203 HEnvironment* parent_;
1204 const DexFile& dex_file_;
1205 const uint32_t method_idx_;
1206 const uint32_t dex_pc_;
1207
1208 friend class HInstruction;
1209
1210 DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1211 };
1212
1213 class ReferenceTypeInfo : ValueObject {
1214 public:
1215 typedef Handle<mirror::Class> TypeHandle;
1216
Create(TypeHandle type_handle,bool is_exact)1217 static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact)
1218 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1219 if (type_handle->IsObjectClass()) {
1220 // Override the type handle to be consistent with the case when we get to
1221 // Top but don't have the Object class available. It avoids having to guess
1222 // what value the type_handle has when it's Top.
1223 return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1224 } else {
1225 return ReferenceTypeInfo(type_handle, is_exact, false);
1226 }
1227 }
1228
CreateTop(bool is_exact)1229 static ReferenceTypeInfo CreateTop(bool is_exact) {
1230 return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1231 }
1232
IsExact()1233 bool IsExact() const { return is_exact_; }
IsTop()1234 bool IsTop() const { return is_top_; }
1235
GetTypeHandle()1236 Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1237
IsSupertypeOf(ReferenceTypeInfo rti)1238 bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1239 if (IsTop()) {
1240 // Top (equivalent for java.lang.Object) is supertype of anything.
1241 return true;
1242 }
1243 if (rti.IsTop()) {
1244 // If we get here `this` is not Top() so it can't be a supertype.
1245 return false;
1246 }
1247 return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1248 }
1249
1250 // Returns true if the type information provide the same amount of details.
1251 // Note that it does not mean that the instructions have the same actual type
1252 // (e.g. tops are equal but they can be the result of a merge).
IsEqual(ReferenceTypeInfo rti)1253 bool IsEqual(ReferenceTypeInfo rti) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1254 if (IsExact() != rti.IsExact()) {
1255 return false;
1256 }
1257 if (IsTop() && rti.IsTop()) {
1258 // `Top` means java.lang.Object, so the types are equivalent.
1259 return true;
1260 }
1261 if (IsTop() || rti.IsTop()) {
1262 // If only one is top or object than they are not equivalent.
1263 // NB: We need this extra check because the type_handle of `Top` is invalid
1264 // and we cannot inspect its reference.
1265 return false;
1266 }
1267
1268 // Finally check the types.
1269 return GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1270 }
1271
1272 private:
ReferenceTypeInfo()1273 ReferenceTypeInfo() : ReferenceTypeInfo(TypeHandle(), false, true) {}
ReferenceTypeInfo(TypeHandle type_handle,bool is_exact,bool is_top)1274 ReferenceTypeInfo(TypeHandle type_handle, bool is_exact, bool is_top)
1275 : type_handle_(type_handle), is_exact_(is_exact), is_top_(is_top) {}
1276
1277 // The class of the object.
1278 TypeHandle type_handle_;
1279 // Whether or not the type is exact or a superclass of the actual type.
1280 // Whether or not we have any information about this type.
1281 bool is_exact_;
1282 // A true value here means that the object type should be java.lang.Object.
1283 // We don't have access to the corresponding mirror object every time so this
1284 // flag acts as a substitute. When true, the TypeHandle refers to a null
1285 // pointer and should not be used.
1286 bool is_top_;
1287 };
1288
1289 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1290
1291 class HInstruction : public ArenaObject<kArenaAllocMisc> {
1292 public:
HInstruction(SideEffects side_effects)1293 explicit HInstruction(SideEffects side_effects)
1294 : previous_(nullptr),
1295 next_(nullptr),
1296 block_(nullptr),
1297 id_(-1),
1298 ssa_index_(-1),
1299 environment_(nullptr),
1300 locations_(nullptr),
1301 live_interval_(nullptr),
1302 lifetime_position_(kNoLifetime),
1303 side_effects_(side_effects),
1304 reference_type_info_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
1305
~HInstruction()1306 virtual ~HInstruction() {}
1307
1308 #define DECLARE_KIND(type, super) k##type,
1309 enum InstructionKind {
1310 FOR_EACH_INSTRUCTION(DECLARE_KIND)
1311 };
1312 #undef DECLARE_KIND
1313
GetNext()1314 HInstruction* GetNext() const { return next_; }
GetPrevious()1315 HInstruction* GetPrevious() const { return previous_; }
1316
1317 HInstruction* GetNextDisregardingMoves() const;
1318 HInstruction* GetPreviousDisregardingMoves() const;
1319
GetBlock()1320 HBasicBlock* GetBlock() const { return block_; }
SetBlock(HBasicBlock * block)1321 void SetBlock(HBasicBlock* block) { block_ = block; }
IsInBlock()1322 bool IsInBlock() const { return block_ != nullptr; }
IsInLoop()1323 bool IsInLoop() const { return block_->IsInLoop(); }
IsLoopHeaderPhi()1324 bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1325
1326 virtual size_t InputCount() const = 0;
InputAt(size_t i)1327 HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1328
1329 virtual void Accept(HGraphVisitor* visitor) = 0;
1330 virtual const char* DebugName() const = 0;
1331
GetType()1332 virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
SetRawInputAt(size_t index,HInstruction * input)1333 void SetRawInputAt(size_t index, HInstruction* input) {
1334 SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1335 }
1336
NeedsEnvironment()1337 virtual bool NeedsEnvironment() const { return false; }
GetDexPc()1338 virtual uint32_t GetDexPc() const {
1339 LOG(FATAL) << "GetDexPc() cannot be called on an instruction that"
1340 " does not need an environment";
1341 UNREACHABLE();
1342 }
IsControlFlow()1343 virtual bool IsControlFlow() const { return false; }
CanThrow()1344 virtual bool CanThrow() const { return false; }
HasSideEffects()1345 bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1346
1347 // Does not apply for all instructions, but having this at top level greatly
1348 // simplifies the null check elimination.
CanBeNull()1349 virtual bool CanBeNull() const {
1350 DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1351 return true;
1352 }
1353
CanDoImplicitNullCheckOn(HInstruction * obj)1354 virtual bool CanDoImplicitNullCheckOn(HInstruction* obj) const {
1355 UNUSED(obj);
1356 return false;
1357 }
1358
SetReferenceTypeInfo(ReferenceTypeInfo reference_type_info)1359 void SetReferenceTypeInfo(ReferenceTypeInfo reference_type_info) {
1360 DCHECK_EQ(GetType(), Primitive::kPrimNot);
1361 reference_type_info_ = reference_type_info;
1362 }
1363
GetReferenceTypeInfo()1364 ReferenceTypeInfo GetReferenceTypeInfo() const {
1365 DCHECK_EQ(GetType(), Primitive::kPrimNot);
1366 return reference_type_info_;
1367 }
1368
AddUseAt(HInstruction * user,size_t index)1369 void AddUseAt(HInstruction* user, size_t index) {
1370 DCHECK(user != nullptr);
1371 HUseListNode<HInstruction*>* use =
1372 uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1373 user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1374 }
1375
AddEnvUseAt(HEnvironment * user,size_t index)1376 void AddEnvUseAt(HEnvironment* user, size_t index) {
1377 DCHECK(user != nullptr);
1378 HUseListNode<HEnvironment*>* env_use =
1379 env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1380 user->RecordEnvUse(env_use);
1381 }
1382
RemoveAsUserOfInput(size_t input)1383 void RemoveAsUserOfInput(size_t input) {
1384 HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1385 input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1386 }
1387
GetUses()1388 const HUseList<HInstruction*>& GetUses() const { return uses_; }
GetEnvUses()1389 const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1390
HasUses()1391 bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
HasEnvironmentUses()1392 bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
HasNonEnvironmentUses()1393 bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
HasOnlyOneNonEnvironmentUse()1394 bool HasOnlyOneNonEnvironmentUse() const {
1395 return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1396 }
1397
1398 // Does this instruction strictly dominate `other_instruction`?
1399 // Returns false if this instruction and `other_instruction` are the same.
1400 // Aborts if this instruction and `other_instruction` are both phis.
1401 bool StrictlyDominates(HInstruction* other_instruction) const;
1402
GetId()1403 int GetId() const { return id_; }
SetId(int id)1404 void SetId(int id) { id_ = id; }
1405
GetSsaIndex()1406 int GetSsaIndex() const { return ssa_index_; }
SetSsaIndex(int ssa_index)1407 void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
HasSsaIndex()1408 bool HasSsaIndex() const { return ssa_index_ != -1; }
1409
HasEnvironment()1410 bool HasEnvironment() const { return environment_ != nullptr; }
GetEnvironment()1411 HEnvironment* GetEnvironment() const { return environment_; }
1412 // Set the `environment_` field. Raw because this method does not
1413 // update the uses lists.
SetRawEnvironment(HEnvironment * environment)1414 void SetRawEnvironment(HEnvironment* environment) { environment_ = environment; }
1415
1416 // Set the environment of this instruction, copying it from `environment`. While
1417 // copying, the uses lists are being updated.
CopyEnvironmentFrom(HEnvironment * environment)1418 void CopyEnvironmentFrom(HEnvironment* environment) {
1419 ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1420 environment_ = new (allocator) HEnvironment(
1421 allocator,
1422 environment->Size(),
1423 environment->GetDexFile(),
1424 environment->GetMethodIdx(),
1425 environment->GetDexPc());
1426 environment_->CopyFrom(environment);
1427 if (environment->GetParent() != nullptr) {
1428 environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1429 }
1430 }
1431
CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment * environment,HBasicBlock * block)1432 void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1433 HBasicBlock* block) {
1434 ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1435 environment_ = new (allocator) HEnvironment(
1436 allocator,
1437 environment->Size(),
1438 environment->GetDexFile(),
1439 environment->GetMethodIdx(),
1440 environment->GetDexPc());
1441 if (environment->GetParent() != nullptr) {
1442 environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1443 }
1444 environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1445 }
1446
1447 // Returns the number of entries in the environment. Typically, that is the
1448 // number of dex registers in a method. It could be more in case of inlining.
1449 size_t EnvironmentSize() const;
1450
GetLocations()1451 LocationSummary* GetLocations() const { return locations_; }
SetLocations(LocationSummary * locations)1452 void SetLocations(LocationSummary* locations) { locations_ = locations; }
1453
1454 void ReplaceWith(HInstruction* instruction);
1455 void ReplaceInput(HInstruction* replacement, size_t index);
1456
1457 // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1458 // uses of this instruction by `other` are *not* updated.
ReplaceWithExceptInReplacementAtIndex(HInstruction * other,size_t use_index)1459 void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1460 ReplaceWith(other);
1461 other->ReplaceInput(this, use_index);
1462 }
1463
1464 // Move `this` instruction before `cursor`.
1465 void MoveBefore(HInstruction* cursor);
1466
1467 #define INSTRUCTION_TYPE_CHECK(type, super) \
1468 bool Is##type() const { return (As##type() != nullptr); } \
1469 virtual const H##type* As##type() const { return nullptr; } \
1470 virtual H##type* As##type() { return nullptr; }
1471
FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)1472 FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1473 #undef INSTRUCTION_TYPE_CHECK
1474
1475 // Returns whether the instruction can be moved within the graph.
1476 virtual bool CanBeMoved() const { return false; }
1477
1478 // Returns whether the two instructions are of the same kind.
InstructionTypeEquals(HInstruction * other)1479 virtual bool InstructionTypeEquals(HInstruction* other) const {
1480 UNUSED(other);
1481 return false;
1482 }
1483
1484 // Returns whether any data encoded in the two instructions is equal.
1485 // This method does not look at the inputs. Both instructions must be
1486 // of the same type, otherwise the method has undefined behavior.
InstructionDataEquals(HInstruction * other)1487 virtual bool InstructionDataEquals(HInstruction* other) const {
1488 UNUSED(other);
1489 return false;
1490 }
1491
1492 // Returns whether two instructions are equal, that is:
1493 // 1) They have the same type and contain the same data (InstructionDataEquals).
1494 // 2) Their inputs are identical.
1495 bool Equals(HInstruction* other) const;
1496
1497 virtual InstructionKind GetKind() const = 0;
1498
ComputeHashCode()1499 virtual size_t ComputeHashCode() const {
1500 size_t result = GetKind();
1501 for (size_t i = 0, e = InputCount(); i < e; ++i) {
1502 result = (result * 31) + InputAt(i)->GetId();
1503 }
1504 return result;
1505 }
1506
GetSideEffects()1507 SideEffects GetSideEffects() const { return side_effects_; }
1508
GetLifetimePosition()1509 size_t GetLifetimePosition() const { return lifetime_position_; }
SetLifetimePosition(size_t position)1510 void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
GetLiveInterval()1511 LiveInterval* GetLiveInterval() const { return live_interval_; }
SetLiveInterval(LiveInterval * interval)1512 void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
HasLiveInterval()1513 bool HasLiveInterval() const { return live_interval_ != nullptr; }
1514
IsSuspendCheckEntry()1515 bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1516
1517 // Returns whether the code generation of the instruction will require to have access
1518 // to the current method. Such instructions are:
1519 // (1): Instructions that require an environment, as calling the runtime requires
1520 // to walk the stack and have the current method stored at a specific stack address.
1521 // (2): Object literals like classes and strings, that are loaded from the dex cache
1522 // fields of the current method.
NeedsCurrentMethod()1523 bool NeedsCurrentMethod() const {
1524 return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1525 }
1526
NeedsDexCache()1527 virtual bool NeedsDexCache() const { return false; }
1528
1529 protected:
1530 virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
1531 virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
1532
1533 private:
RemoveEnvironmentUser(HUseListNode<HEnvironment * > * use_node)1534 void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
1535
1536 HInstruction* previous_;
1537 HInstruction* next_;
1538 HBasicBlock* block_;
1539
1540 // An instruction gets an id when it is added to the graph.
1541 // It reflects creation order. A negative id means the instruction
1542 // has not been added to the graph.
1543 int id_;
1544
1545 // When doing liveness analysis, instructions that have uses get an SSA index.
1546 int ssa_index_;
1547
1548 // List of instructions that have this instruction as input.
1549 HUseList<HInstruction*> uses_;
1550
1551 // List of environments that contain this instruction.
1552 HUseList<HEnvironment*> env_uses_;
1553
1554 // The environment associated with this instruction. Not null if the instruction
1555 // might jump out of the method.
1556 HEnvironment* environment_;
1557
1558 // Set by the code generator.
1559 LocationSummary* locations_;
1560
1561 // Set by the liveness analysis.
1562 LiveInterval* live_interval_;
1563
1564 // Set by the liveness analysis, this is the position in a linear
1565 // order of blocks where this instruction's live interval start.
1566 size_t lifetime_position_;
1567
1568 const SideEffects side_effects_;
1569
1570 // TODO: for primitive types this should be marked as invalid.
1571 ReferenceTypeInfo reference_type_info_;
1572
1573 friend class GraphChecker;
1574 friend class HBasicBlock;
1575 friend class HEnvironment;
1576 friend class HGraph;
1577 friend class HInstructionList;
1578
1579 DISALLOW_COPY_AND_ASSIGN(HInstruction);
1580 };
1581 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
1582
1583 class HInputIterator : public ValueObject {
1584 public:
HInputIterator(HInstruction * instruction)1585 explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
1586
Done()1587 bool Done() const { return index_ == instruction_->InputCount(); }
Current()1588 HInstruction* Current() const { return instruction_->InputAt(index_); }
Advance()1589 void Advance() { index_++; }
1590
1591 private:
1592 HInstruction* instruction_;
1593 size_t index_;
1594
1595 DISALLOW_COPY_AND_ASSIGN(HInputIterator);
1596 };
1597
1598 class HInstructionIterator : public ValueObject {
1599 public:
HInstructionIterator(const HInstructionList & instructions)1600 explicit HInstructionIterator(const HInstructionList& instructions)
1601 : instruction_(instructions.first_instruction_) {
1602 next_ = Done() ? nullptr : instruction_->GetNext();
1603 }
1604
Done()1605 bool Done() const { return instruction_ == nullptr; }
Current()1606 HInstruction* Current() const { return instruction_; }
Advance()1607 void Advance() {
1608 instruction_ = next_;
1609 next_ = Done() ? nullptr : instruction_->GetNext();
1610 }
1611
1612 private:
1613 HInstruction* instruction_;
1614 HInstruction* next_;
1615
1616 DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
1617 };
1618
1619 class HBackwardInstructionIterator : public ValueObject {
1620 public:
HBackwardInstructionIterator(const HInstructionList & instructions)1621 explicit HBackwardInstructionIterator(const HInstructionList& instructions)
1622 : instruction_(instructions.last_instruction_) {
1623 next_ = Done() ? nullptr : instruction_->GetPrevious();
1624 }
1625
Done()1626 bool Done() const { return instruction_ == nullptr; }
Current()1627 HInstruction* Current() const { return instruction_; }
Advance()1628 void Advance() {
1629 instruction_ = next_;
1630 next_ = Done() ? nullptr : instruction_->GetPrevious();
1631 }
1632
1633 private:
1634 HInstruction* instruction_;
1635 HInstruction* next_;
1636
1637 DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
1638 };
1639
1640 // An embedded container with N elements of type T. Used (with partial
1641 // specialization for N=0) because embedded arrays cannot have size 0.
1642 template<typename T, intptr_t N>
1643 class EmbeddedArray {
1644 public:
EmbeddedArray()1645 EmbeddedArray() : elements_() {}
1646
GetLength()1647 intptr_t GetLength() const { return N; }
1648
1649 const T& operator[](intptr_t i) const {
1650 DCHECK_LT(i, GetLength());
1651 return elements_[i];
1652 }
1653
1654 T& operator[](intptr_t i) {
1655 DCHECK_LT(i, GetLength());
1656 return elements_[i];
1657 }
1658
At(intptr_t i)1659 const T& At(intptr_t i) const {
1660 return (*this)[i];
1661 }
1662
SetAt(intptr_t i,const T & val)1663 void SetAt(intptr_t i, const T& val) {
1664 (*this)[i] = val;
1665 }
1666
1667 private:
1668 T elements_[N];
1669 };
1670
1671 template<typename T>
1672 class EmbeddedArray<T, 0> {
1673 public:
length()1674 intptr_t length() const { return 0; }
1675 const T& operator[](intptr_t i) const {
1676 UNUSED(i);
1677 LOG(FATAL) << "Unreachable";
1678 UNREACHABLE();
1679 }
1680 T& operator[](intptr_t i) {
1681 UNUSED(i);
1682 LOG(FATAL) << "Unreachable";
1683 UNREACHABLE();
1684 }
1685 };
1686
1687 template<intptr_t N>
1688 class HTemplateInstruction: public HInstruction {
1689 public:
1690 HTemplateInstruction<N>(SideEffects side_effects)
HInstruction(side_effects)1691 : HInstruction(side_effects), inputs_() {}
~HTemplateInstruction()1692 virtual ~HTemplateInstruction() {}
1693
InputCount()1694 size_t InputCount() const OVERRIDE { return N; }
1695
1696 protected:
InputRecordAt(size_t i)1697 const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_[i]; }
1698
SetRawInputRecordAt(size_t i,const HUserRecord<HInstruction * > & input)1699 void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
1700 inputs_[i] = input;
1701 }
1702
1703 private:
1704 EmbeddedArray<HUserRecord<HInstruction*>, N> inputs_;
1705
1706 friend class SsaBuilder;
1707 };
1708
1709 template<intptr_t N>
1710 class HExpression : public HTemplateInstruction<N> {
1711 public:
1712 HExpression<N>(Primitive::Type type, SideEffects side_effects)
1713 : HTemplateInstruction<N>(side_effects), type_(type) {}
~HExpression()1714 virtual ~HExpression() {}
1715
GetType()1716 Primitive::Type GetType() const OVERRIDE { return type_; }
1717
1718 protected:
1719 Primitive::Type type_;
1720 };
1721
1722 // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
1723 // instruction that branches to the exit block.
1724 class HReturnVoid : public HTemplateInstruction<0> {
1725 public:
HReturnVoid()1726 HReturnVoid() : HTemplateInstruction(SideEffects::None()) {}
1727
IsControlFlow()1728 bool IsControlFlow() const OVERRIDE { return true; }
1729
1730 DECLARE_INSTRUCTION(ReturnVoid);
1731
1732 private:
1733 DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
1734 };
1735
1736 // Represents dex's RETURN opcodes. A HReturn is a control flow
1737 // instruction that branches to the exit block.
1738 class HReturn : public HTemplateInstruction<1> {
1739 public:
HReturn(HInstruction * value)1740 explicit HReturn(HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
1741 SetRawInputAt(0, value);
1742 }
1743
IsControlFlow()1744 bool IsControlFlow() const OVERRIDE { return true; }
1745
1746 DECLARE_INSTRUCTION(Return);
1747
1748 private:
1749 DISALLOW_COPY_AND_ASSIGN(HReturn);
1750 };
1751
1752 // The exit instruction is the only instruction of the exit block.
1753 // Instructions aborting the method (HThrow and HReturn) must branch to the
1754 // exit block.
1755 class HExit : public HTemplateInstruction<0> {
1756 public:
HExit()1757 HExit() : HTemplateInstruction(SideEffects::None()) {}
1758
IsControlFlow()1759 bool IsControlFlow() const OVERRIDE { return true; }
1760
1761 DECLARE_INSTRUCTION(Exit);
1762
1763 private:
1764 DISALLOW_COPY_AND_ASSIGN(HExit);
1765 };
1766
1767 // Jumps from one block to another.
1768 class HGoto : public HTemplateInstruction<0> {
1769 public:
HGoto()1770 HGoto() : HTemplateInstruction(SideEffects::None()) {}
1771
IsControlFlow()1772 bool IsControlFlow() const OVERRIDE { return true; }
1773
GetSuccessor()1774 HBasicBlock* GetSuccessor() const {
1775 return GetBlock()->GetSuccessors().Get(0);
1776 }
1777
1778 DECLARE_INSTRUCTION(Goto);
1779
1780 private:
1781 DISALLOW_COPY_AND_ASSIGN(HGoto);
1782 };
1783
1784
1785 // Conditional branch. A block ending with an HIf instruction must have
1786 // two successors.
1787 class HIf : public HTemplateInstruction<1> {
1788 public:
HIf(HInstruction * input)1789 explicit HIf(HInstruction* input) : HTemplateInstruction(SideEffects::None()) {
1790 SetRawInputAt(0, input);
1791 }
1792
IsControlFlow()1793 bool IsControlFlow() const OVERRIDE { return true; }
1794
IfTrueSuccessor()1795 HBasicBlock* IfTrueSuccessor() const {
1796 return GetBlock()->GetSuccessors().Get(0);
1797 }
1798
IfFalseSuccessor()1799 HBasicBlock* IfFalseSuccessor() const {
1800 return GetBlock()->GetSuccessors().Get(1);
1801 }
1802
1803 DECLARE_INSTRUCTION(If);
1804
1805 private:
1806 DISALLOW_COPY_AND_ASSIGN(HIf);
1807 };
1808
1809 // Deoptimize to interpreter, upon checking a condition.
1810 class HDeoptimize : public HTemplateInstruction<1> {
1811 public:
HDeoptimize(HInstruction * cond,uint32_t dex_pc)1812 HDeoptimize(HInstruction* cond, uint32_t dex_pc)
1813 : HTemplateInstruction(SideEffects::None()),
1814 dex_pc_(dex_pc) {
1815 SetRawInputAt(0, cond);
1816 }
1817
NeedsEnvironment()1818 bool NeedsEnvironment() const OVERRIDE { return true; }
CanThrow()1819 bool CanThrow() const OVERRIDE { return true; }
GetDexPc()1820 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
1821
1822 DECLARE_INSTRUCTION(Deoptimize);
1823
1824 private:
1825 uint32_t dex_pc_;
1826
1827 DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
1828 };
1829
1830 class HUnaryOperation : public HExpression<1> {
1831 public:
HUnaryOperation(Primitive::Type result_type,HInstruction * input)1832 HUnaryOperation(Primitive::Type result_type, HInstruction* input)
1833 : HExpression(result_type, SideEffects::None()) {
1834 SetRawInputAt(0, input);
1835 }
1836
GetInput()1837 HInstruction* GetInput() const { return InputAt(0); }
GetResultType()1838 Primitive::Type GetResultType() const { return GetType(); }
1839
CanBeMoved()1840 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other)1841 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1842 UNUSED(other);
1843 return true;
1844 }
1845
1846 // Try to statically evaluate `operation` and return a HConstant
1847 // containing the result of this evaluation. If `operation` cannot
1848 // be evaluated as a constant, return null.
1849 HConstant* TryStaticEvaluation() const;
1850
1851 // Apply this operation to `x`.
1852 virtual int32_t Evaluate(int32_t x) const = 0;
1853 virtual int64_t Evaluate(int64_t x) const = 0;
1854
1855 DECLARE_INSTRUCTION(UnaryOperation);
1856
1857 private:
1858 DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
1859 };
1860
1861 class HBinaryOperation : public HExpression<2> {
1862 public:
HBinaryOperation(Primitive::Type result_type,HInstruction * left,HInstruction * right)1863 HBinaryOperation(Primitive::Type result_type,
1864 HInstruction* left,
1865 HInstruction* right) : HExpression(result_type, SideEffects::None()) {
1866 SetRawInputAt(0, left);
1867 SetRawInputAt(1, right);
1868 }
1869
GetLeft()1870 HInstruction* GetLeft() const { return InputAt(0); }
GetRight()1871 HInstruction* GetRight() const { return InputAt(1); }
GetResultType()1872 Primitive::Type GetResultType() const { return GetType(); }
1873
IsCommutative()1874 virtual bool IsCommutative() const { return false; }
1875
1876 // Put constant on the right.
1877 // Returns whether order is changed.
OrderInputsWithConstantOnTheRight()1878 bool OrderInputsWithConstantOnTheRight() {
1879 HInstruction* left = InputAt(0);
1880 HInstruction* right = InputAt(1);
1881 if (left->IsConstant() && !right->IsConstant()) {
1882 ReplaceInput(right, 0);
1883 ReplaceInput(left, 1);
1884 return true;
1885 }
1886 return false;
1887 }
1888
1889 // Order inputs by instruction id, but favor constant on the right side.
1890 // This helps GVN for commutative ops.
OrderInputs()1891 void OrderInputs() {
1892 DCHECK(IsCommutative());
1893 HInstruction* left = InputAt(0);
1894 HInstruction* right = InputAt(1);
1895 if (left == right || (!left->IsConstant() && right->IsConstant())) {
1896 return;
1897 }
1898 if (OrderInputsWithConstantOnTheRight()) {
1899 return;
1900 }
1901 // Order according to instruction id.
1902 if (left->GetId() > right->GetId()) {
1903 ReplaceInput(right, 0);
1904 ReplaceInput(left, 1);
1905 }
1906 }
1907
CanBeMoved()1908 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other)1909 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1910 UNUSED(other);
1911 return true;
1912 }
1913
1914 // Try to statically evaluate `operation` and return a HConstant
1915 // containing the result of this evaluation. If `operation` cannot
1916 // be evaluated as a constant, return null.
1917 HConstant* TryStaticEvaluation() const;
1918
1919 // Apply this operation to `x` and `y`.
1920 virtual int32_t Evaluate(int32_t x, int32_t y) const = 0;
1921 virtual int64_t Evaluate(int64_t x, int64_t y) const = 0;
1922
1923 // Returns an input that can legally be used as the right input and is
1924 // constant, or null.
1925 HConstant* GetConstantRight() const;
1926
1927 // If `GetConstantRight()` returns one of the input, this returns the other
1928 // one. Otherwise it returns null.
1929 HInstruction* GetLeastConstantLeft() const;
1930
1931 DECLARE_INSTRUCTION(BinaryOperation);
1932
1933 private:
1934 DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
1935 };
1936
1937 class HCondition : public HBinaryOperation {
1938 public:
HCondition(HInstruction * first,HInstruction * second)1939 HCondition(HInstruction* first, HInstruction* second)
1940 : HBinaryOperation(Primitive::kPrimBoolean, first, second),
1941 needs_materialization_(true) {}
1942
NeedsMaterialization()1943 bool NeedsMaterialization() const { return needs_materialization_; }
ClearNeedsMaterialization()1944 void ClearNeedsMaterialization() { needs_materialization_ = false; }
1945
1946 // For code generation purposes, returns whether this instruction is just before
1947 // `instruction`, and disregard moves in between.
1948 bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
1949
1950 DECLARE_INSTRUCTION(Condition);
1951
1952 virtual IfCondition GetCondition() const = 0;
1953
1954 private:
1955 // For register allocation purposes, returns whether this instruction needs to be
1956 // materialized (that is, not just be in the processor flags).
1957 bool needs_materialization_;
1958
1959 DISALLOW_COPY_AND_ASSIGN(HCondition);
1960 };
1961
1962 // Instruction to check if two inputs are equal to each other.
1963 class HEqual : public HCondition {
1964 public:
HEqual(HInstruction * first,HInstruction * second)1965 HEqual(HInstruction* first, HInstruction* second)
1966 : HCondition(first, second) {}
1967
IsCommutative()1968 bool IsCommutative() const OVERRIDE { return true; }
1969
Evaluate(int32_t x,int32_t y)1970 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1971 return x == y ? 1 : 0;
1972 }
Evaluate(int64_t x,int64_t y)1973 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1974 return x == y ? 1 : 0;
1975 }
1976
1977 DECLARE_INSTRUCTION(Equal);
1978
GetCondition()1979 IfCondition GetCondition() const OVERRIDE {
1980 return kCondEQ;
1981 }
1982
1983 private:
1984 DISALLOW_COPY_AND_ASSIGN(HEqual);
1985 };
1986
1987 class HNotEqual : public HCondition {
1988 public:
HNotEqual(HInstruction * first,HInstruction * second)1989 HNotEqual(HInstruction* first, HInstruction* second)
1990 : HCondition(first, second) {}
1991
IsCommutative()1992 bool IsCommutative() const OVERRIDE { return true; }
1993
Evaluate(int32_t x,int32_t y)1994 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1995 return x != y ? 1 : 0;
1996 }
Evaluate(int64_t x,int64_t y)1997 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1998 return x != y ? 1 : 0;
1999 }
2000
2001 DECLARE_INSTRUCTION(NotEqual);
2002
GetCondition()2003 IfCondition GetCondition() const OVERRIDE {
2004 return kCondNE;
2005 }
2006
2007 private:
2008 DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2009 };
2010
2011 class HLessThan : public HCondition {
2012 public:
HLessThan(HInstruction * first,HInstruction * second)2013 HLessThan(HInstruction* first, HInstruction* second)
2014 : HCondition(first, second) {}
2015
Evaluate(int32_t x,int32_t y)2016 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2017 return x < y ? 1 : 0;
2018 }
Evaluate(int64_t x,int64_t y)2019 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2020 return x < y ? 1 : 0;
2021 }
2022
2023 DECLARE_INSTRUCTION(LessThan);
2024
GetCondition()2025 IfCondition GetCondition() const OVERRIDE {
2026 return kCondLT;
2027 }
2028
2029 private:
2030 DISALLOW_COPY_AND_ASSIGN(HLessThan);
2031 };
2032
2033 class HLessThanOrEqual : public HCondition {
2034 public:
HLessThanOrEqual(HInstruction * first,HInstruction * second)2035 HLessThanOrEqual(HInstruction* first, HInstruction* second)
2036 : HCondition(first, second) {}
2037
Evaluate(int32_t x,int32_t y)2038 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2039 return x <= y ? 1 : 0;
2040 }
Evaluate(int64_t x,int64_t y)2041 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2042 return x <= y ? 1 : 0;
2043 }
2044
2045 DECLARE_INSTRUCTION(LessThanOrEqual);
2046
GetCondition()2047 IfCondition GetCondition() const OVERRIDE {
2048 return kCondLE;
2049 }
2050
2051 private:
2052 DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2053 };
2054
2055 class HGreaterThan : public HCondition {
2056 public:
HGreaterThan(HInstruction * first,HInstruction * second)2057 HGreaterThan(HInstruction* first, HInstruction* second)
2058 : HCondition(first, second) {}
2059
Evaluate(int32_t x,int32_t y)2060 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2061 return x > y ? 1 : 0;
2062 }
Evaluate(int64_t x,int64_t y)2063 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2064 return x > y ? 1 : 0;
2065 }
2066
2067 DECLARE_INSTRUCTION(GreaterThan);
2068
GetCondition()2069 IfCondition GetCondition() const OVERRIDE {
2070 return kCondGT;
2071 }
2072
2073 private:
2074 DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2075 };
2076
2077 class HGreaterThanOrEqual : public HCondition {
2078 public:
HGreaterThanOrEqual(HInstruction * first,HInstruction * second)2079 HGreaterThanOrEqual(HInstruction* first, HInstruction* second)
2080 : HCondition(first, second) {}
2081
Evaluate(int32_t x,int32_t y)2082 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2083 return x >= y ? 1 : 0;
2084 }
Evaluate(int64_t x,int64_t y)2085 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2086 return x >= y ? 1 : 0;
2087 }
2088
2089 DECLARE_INSTRUCTION(GreaterThanOrEqual);
2090
GetCondition()2091 IfCondition GetCondition() const OVERRIDE {
2092 return kCondGE;
2093 }
2094
2095 private:
2096 DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2097 };
2098
2099
2100 // Instruction to check how two inputs compare to each other.
2101 // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
2102 class HCompare : public HBinaryOperation {
2103 public:
2104 // The bias applies for floating point operations and indicates how NaN
2105 // comparisons are treated:
2106 enum Bias {
2107 kNoBias, // bias is not applicable (i.e. for long operation)
2108 kGtBias, // return 1 for NaN comparisons
2109 kLtBias, // return -1 for NaN comparisons
2110 };
2111
HCompare(Primitive::Type type,HInstruction * first,HInstruction * second,Bias bias,uint32_t dex_pc)2112 HCompare(Primitive::Type type,
2113 HInstruction* first,
2114 HInstruction* second,
2115 Bias bias,
2116 uint32_t dex_pc)
2117 : HBinaryOperation(Primitive::kPrimInt, first, second), bias_(bias), dex_pc_(dex_pc) {
2118 DCHECK_EQ(type, first->GetType());
2119 DCHECK_EQ(type, second->GetType());
2120 }
2121
Evaluate(int32_t x,int32_t y)2122 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2123 return
2124 x == y ? 0 :
2125 x > y ? 1 :
2126 -1;
2127 }
2128
Evaluate(int64_t x,int64_t y)2129 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2130 return
2131 x == y ? 0 :
2132 x > y ? 1 :
2133 -1;
2134 }
2135
InstructionDataEquals(HInstruction * other)2136 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2137 return bias_ == other->AsCompare()->bias_;
2138 }
2139
IsGtBias()2140 bool IsGtBias() { return bias_ == kGtBias; }
2141
GetDexPc()2142 uint32_t GetDexPc() const { return dex_pc_; }
2143
2144 DECLARE_INSTRUCTION(Compare);
2145
2146 private:
2147 const Bias bias_;
2148 const uint32_t dex_pc_;
2149
2150 DISALLOW_COPY_AND_ASSIGN(HCompare);
2151 };
2152
2153 // A local in the graph. Corresponds to a Dex register.
2154 class HLocal : public HTemplateInstruction<0> {
2155 public:
HLocal(uint16_t reg_number)2156 explicit HLocal(uint16_t reg_number)
2157 : HTemplateInstruction(SideEffects::None()), reg_number_(reg_number) {}
2158
2159 DECLARE_INSTRUCTION(Local);
2160
GetRegNumber()2161 uint16_t GetRegNumber() const { return reg_number_; }
2162
2163 private:
2164 // The Dex register number.
2165 const uint16_t reg_number_;
2166
2167 DISALLOW_COPY_AND_ASSIGN(HLocal);
2168 };
2169
2170 // Load a given local. The local is an input of this instruction.
2171 class HLoadLocal : public HExpression<1> {
2172 public:
HLoadLocal(HLocal * local,Primitive::Type type)2173 HLoadLocal(HLocal* local, Primitive::Type type)
2174 : HExpression(type, SideEffects::None()) {
2175 SetRawInputAt(0, local);
2176 }
2177
GetLocal()2178 HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
2179
2180 DECLARE_INSTRUCTION(LoadLocal);
2181
2182 private:
2183 DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
2184 };
2185
2186 // Store a value in a given local. This instruction has two inputs: the value
2187 // and the local.
2188 class HStoreLocal : public HTemplateInstruction<2> {
2189 public:
HStoreLocal(HLocal * local,HInstruction * value)2190 HStoreLocal(HLocal* local, HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
2191 SetRawInputAt(0, local);
2192 SetRawInputAt(1, value);
2193 }
2194
GetLocal()2195 HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
2196
2197 DECLARE_INSTRUCTION(StoreLocal);
2198
2199 private:
2200 DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
2201 };
2202
2203 class HConstant : public HExpression<0> {
2204 public:
HConstant(Primitive::Type type)2205 explicit HConstant(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
2206
CanBeMoved()2207 bool CanBeMoved() const OVERRIDE { return true; }
2208
IsMinusOne()2209 virtual bool IsMinusOne() const { return false; }
IsZero()2210 virtual bool IsZero() const { return false; }
IsOne()2211 virtual bool IsOne() const { return false; }
2212
2213 DECLARE_INSTRUCTION(Constant);
2214
2215 private:
2216 DISALLOW_COPY_AND_ASSIGN(HConstant);
2217 };
2218
2219 class HFloatConstant : public HConstant {
2220 public:
GetValue()2221 float GetValue() const { return value_; }
2222
InstructionDataEquals(HInstruction * other)2223 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2224 return bit_cast<uint32_t, float>(other->AsFloatConstant()->value_) ==
2225 bit_cast<uint32_t, float>(value_);
2226 }
2227
ComputeHashCode()2228 size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2229
IsMinusOne()2230 bool IsMinusOne() const OVERRIDE {
2231 return bit_cast<uint32_t, float>(AsFloatConstant()->GetValue()) ==
2232 bit_cast<uint32_t, float>((-1.0f));
2233 }
IsZero()2234 bool IsZero() const OVERRIDE {
2235 return AsFloatConstant()->GetValue() == 0.0f;
2236 }
IsOne()2237 bool IsOne() const OVERRIDE {
2238 return bit_cast<uint32_t, float>(AsFloatConstant()->GetValue()) ==
2239 bit_cast<uint32_t, float>(1.0f);
2240 }
2241
2242 DECLARE_INSTRUCTION(FloatConstant);
2243
2244 private:
HFloatConstant(float value)2245 explicit HFloatConstant(float value) : HConstant(Primitive::kPrimFloat), value_(value) {}
HFloatConstant(int32_t value)2246 explicit HFloatConstant(int32_t value)
2247 : HConstant(Primitive::kPrimFloat), value_(bit_cast<float, int32_t>(value)) {}
2248
2249 const float value_;
2250
2251 // Only the SsaBuilder and HGraph can create floating-point constants.
2252 friend class SsaBuilder;
2253 friend class HGraph;
2254 DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
2255 };
2256
2257 class HDoubleConstant : public HConstant {
2258 public:
GetValue()2259 double GetValue() const { return value_; }
2260
InstructionDataEquals(HInstruction * other)2261 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2262 return bit_cast<uint64_t, double>(other->AsDoubleConstant()->value_) ==
2263 bit_cast<uint64_t, double>(value_);
2264 }
2265
ComputeHashCode()2266 size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2267
IsMinusOne()2268 bool IsMinusOne() const OVERRIDE {
2269 return bit_cast<uint64_t, double>(AsDoubleConstant()->GetValue()) ==
2270 bit_cast<uint64_t, double>((-1.0));
2271 }
IsZero()2272 bool IsZero() const OVERRIDE {
2273 return AsDoubleConstant()->GetValue() == 0.0;
2274 }
IsOne()2275 bool IsOne() const OVERRIDE {
2276 return bit_cast<uint64_t, double>(AsDoubleConstant()->GetValue()) ==
2277 bit_cast<uint64_t, double>(1.0);
2278 }
2279
2280 DECLARE_INSTRUCTION(DoubleConstant);
2281
2282 private:
HDoubleConstant(double value)2283 explicit HDoubleConstant(double value) : HConstant(Primitive::kPrimDouble), value_(value) {}
HDoubleConstant(int64_t value)2284 explicit HDoubleConstant(int64_t value)
2285 : HConstant(Primitive::kPrimDouble), value_(bit_cast<double, int64_t>(value)) {}
2286
2287 const double value_;
2288
2289 // Only the SsaBuilder and HGraph can create floating-point constants.
2290 friend class SsaBuilder;
2291 friend class HGraph;
2292 DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
2293 };
2294
2295 class HNullConstant : public HConstant {
2296 public:
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)2297 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2298 return true;
2299 }
2300
ComputeHashCode()2301 size_t ComputeHashCode() const OVERRIDE { return 0; }
2302
2303 DECLARE_INSTRUCTION(NullConstant);
2304
2305 private:
HNullConstant()2306 HNullConstant() : HConstant(Primitive::kPrimNot) {}
2307
2308 friend class HGraph;
2309 DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2310 };
2311
2312 // Constants of the type int. Those can be from Dex instructions, or
2313 // synthesized (for example with the if-eqz instruction).
2314 class HIntConstant : public HConstant {
2315 public:
GetValue()2316 int32_t GetValue() const { return value_; }
2317
InstructionDataEquals(HInstruction * other)2318 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2319 return other->AsIntConstant()->value_ == value_;
2320 }
2321
ComputeHashCode()2322 size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2323
IsMinusOne()2324 bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
IsZero()2325 bool IsZero() const OVERRIDE { return GetValue() == 0; }
IsOne()2326 bool IsOne() const OVERRIDE { return GetValue() == 1; }
2327
2328 DECLARE_INSTRUCTION(IntConstant);
2329
2330 private:
HIntConstant(int32_t value)2331 explicit HIntConstant(int32_t value) : HConstant(Primitive::kPrimInt), value_(value) {}
2332
2333 const int32_t value_;
2334
2335 friend class HGraph;
2336 ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2337 ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2338 DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2339 };
2340
2341 class HLongConstant : public HConstant {
2342 public:
GetValue()2343 int64_t GetValue() const { return value_; }
2344
InstructionDataEquals(HInstruction * other)2345 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2346 return other->AsLongConstant()->value_ == value_;
2347 }
2348
ComputeHashCode()2349 size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2350
IsMinusOne()2351 bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
IsZero()2352 bool IsZero() const OVERRIDE { return GetValue() == 0; }
IsOne()2353 bool IsOne() const OVERRIDE { return GetValue() == 1; }
2354
2355 DECLARE_INSTRUCTION(LongConstant);
2356
2357 private:
HLongConstant(int64_t value)2358 explicit HLongConstant(int64_t value) : HConstant(Primitive::kPrimLong), value_(value) {}
2359
2360 const int64_t value_;
2361
2362 friend class HGraph;
2363 DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2364 };
2365
2366 enum class Intrinsics {
2367 #define OPTIMIZING_INTRINSICS(Name, IsStatic) k ## Name,
2368 #include "intrinsics_list.h"
2369 kNone,
2370 INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
2371 #undef INTRINSICS_LIST
2372 #undef OPTIMIZING_INTRINSICS
2373 };
2374 std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
2375
2376 class HInvoke : public HInstruction {
2377 public:
InputCount()2378 size_t InputCount() const OVERRIDE { return inputs_.Size(); }
2379
2380 // Runtime needs to walk the stack, so Dex -> Dex calls need to
2381 // know their environment.
NeedsEnvironment()2382 bool NeedsEnvironment() const OVERRIDE { return true; }
2383
SetArgumentAt(size_t index,HInstruction * argument)2384 void SetArgumentAt(size_t index, HInstruction* argument) {
2385 SetRawInputAt(index, argument);
2386 }
2387
2388 // Return the number of arguments. This number can be lower than
2389 // the number of inputs returned by InputCount(), as some invoke
2390 // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
2391 // inputs at the end of their list of inputs.
GetNumberOfArguments()2392 uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
2393
GetType()2394 Primitive::Type GetType() const OVERRIDE { return return_type_; }
2395
GetDexPc()2396 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2397
GetDexMethodIndex()2398 uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2399
GetIntrinsic()2400 Intrinsics GetIntrinsic() const {
2401 return intrinsic_;
2402 }
2403
SetIntrinsic(Intrinsics intrinsic)2404 void SetIntrinsic(Intrinsics intrinsic) {
2405 intrinsic_ = intrinsic;
2406 }
2407
2408 DECLARE_INSTRUCTION(Invoke);
2409
2410 protected:
HInvoke(ArenaAllocator * arena,uint32_t number_of_arguments,uint32_t number_of_other_inputs,Primitive::Type return_type,uint32_t dex_pc,uint32_t dex_method_index)2411 HInvoke(ArenaAllocator* arena,
2412 uint32_t number_of_arguments,
2413 uint32_t number_of_other_inputs,
2414 Primitive::Type return_type,
2415 uint32_t dex_pc,
2416 uint32_t dex_method_index)
2417 : HInstruction(SideEffects::All()),
2418 number_of_arguments_(number_of_arguments),
2419 inputs_(arena, number_of_arguments),
2420 return_type_(return_type),
2421 dex_pc_(dex_pc),
2422 dex_method_index_(dex_method_index),
2423 intrinsic_(Intrinsics::kNone) {
2424 uint32_t number_of_inputs = number_of_arguments + number_of_other_inputs;
2425 inputs_.SetSize(number_of_inputs);
2426 }
2427
InputRecordAt(size_t i)2428 const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
SetRawInputRecordAt(size_t index,const HUserRecord<HInstruction * > & input)2429 void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2430 inputs_.Put(index, input);
2431 }
2432
2433 uint32_t number_of_arguments_;
2434 GrowableArray<HUserRecord<HInstruction*> > inputs_;
2435 const Primitive::Type return_type_;
2436 const uint32_t dex_pc_;
2437 const uint32_t dex_method_index_;
2438 Intrinsics intrinsic_;
2439
2440 private:
2441 DISALLOW_COPY_AND_ASSIGN(HInvoke);
2442 };
2443
2444 class HInvokeStaticOrDirect : public HInvoke {
2445 public:
2446 // Requirements of this method call regarding the class
2447 // initialization (clinit) check of its declaring class.
2448 enum class ClinitCheckRequirement {
2449 kNone, // Class already initialized.
2450 kExplicit, // Static call having explicit clinit check as last input.
2451 kImplicit, // Static call implicitly requiring a clinit check.
2452 };
2453
HInvokeStaticOrDirect(ArenaAllocator * arena,uint32_t number_of_arguments,Primitive::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,bool is_recursive,int32_t string_init_offset,InvokeType original_invoke_type,InvokeType invoke_type,ClinitCheckRequirement clinit_check_requirement)2454 HInvokeStaticOrDirect(ArenaAllocator* arena,
2455 uint32_t number_of_arguments,
2456 Primitive::Type return_type,
2457 uint32_t dex_pc,
2458 uint32_t dex_method_index,
2459 bool is_recursive,
2460 int32_t string_init_offset,
2461 InvokeType original_invoke_type,
2462 InvokeType invoke_type,
2463 ClinitCheckRequirement clinit_check_requirement)
2464 : HInvoke(arena,
2465 number_of_arguments,
2466 clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u,
2467 return_type,
2468 dex_pc,
2469 dex_method_index),
2470 original_invoke_type_(original_invoke_type),
2471 invoke_type_(invoke_type),
2472 is_recursive_(is_recursive),
2473 clinit_check_requirement_(clinit_check_requirement),
2474 string_init_offset_(string_init_offset) {}
2475
CanDoImplicitNullCheckOn(HInstruction * obj)2476 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2477 UNUSED(obj);
2478 // We access the method via the dex cache so we can't do an implicit null check.
2479 // TODO: for intrinsics we can generate implicit null checks.
2480 return false;
2481 }
2482
GetOriginalInvokeType()2483 InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
GetInvokeType()2484 InvokeType GetInvokeType() const { return invoke_type_; }
IsRecursive()2485 bool IsRecursive() const { return is_recursive_; }
NeedsDexCache()2486 bool NeedsDexCache() const OVERRIDE { return !IsRecursive(); }
IsStringInit()2487 bool IsStringInit() const { return string_init_offset_ != 0; }
GetStringInitOffset()2488 int32_t GetStringInitOffset() const { return string_init_offset_; }
2489
2490 // Is this instruction a call to a static method?
IsStatic()2491 bool IsStatic() const {
2492 return GetInvokeType() == kStatic;
2493 }
2494
2495 // Remove the art::HLoadClass instruction set as last input by
2496 // art::PrepareForRegisterAllocation::VisitClinitCheck in lieu of
2497 // the initial art::HClinitCheck instruction (only relevant for
2498 // static calls with explicit clinit check).
RemoveLoadClassAsLastInput()2499 void RemoveLoadClassAsLastInput() {
2500 DCHECK(IsStaticWithExplicitClinitCheck());
2501 size_t last_input_index = InputCount() - 1;
2502 HInstruction* last_input = InputAt(last_input_index);
2503 DCHECK(last_input != nullptr);
2504 DCHECK(last_input->IsLoadClass()) << last_input->DebugName();
2505 RemoveAsUserOfInput(last_input_index);
2506 inputs_.DeleteAt(last_input_index);
2507 clinit_check_requirement_ = ClinitCheckRequirement::kImplicit;
2508 DCHECK(IsStaticWithImplicitClinitCheck());
2509 }
2510
2511 // Is this a call to a static method whose declaring class has an
2512 // explicit intialization check in the graph?
IsStaticWithExplicitClinitCheck()2513 bool IsStaticWithExplicitClinitCheck() const {
2514 return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
2515 }
2516
2517 // Is this a call to a static method whose declaring class has an
2518 // implicit intialization check requirement?
IsStaticWithImplicitClinitCheck()2519 bool IsStaticWithImplicitClinitCheck() const {
2520 return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
2521 }
2522
2523 DECLARE_INSTRUCTION(InvokeStaticOrDirect);
2524
2525 protected:
InputRecordAt(size_t i)2526 const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2527 const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
2528 if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
2529 HInstruction* input = input_record.GetInstruction();
2530 // `input` is the last input of a static invoke marked as having
2531 // an explicit clinit check. It must either be:
2532 // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
2533 // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
2534 DCHECK(input != nullptr);
2535 DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
2536 }
2537 return input_record;
2538 }
2539
2540 private:
2541 const InvokeType original_invoke_type_;
2542 const InvokeType invoke_type_;
2543 const bool is_recursive_;
2544 ClinitCheckRequirement clinit_check_requirement_;
2545 // Thread entrypoint offset for string init method if this is a string init invoke.
2546 // Note that there are multiple string init methods, each having its own offset.
2547 int32_t string_init_offset_;
2548
2549 DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
2550 };
2551
2552 class HInvokeVirtual : public HInvoke {
2553 public:
HInvokeVirtual(ArenaAllocator * arena,uint32_t number_of_arguments,Primitive::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,uint32_t vtable_index)2554 HInvokeVirtual(ArenaAllocator* arena,
2555 uint32_t number_of_arguments,
2556 Primitive::Type return_type,
2557 uint32_t dex_pc,
2558 uint32_t dex_method_index,
2559 uint32_t vtable_index)
2560 : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index),
2561 vtable_index_(vtable_index) {}
2562
CanDoImplicitNullCheckOn(HInstruction * obj)2563 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2564 // TODO: Add implicit null checks in intrinsics.
2565 return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
2566 }
2567
GetVTableIndex()2568 uint32_t GetVTableIndex() const { return vtable_index_; }
2569
2570 DECLARE_INSTRUCTION(InvokeVirtual);
2571
2572 private:
2573 const uint32_t vtable_index_;
2574
2575 DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
2576 };
2577
2578 class HInvokeInterface : public HInvoke {
2579 public:
HInvokeInterface(ArenaAllocator * arena,uint32_t number_of_arguments,Primitive::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,uint32_t imt_index)2580 HInvokeInterface(ArenaAllocator* arena,
2581 uint32_t number_of_arguments,
2582 Primitive::Type return_type,
2583 uint32_t dex_pc,
2584 uint32_t dex_method_index,
2585 uint32_t imt_index)
2586 : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index),
2587 imt_index_(imt_index) {}
2588
CanDoImplicitNullCheckOn(HInstruction * obj)2589 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2590 // TODO: Add implicit null checks in intrinsics.
2591 return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
2592 }
2593
GetImtIndex()2594 uint32_t GetImtIndex() const { return imt_index_; }
GetDexMethodIndex()2595 uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2596
2597 DECLARE_INSTRUCTION(InvokeInterface);
2598
2599 private:
2600 const uint32_t imt_index_;
2601
2602 DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
2603 };
2604
2605 class HNewInstance : public HExpression<0> {
2606 public:
HNewInstance(uint32_t dex_pc,uint16_t type_index,QuickEntrypointEnum entrypoint)2607 HNewInstance(uint32_t dex_pc, uint16_t type_index, QuickEntrypointEnum entrypoint)
2608 : HExpression(Primitive::kPrimNot, SideEffects::None()),
2609 dex_pc_(dex_pc),
2610 type_index_(type_index),
2611 entrypoint_(entrypoint) {}
2612
GetDexPc()2613 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
GetTypeIndex()2614 uint16_t GetTypeIndex() const { return type_index_; }
2615
2616 // Calls runtime so needs an environment.
NeedsEnvironment()2617 bool NeedsEnvironment() const OVERRIDE { return true; }
2618 // It may throw when called on:
2619 // - interfaces
2620 // - abstract/innaccessible/unknown classes
2621 // TODO: optimize when possible.
CanThrow()2622 bool CanThrow() const OVERRIDE { return true; }
2623
CanBeNull()2624 bool CanBeNull() const OVERRIDE { return false; }
2625
GetEntrypoint()2626 QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2627
2628 DECLARE_INSTRUCTION(NewInstance);
2629
2630 private:
2631 const uint32_t dex_pc_;
2632 const uint16_t type_index_;
2633 const QuickEntrypointEnum entrypoint_;
2634
2635 DISALLOW_COPY_AND_ASSIGN(HNewInstance);
2636 };
2637
2638 class HNeg : public HUnaryOperation {
2639 public:
HNeg(Primitive::Type result_type,HInstruction * input)2640 explicit HNeg(Primitive::Type result_type, HInstruction* input)
2641 : HUnaryOperation(result_type, input) {}
2642
Evaluate(int32_t x)2643 int32_t Evaluate(int32_t x) const OVERRIDE { return -x; }
Evaluate(int64_t x)2644 int64_t Evaluate(int64_t x) const OVERRIDE { return -x; }
2645
2646 DECLARE_INSTRUCTION(Neg);
2647
2648 private:
2649 DISALLOW_COPY_AND_ASSIGN(HNeg);
2650 };
2651
2652 class HNewArray : public HExpression<1> {
2653 public:
HNewArray(HInstruction * length,uint32_t dex_pc,uint16_t type_index,QuickEntrypointEnum entrypoint)2654 HNewArray(HInstruction* length,
2655 uint32_t dex_pc,
2656 uint16_t type_index,
2657 QuickEntrypointEnum entrypoint)
2658 : HExpression(Primitive::kPrimNot, SideEffects::None()),
2659 dex_pc_(dex_pc),
2660 type_index_(type_index),
2661 entrypoint_(entrypoint) {
2662 SetRawInputAt(0, length);
2663 }
2664
GetDexPc()2665 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
GetTypeIndex()2666 uint16_t GetTypeIndex() const { return type_index_; }
2667
2668 // Calls runtime so needs an environment.
NeedsEnvironment()2669 bool NeedsEnvironment() const OVERRIDE { return true; }
2670
2671 // May throw NegativeArraySizeException, OutOfMemoryError, etc.
CanThrow()2672 bool CanThrow() const OVERRIDE { return true; }
2673
CanBeNull()2674 bool CanBeNull() const OVERRIDE { return false; }
2675
GetEntrypoint()2676 QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2677
2678 DECLARE_INSTRUCTION(NewArray);
2679
2680 private:
2681 const uint32_t dex_pc_;
2682 const uint16_t type_index_;
2683 const QuickEntrypointEnum entrypoint_;
2684
2685 DISALLOW_COPY_AND_ASSIGN(HNewArray);
2686 };
2687
2688 class HAdd : public HBinaryOperation {
2689 public:
HAdd(Primitive::Type result_type,HInstruction * left,HInstruction * right)2690 HAdd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2691 : HBinaryOperation(result_type, left, right) {}
2692
IsCommutative()2693 bool IsCommutative() const OVERRIDE { return true; }
2694
Evaluate(int32_t x,int32_t y)2695 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2696 return x + y;
2697 }
Evaluate(int64_t x,int64_t y)2698 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2699 return x + y;
2700 }
2701
2702 DECLARE_INSTRUCTION(Add);
2703
2704 private:
2705 DISALLOW_COPY_AND_ASSIGN(HAdd);
2706 };
2707
2708 class HSub : public HBinaryOperation {
2709 public:
HSub(Primitive::Type result_type,HInstruction * left,HInstruction * right)2710 HSub(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2711 : HBinaryOperation(result_type, left, right) {}
2712
Evaluate(int32_t x,int32_t y)2713 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2714 return x - y;
2715 }
Evaluate(int64_t x,int64_t y)2716 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2717 return x - y;
2718 }
2719
2720 DECLARE_INSTRUCTION(Sub);
2721
2722 private:
2723 DISALLOW_COPY_AND_ASSIGN(HSub);
2724 };
2725
2726 class HMul : public HBinaryOperation {
2727 public:
HMul(Primitive::Type result_type,HInstruction * left,HInstruction * right)2728 HMul(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2729 : HBinaryOperation(result_type, left, right) {}
2730
IsCommutative()2731 bool IsCommutative() const OVERRIDE { return true; }
2732
Evaluate(int32_t x,int32_t y)2733 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x * y; }
Evaluate(int64_t x,int64_t y)2734 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x * y; }
2735
2736 DECLARE_INSTRUCTION(Mul);
2737
2738 private:
2739 DISALLOW_COPY_AND_ASSIGN(HMul);
2740 };
2741
2742 class HDiv : public HBinaryOperation {
2743 public:
HDiv(Primitive::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)2744 HDiv(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2745 : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2746
Evaluate(int32_t x,int32_t y)2747 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2748 // Our graph structure ensures we never have 0 for `y` during constant folding.
2749 DCHECK_NE(y, 0);
2750 // Special case -1 to avoid getting a SIGFPE on x86(_64).
2751 return (y == -1) ? -x : x / y;
2752 }
2753
Evaluate(int64_t x,int64_t y)2754 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2755 DCHECK_NE(y, 0);
2756 // Special case -1 to avoid getting a SIGFPE on x86(_64).
2757 return (y == -1) ? -x : x / y;
2758 }
2759
GetDexPc()2760 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2761
2762 DECLARE_INSTRUCTION(Div);
2763
2764 private:
2765 const uint32_t dex_pc_;
2766
2767 DISALLOW_COPY_AND_ASSIGN(HDiv);
2768 };
2769
2770 class HRem : public HBinaryOperation {
2771 public:
HRem(Primitive::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)2772 HRem(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2773 : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2774
Evaluate(int32_t x,int32_t y)2775 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2776 DCHECK_NE(y, 0);
2777 // Special case -1 to avoid getting a SIGFPE on x86(_64).
2778 return (y == -1) ? 0 : x % y;
2779 }
2780
Evaluate(int64_t x,int64_t y)2781 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2782 DCHECK_NE(y, 0);
2783 // Special case -1 to avoid getting a SIGFPE on x86(_64).
2784 return (y == -1) ? 0 : x % y;
2785 }
2786
GetDexPc()2787 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2788
2789 DECLARE_INSTRUCTION(Rem);
2790
2791 private:
2792 const uint32_t dex_pc_;
2793
2794 DISALLOW_COPY_AND_ASSIGN(HRem);
2795 };
2796
2797 class HDivZeroCheck : public HExpression<1> {
2798 public:
HDivZeroCheck(HInstruction * value,uint32_t dex_pc)2799 HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
2800 : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
2801 SetRawInputAt(0, value);
2802 }
2803
CanBeMoved()2804 bool CanBeMoved() const OVERRIDE { return true; }
2805
InstructionDataEquals(HInstruction * other)2806 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2807 UNUSED(other);
2808 return true;
2809 }
2810
NeedsEnvironment()2811 bool NeedsEnvironment() const OVERRIDE { return true; }
CanThrow()2812 bool CanThrow() const OVERRIDE { return true; }
2813
GetDexPc()2814 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2815
2816 DECLARE_INSTRUCTION(DivZeroCheck);
2817
2818 private:
2819 const uint32_t dex_pc_;
2820
2821 DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
2822 };
2823
2824 class HShl : public HBinaryOperation {
2825 public:
HShl(Primitive::Type result_type,HInstruction * left,HInstruction * right)2826 HShl(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2827 : HBinaryOperation(result_type, left, right) {}
2828
Evaluate(int32_t x,int32_t y)2829 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x << (y & kMaxIntShiftValue); }
Evaluate(int64_t x,int64_t y)2830 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x << (y & kMaxLongShiftValue); }
2831
2832 DECLARE_INSTRUCTION(Shl);
2833
2834 private:
2835 DISALLOW_COPY_AND_ASSIGN(HShl);
2836 };
2837
2838 class HShr : public HBinaryOperation {
2839 public:
HShr(Primitive::Type result_type,HInstruction * left,HInstruction * right)2840 HShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2841 : HBinaryOperation(result_type, left, right) {}
2842
Evaluate(int32_t x,int32_t y)2843 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x >> (y & kMaxIntShiftValue); }
Evaluate(int64_t x,int64_t y)2844 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x >> (y & kMaxLongShiftValue); }
2845
2846 DECLARE_INSTRUCTION(Shr);
2847
2848 private:
2849 DISALLOW_COPY_AND_ASSIGN(HShr);
2850 };
2851
2852 class HUShr : public HBinaryOperation {
2853 public:
HUShr(Primitive::Type result_type,HInstruction * left,HInstruction * right)2854 HUShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2855 : HBinaryOperation(result_type, left, right) {}
2856
Evaluate(int32_t x,int32_t y)2857 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2858 uint32_t ux = static_cast<uint32_t>(x);
2859 uint32_t uy = static_cast<uint32_t>(y) & kMaxIntShiftValue;
2860 return static_cast<int32_t>(ux >> uy);
2861 }
2862
Evaluate(int64_t x,int64_t y)2863 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2864 uint64_t ux = static_cast<uint64_t>(x);
2865 uint64_t uy = static_cast<uint64_t>(y) & kMaxLongShiftValue;
2866 return static_cast<int64_t>(ux >> uy);
2867 }
2868
2869 DECLARE_INSTRUCTION(UShr);
2870
2871 private:
2872 DISALLOW_COPY_AND_ASSIGN(HUShr);
2873 };
2874
2875 class HAnd : public HBinaryOperation {
2876 public:
HAnd(Primitive::Type result_type,HInstruction * left,HInstruction * right)2877 HAnd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2878 : HBinaryOperation(result_type, left, right) {}
2879
IsCommutative()2880 bool IsCommutative() const OVERRIDE { return true; }
2881
Evaluate(int32_t x,int32_t y)2882 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x & y; }
Evaluate(int64_t x,int64_t y)2883 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x & y; }
2884
2885 DECLARE_INSTRUCTION(And);
2886
2887 private:
2888 DISALLOW_COPY_AND_ASSIGN(HAnd);
2889 };
2890
2891 class HOr : public HBinaryOperation {
2892 public:
HOr(Primitive::Type result_type,HInstruction * left,HInstruction * right)2893 HOr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2894 : HBinaryOperation(result_type, left, right) {}
2895
IsCommutative()2896 bool IsCommutative() const OVERRIDE { return true; }
2897
Evaluate(int32_t x,int32_t y)2898 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x | y; }
Evaluate(int64_t x,int64_t y)2899 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x | y; }
2900
2901 DECLARE_INSTRUCTION(Or);
2902
2903 private:
2904 DISALLOW_COPY_AND_ASSIGN(HOr);
2905 };
2906
2907 class HXor : public HBinaryOperation {
2908 public:
HXor(Primitive::Type result_type,HInstruction * left,HInstruction * right)2909 HXor(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2910 : HBinaryOperation(result_type, left, right) {}
2911
IsCommutative()2912 bool IsCommutative() const OVERRIDE { return true; }
2913
Evaluate(int32_t x,int32_t y)2914 int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x ^ y; }
Evaluate(int64_t x,int64_t y)2915 int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x ^ y; }
2916
2917 DECLARE_INSTRUCTION(Xor);
2918
2919 private:
2920 DISALLOW_COPY_AND_ASSIGN(HXor);
2921 };
2922
2923 // The value of a parameter in this method. Its location depends on
2924 // the calling convention.
2925 class HParameterValue : public HExpression<0> {
2926 public:
2927 HParameterValue(uint8_t index, Primitive::Type parameter_type, bool is_this = false)
HExpression(parameter_type,SideEffects::None ())2928 : HExpression(parameter_type, SideEffects::None()), index_(index), is_this_(is_this) {}
2929
GetIndex()2930 uint8_t GetIndex() const { return index_; }
2931
CanBeNull()2932 bool CanBeNull() const OVERRIDE { return !is_this_; }
2933
2934 DECLARE_INSTRUCTION(ParameterValue);
2935
2936 private:
2937 // The index of this parameter in the parameters list. Must be less
2938 // than HGraph::number_of_in_vregs_.
2939 const uint8_t index_;
2940
2941 // Whether or not the parameter value corresponds to 'this' argument.
2942 const bool is_this_;
2943
2944 DISALLOW_COPY_AND_ASSIGN(HParameterValue);
2945 };
2946
2947 class HNot : public HUnaryOperation {
2948 public:
HNot(Primitive::Type result_type,HInstruction * input)2949 explicit HNot(Primitive::Type result_type, HInstruction* input)
2950 : HUnaryOperation(result_type, input) {}
2951
CanBeMoved()2952 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other)2953 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2954 UNUSED(other);
2955 return true;
2956 }
2957
Evaluate(int32_t x)2958 int32_t Evaluate(int32_t x) const OVERRIDE { return ~x; }
Evaluate(int64_t x)2959 int64_t Evaluate(int64_t x) const OVERRIDE { return ~x; }
2960
2961 DECLARE_INSTRUCTION(Not);
2962
2963 private:
2964 DISALLOW_COPY_AND_ASSIGN(HNot);
2965 };
2966
2967 class HBooleanNot : public HUnaryOperation {
2968 public:
HBooleanNot(HInstruction * input)2969 explicit HBooleanNot(HInstruction* input)
2970 : HUnaryOperation(Primitive::Type::kPrimBoolean, input) {}
2971
CanBeMoved()2972 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other)2973 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2974 UNUSED(other);
2975 return true;
2976 }
2977
Evaluate(int32_t x)2978 int32_t Evaluate(int32_t x) const OVERRIDE {
2979 DCHECK(IsUint<1>(x));
2980 return !x;
2981 }
2982
Evaluate(int64_t x ATTRIBUTE_UNUSED)2983 int64_t Evaluate(int64_t x ATTRIBUTE_UNUSED) const OVERRIDE {
2984 LOG(FATAL) << DebugName() << " cannot be used with 64-bit values";
2985 UNREACHABLE();
2986 }
2987
2988 DECLARE_INSTRUCTION(BooleanNot);
2989
2990 private:
2991 DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
2992 };
2993
2994 class HTypeConversion : public HExpression<1> {
2995 public:
2996 // Instantiate a type conversion of `input` to `result_type`.
HTypeConversion(Primitive::Type result_type,HInstruction * input,uint32_t dex_pc)2997 HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
2998 : HExpression(result_type, SideEffects::None()), dex_pc_(dex_pc) {
2999 SetRawInputAt(0, input);
3000 DCHECK_NE(input->GetType(), result_type);
3001 }
3002
GetInput()3003 HInstruction* GetInput() const { return InputAt(0); }
GetInputType()3004 Primitive::Type GetInputType() const { return GetInput()->GetType(); }
GetResultType()3005 Primitive::Type GetResultType() const { return GetType(); }
3006
3007 // Required by the x86 and ARM code generators when producing calls
3008 // to the runtime.
GetDexPc()3009 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3010
CanBeMoved()3011 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)3012 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
3013
3014 DECLARE_INSTRUCTION(TypeConversion);
3015
3016 private:
3017 const uint32_t dex_pc_;
3018
3019 DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
3020 };
3021
3022 static constexpr uint32_t kNoRegNumber = -1;
3023
3024 class HPhi : public HInstruction {
3025 public:
HPhi(ArenaAllocator * arena,uint32_t reg_number,size_t number_of_inputs,Primitive::Type type)3026 HPhi(ArenaAllocator* arena, uint32_t reg_number, size_t number_of_inputs, Primitive::Type type)
3027 : HInstruction(SideEffects::None()),
3028 inputs_(arena, number_of_inputs),
3029 reg_number_(reg_number),
3030 type_(type),
3031 is_live_(false),
3032 can_be_null_(true) {
3033 inputs_.SetSize(number_of_inputs);
3034 }
3035
3036 // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
ToPhiType(Primitive::Type type)3037 static Primitive::Type ToPhiType(Primitive::Type type) {
3038 switch (type) {
3039 case Primitive::kPrimBoolean:
3040 case Primitive::kPrimByte:
3041 case Primitive::kPrimShort:
3042 case Primitive::kPrimChar:
3043 return Primitive::kPrimInt;
3044 default:
3045 return type;
3046 }
3047 }
3048
InputCount()3049 size_t InputCount() const OVERRIDE { return inputs_.Size(); }
3050
3051 void AddInput(HInstruction* input);
3052 void RemoveInputAt(size_t index);
3053
GetType()3054 Primitive::Type GetType() const OVERRIDE { return type_; }
SetType(Primitive::Type type)3055 void SetType(Primitive::Type type) { type_ = type; }
3056
CanBeNull()3057 bool CanBeNull() const OVERRIDE { return can_be_null_; }
SetCanBeNull(bool can_be_null)3058 void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
3059
GetRegNumber()3060 uint32_t GetRegNumber() const { return reg_number_; }
3061
SetDead()3062 void SetDead() { is_live_ = false; }
SetLive()3063 void SetLive() { is_live_ = true; }
IsDead()3064 bool IsDead() const { return !is_live_; }
IsLive()3065 bool IsLive() const { return is_live_; }
3066
3067 // Returns the next equivalent phi (starting from the current one) or null if there is none.
3068 // An equivalent phi is a phi having the same dex register and type.
3069 // It assumes that phis with the same dex register are adjacent.
GetNextEquivalentPhiWithSameType()3070 HPhi* GetNextEquivalentPhiWithSameType() {
3071 HInstruction* next = GetNext();
3072 while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
3073 if (next->GetType() == GetType()) {
3074 return next->AsPhi();
3075 }
3076 next = next->GetNext();
3077 }
3078 return nullptr;
3079 }
3080
3081 DECLARE_INSTRUCTION(Phi);
3082
3083 protected:
InputRecordAt(size_t i)3084 const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
3085
SetRawInputRecordAt(size_t index,const HUserRecord<HInstruction * > & input)3086 void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3087 inputs_.Put(index, input);
3088 }
3089
3090 private:
3091 GrowableArray<HUserRecord<HInstruction*> > inputs_;
3092 const uint32_t reg_number_;
3093 Primitive::Type type_;
3094 bool is_live_;
3095 bool can_be_null_;
3096
3097 DISALLOW_COPY_AND_ASSIGN(HPhi);
3098 };
3099
3100 class HNullCheck : public HExpression<1> {
3101 public:
HNullCheck(HInstruction * value,uint32_t dex_pc)3102 HNullCheck(HInstruction* value, uint32_t dex_pc)
3103 : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
3104 SetRawInputAt(0, value);
3105 }
3106
CanBeMoved()3107 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other)3108 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3109 UNUSED(other);
3110 return true;
3111 }
3112
NeedsEnvironment()3113 bool NeedsEnvironment() const OVERRIDE { return true; }
3114
CanThrow()3115 bool CanThrow() const OVERRIDE { return true; }
3116
CanBeNull()3117 bool CanBeNull() const OVERRIDE { return false; }
3118
GetDexPc()3119 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3120
3121 DECLARE_INSTRUCTION(NullCheck);
3122
3123 private:
3124 const uint32_t dex_pc_;
3125
3126 DISALLOW_COPY_AND_ASSIGN(HNullCheck);
3127 };
3128
3129 class FieldInfo : public ValueObject {
3130 public:
FieldInfo(MemberOffset field_offset,Primitive::Type field_type,bool is_volatile)3131 FieldInfo(MemberOffset field_offset, Primitive::Type field_type, bool is_volatile)
3132 : field_offset_(field_offset), field_type_(field_type), is_volatile_(is_volatile) {}
3133
GetFieldOffset()3134 MemberOffset GetFieldOffset() const { return field_offset_; }
GetFieldType()3135 Primitive::Type GetFieldType() const { return field_type_; }
IsVolatile()3136 bool IsVolatile() const { return is_volatile_; }
3137
3138 private:
3139 const MemberOffset field_offset_;
3140 const Primitive::Type field_type_;
3141 const bool is_volatile_;
3142 };
3143
3144 class HInstanceFieldGet : public HExpression<1> {
3145 public:
HInstanceFieldGet(HInstruction * value,Primitive::Type field_type,MemberOffset field_offset,bool is_volatile)3146 HInstanceFieldGet(HInstruction* value,
3147 Primitive::Type field_type,
3148 MemberOffset field_offset,
3149 bool is_volatile)
3150 : HExpression(field_type, SideEffects::DependsOnSomething()),
3151 field_info_(field_offset, field_type, is_volatile) {
3152 SetRawInputAt(0, value);
3153 }
3154
CanBeMoved()3155 bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
3156
InstructionDataEquals(HInstruction * other)3157 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3158 HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
3159 return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
3160 }
3161
CanDoImplicitNullCheckOn(HInstruction * obj)3162 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3163 return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
3164 }
3165
ComputeHashCode()3166 size_t ComputeHashCode() const OVERRIDE {
3167 return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
3168 }
3169
GetFieldInfo()3170 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()3171 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()3172 Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()3173 bool IsVolatile() const { return field_info_.IsVolatile(); }
3174
3175 DECLARE_INSTRUCTION(InstanceFieldGet);
3176
3177 private:
3178 const FieldInfo field_info_;
3179
3180 DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
3181 };
3182
3183 class HInstanceFieldSet : public HTemplateInstruction<2> {
3184 public:
HInstanceFieldSet(HInstruction * object,HInstruction * value,Primitive::Type field_type,MemberOffset field_offset,bool is_volatile)3185 HInstanceFieldSet(HInstruction* object,
3186 HInstruction* value,
3187 Primitive::Type field_type,
3188 MemberOffset field_offset,
3189 bool is_volatile)
3190 : HTemplateInstruction(SideEffects::ChangesSomething()),
3191 field_info_(field_offset, field_type, is_volatile) {
3192 SetRawInputAt(0, object);
3193 SetRawInputAt(1, value);
3194 }
3195
CanDoImplicitNullCheckOn(HInstruction * obj)3196 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3197 return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
3198 }
3199
GetFieldInfo()3200 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()3201 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()3202 Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()3203 bool IsVolatile() const { return field_info_.IsVolatile(); }
GetValue()3204 HInstruction* GetValue() const { return InputAt(1); }
3205
3206 DECLARE_INSTRUCTION(InstanceFieldSet);
3207
3208 private:
3209 const FieldInfo field_info_;
3210
3211 DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
3212 };
3213
3214 class HArrayGet : public HExpression<2> {
3215 public:
HArrayGet(HInstruction * array,HInstruction * index,Primitive::Type type)3216 HArrayGet(HInstruction* array, HInstruction* index, Primitive::Type type)
3217 : HExpression(type, SideEffects::DependsOnSomething()) {
3218 SetRawInputAt(0, array);
3219 SetRawInputAt(1, index);
3220 }
3221
CanBeMoved()3222 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other)3223 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3224 UNUSED(other);
3225 return true;
3226 }
CanDoImplicitNullCheckOn(HInstruction * obj)3227 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3228 UNUSED(obj);
3229 // TODO: We can be smarter here.
3230 // Currently, the array access is always preceded by an ArrayLength or a NullCheck
3231 // which generates the implicit null check. There are cases when these can be removed
3232 // to produce better code. If we ever add optimizations to do so we should allow an
3233 // implicit check here (as long as the address falls in the first page).
3234 return false;
3235 }
3236
SetType(Primitive::Type type)3237 void SetType(Primitive::Type type) { type_ = type; }
3238
GetArray()3239 HInstruction* GetArray() const { return InputAt(0); }
GetIndex()3240 HInstruction* GetIndex() const { return InputAt(1); }
3241
3242 DECLARE_INSTRUCTION(ArrayGet);
3243
3244 private:
3245 DISALLOW_COPY_AND_ASSIGN(HArrayGet);
3246 };
3247
3248 class HArraySet : public HTemplateInstruction<3> {
3249 public:
HArraySet(HInstruction * array,HInstruction * index,HInstruction * value,Primitive::Type expected_component_type,uint32_t dex_pc)3250 HArraySet(HInstruction* array,
3251 HInstruction* index,
3252 HInstruction* value,
3253 Primitive::Type expected_component_type,
3254 uint32_t dex_pc)
3255 : HTemplateInstruction(SideEffects::ChangesSomething()),
3256 dex_pc_(dex_pc),
3257 expected_component_type_(expected_component_type),
3258 needs_type_check_(value->GetType() == Primitive::kPrimNot) {
3259 SetRawInputAt(0, array);
3260 SetRawInputAt(1, index);
3261 SetRawInputAt(2, value);
3262 }
3263
NeedsEnvironment()3264 bool NeedsEnvironment() const OVERRIDE {
3265 // We currently always call a runtime method to catch array store
3266 // exceptions.
3267 return needs_type_check_;
3268 }
3269
CanDoImplicitNullCheckOn(HInstruction * obj)3270 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3271 UNUSED(obj);
3272 // TODO: Same as for ArrayGet.
3273 return false;
3274 }
3275
ClearNeedsTypeCheck()3276 void ClearNeedsTypeCheck() {
3277 needs_type_check_ = false;
3278 }
3279
NeedsTypeCheck()3280 bool NeedsTypeCheck() const { return needs_type_check_; }
3281
GetDexPc()3282 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3283
GetArray()3284 HInstruction* GetArray() const { return InputAt(0); }
GetIndex()3285 HInstruction* GetIndex() const { return InputAt(1); }
GetValue()3286 HInstruction* GetValue() const { return InputAt(2); }
3287
GetComponentType()3288 Primitive::Type GetComponentType() const {
3289 // The Dex format does not type floating point index operations. Since the
3290 // `expected_component_type_` is set during building and can therefore not
3291 // be correct, we also check what is the value type. If it is a floating
3292 // point type, we must use that type.
3293 Primitive::Type value_type = GetValue()->GetType();
3294 return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
3295 ? value_type
3296 : expected_component_type_;
3297 }
3298
3299 DECLARE_INSTRUCTION(ArraySet);
3300
3301 private:
3302 const uint32_t dex_pc_;
3303 const Primitive::Type expected_component_type_;
3304 bool needs_type_check_;
3305
3306 DISALLOW_COPY_AND_ASSIGN(HArraySet);
3307 };
3308
3309 class HArrayLength : public HExpression<1> {
3310 public:
HArrayLength(HInstruction * array)3311 explicit HArrayLength(HInstruction* array)
3312 : HExpression(Primitive::kPrimInt, SideEffects::None()) {
3313 // Note that arrays do not change length, so the instruction does not
3314 // depend on any write.
3315 SetRawInputAt(0, array);
3316 }
3317
CanBeMoved()3318 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other)3319 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3320 UNUSED(other);
3321 return true;
3322 }
CanDoImplicitNullCheckOn(HInstruction * obj)3323 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3324 return obj == InputAt(0);
3325 }
3326
3327 DECLARE_INSTRUCTION(ArrayLength);
3328
3329 private:
3330 DISALLOW_COPY_AND_ASSIGN(HArrayLength);
3331 };
3332
3333 class HBoundsCheck : public HExpression<2> {
3334 public:
HBoundsCheck(HInstruction * index,HInstruction * length,uint32_t dex_pc)3335 HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
3336 : HExpression(index->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
3337 DCHECK(index->GetType() == Primitive::kPrimInt);
3338 SetRawInputAt(0, index);
3339 SetRawInputAt(1, length);
3340 }
3341
CanBeMoved()3342 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other)3343 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3344 UNUSED(other);
3345 return true;
3346 }
3347
NeedsEnvironment()3348 bool NeedsEnvironment() const OVERRIDE { return true; }
3349
CanThrow()3350 bool CanThrow() const OVERRIDE { return true; }
3351
GetDexPc()3352 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3353
3354 DECLARE_INSTRUCTION(BoundsCheck);
3355
3356 private:
3357 const uint32_t dex_pc_;
3358
3359 DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
3360 };
3361
3362 /**
3363 * Some DEX instructions are folded into multiple HInstructions that need
3364 * to stay live until the last HInstruction. This class
3365 * is used as a marker for the baseline compiler to ensure its preceding
3366 * HInstruction stays live. `index` represents the stack location index of the
3367 * instruction (the actual offset is computed as index * vreg_size).
3368 */
3369 class HTemporary : public HTemplateInstruction<0> {
3370 public:
HTemporary(size_t index)3371 explicit HTemporary(size_t index) : HTemplateInstruction(SideEffects::None()), index_(index) {}
3372
GetIndex()3373 size_t GetIndex() const { return index_; }
3374
GetType()3375 Primitive::Type GetType() const OVERRIDE {
3376 // The previous instruction is the one that will be stored in the temporary location.
3377 DCHECK(GetPrevious() != nullptr);
3378 return GetPrevious()->GetType();
3379 }
3380
3381 DECLARE_INSTRUCTION(Temporary);
3382
3383 private:
3384 const size_t index_;
3385
3386 DISALLOW_COPY_AND_ASSIGN(HTemporary);
3387 };
3388
3389 class HSuspendCheck : public HTemplateInstruction<0> {
3390 public:
HSuspendCheck(uint32_t dex_pc)3391 explicit HSuspendCheck(uint32_t dex_pc)
3392 : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc), slow_path_(nullptr) {}
3393
NeedsEnvironment()3394 bool NeedsEnvironment() const OVERRIDE {
3395 return true;
3396 }
3397
GetDexPc()3398 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
SetSlowPath(SlowPathCode * slow_path)3399 void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
GetSlowPath()3400 SlowPathCode* GetSlowPath() const { return slow_path_; }
3401
3402 DECLARE_INSTRUCTION(SuspendCheck);
3403
3404 private:
3405 const uint32_t dex_pc_;
3406
3407 // Only used for code generation, in order to share the same slow path between back edges
3408 // of a same loop.
3409 SlowPathCode* slow_path_;
3410
3411 DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
3412 };
3413
3414 /**
3415 * Instruction to load a Class object.
3416 */
3417 class HLoadClass : public HExpression<0> {
3418 public:
HLoadClass(uint16_t type_index,bool is_referrers_class,uint32_t dex_pc)3419 HLoadClass(uint16_t type_index,
3420 bool is_referrers_class,
3421 uint32_t dex_pc)
3422 : HExpression(Primitive::kPrimNot, SideEffects::None()),
3423 type_index_(type_index),
3424 is_referrers_class_(is_referrers_class),
3425 dex_pc_(dex_pc),
3426 generate_clinit_check_(false),
3427 loaded_class_rti_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
3428
CanBeMoved()3429 bool CanBeMoved() const OVERRIDE { return true; }
3430
InstructionDataEquals(HInstruction * other)3431 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3432 return other->AsLoadClass()->type_index_ == type_index_;
3433 }
3434
ComputeHashCode()3435 size_t ComputeHashCode() const OVERRIDE { return type_index_; }
3436
GetDexPc()3437 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
GetTypeIndex()3438 uint16_t GetTypeIndex() const { return type_index_; }
IsReferrersClass()3439 bool IsReferrersClass() const { return is_referrers_class_; }
CanBeNull()3440 bool CanBeNull() const OVERRIDE { return false; }
3441
NeedsEnvironment()3442 bool NeedsEnvironment() const OVERRIDE {
3443 // Will call runtime and load the class if the class is not loaded yet.
3444 // TODO: finer grain decision.
3445 return !is_referrers_class_;
3446 }
3447
MustGenerateClinitCheck()3448 bool MustGenerateClinitCheck() const {
3449 return generate_clinit_check_;
3450 }
3451
SetMustGenerateClinitCheck()3452 void SetMustGenerateClinitCheck() {
3453 generate_clinit_check_ = true;
3454 }
3455
CanCallRuntime()3456 bool CanCallRuntime() const {
3457 return MustGenerateClinitCheck() || !is_referrers_class_;
3458 }
3459
CanThrow()3460 bool CanThrow() const OVERRIDE {
3461 // May call runtime and and therefore can throw.
3462 // TODO: finer grain decision.
3463 return !is_referrers_class_;
3464 }
3465
GetLoadedClassRTI()3466 ReferenceTypeInfo GetLoadedClassRTI() {
3467 return loaded_class_rti_;
3468 }
3469
SetLoadedClassRTI(ReferenceTypeInfo rti)3470 void SetLoadedClassRTI(ReferenceTypeInfo rti) {
3471 // Make sure we only set exact types (the loaded class should never be merged).
3472 DCHECK(rti.IsExact());
3473 loaded_class_rti_ = rti;
3474 }
3475
IsResolved()3476 bool IsResolved() {
3477 return loaded_class_rti_.IsExact();
3478 }
3479
NeedsDexCache()3480 bool NeedsDexCache() const OVERRIDE { return !is_referrers_class_; }
3481
3482 DECLARE_INSTRUCTION(LoadClass);
3483
3484 private:
3485 const uint16_t type_index_;
3486 const bool is_referrers_class_;
3487 const uint32_t dex_pc_;
3488 // Whether this instruction must generate the initialization check.
3489 // Used for code generation.
3490 bool generate_clinit_check_;
3491
3492 ReferenceTypeInfo loaded_class_rti_;
3493
3494 DISALLOW_COPY_AND_ASSIGN(HLoadClass);
3495 };
3496
3497 class HLoadString : public HExpression<0> {
3498 public:
HLoadString(uint32_t string_index,uint32_t dex_pc)3499 HLoadString(uint32_t string_index, uint32_t dex_pc)
3500 : HExpression(Primitive::kPrimNot, SideEffects::None()),
3501 string_index_(string_index),
3502 dex_pc_(dex_pc) {}
3503
CanBeMoved()3504 bool CanBeMoved() const OVERRIDE { return true; }
3505
InstructionDataEquals(HInstruction * other)3506 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3507 return other->AsLoadString()->string_index_ == string_index_;
3508 }
3509
ComputeHashCode()3510 size_t ComputeHashCode() const OVERRIDE { return string_index_; }
3511
GetDexPc()3512 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
GetStringIndex()3513 uint32_t GetStringIndex() const { return string_index_; }
3514
3515 // TODO: Can we deopt or debug when we resolve a string?
NeedsEnvironment()3516 bool NeedsEnvironment() const OVERRIDE { return false; }
NeedsDexCache()3517 bool NeedsDexCache() const OVERRIDE { return true; }
3518
3519 DECLARE_INSTRUCTION(LoadString);
3520
3521 private:
3522 const uint32_t string_index_;
3523 const uint32_t dex_pc_;
3524
3525 DISALLOW_COPY_AND_ASSIGN(HLoadString);
3526 };
3527
3528 /**
3529 * Performs an initialization check on its Class object input.
3530 */
3531 class HClinitCheck : public HExpression<1> {
3532 public:
HClinitCheck(HLoadClass * constant,uint32_t dex_pc)3533 explicit HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
3534 : HExpression(Primitive::kPrimNot, SideEffects::ChangesSomething()),
3535 dex_pc_(dex_pc) {
3536 SetRawInputAt(0, constant);
3537 }
3538
CanBeMoved()3539 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(HInstruction * other)3540 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3541 UNUSED(other);
3542 return true;
3543 }
3544
NeedsEnvironment()3545 bool NeedsEnvironment() const OVERRIDE {
3546 // May call runtime to initialize the class.
3547 return true;
3548 }
3549
GetDexPc()3550 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3551
GetLoadClass()3552 HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
3553
3554 DECLARE_INSTRUCTION(ClinitCheck);
3555
3556 private:
3557 const uint32_t dex_pc_;
3558
3559 DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
3560 };
3561
3562 class HStaticFieldGet : public HExpression<1> {
3563 public:
HStaticFieldGet(HInstruction * cls,Primitive::Type field_type,MemberOffset field_offset,bool is_volatile)3564 HStaticFieldGet(HInstruction* cls,
3565 Primitive::Type field_type,
3566 MemberOffset field_offset,
3567 bool is_volatile)
3568 : HExpression(field_type, SideEffects::DependsOnSomething()),
3569 field_info_(field_offset, field_type, is_volatile) {
3570 SetRawInputAt(0, cls);
3571 }
3572
3573
CanBeMoved()3574 bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
3575
InstructionDataEquals(HInstruction * other)3576 bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3577 HStaticFieldGet* other_get = other->AsStaticFieldGet();
3578 return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
3579 }
3580
ComputeHashCode()3581 size_t ComputeHashCode() const OVERRIDE {
3582 return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
3583 }
3584
GetFieldInfo()3585 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()3586 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()3587 Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()3588 bool IsVolatile() const { return field_info_.IsVolatile(); }
3589
3590 DECLARE_INSTRUCTION(StaticFieldGet);
3591
3592 private:
3593 const FieldInfo field_info_;
3594
3595 DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
3596 };
3597
3598 class HStaticFieldSet : public HTemplateInstruction<2> {
3599 public:
HStaticFieldSet(HInstruction * cls,HInstruction * value,Primitive::Type field_type,MemberOffset field_offset,bool is_volatile)3600 HStaticFieldSet(HInstruction* cls,
3601 HInstruction* value,
3602 Primitive::Type field_type,
3603 MemberOffset field_offset,
3604 bool is_volatile)
3605 : HTemplateInstruction(SideEffects::ChangesSomething()),
3606 field_info_(field_offset, field_type, is_volatile) {
3607 SetRawInputAt(0, cls);
3608 SetRawInputAt(1, value);
3609 }
3610
GetFieldInfo()3611 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()3612 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()3613 Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()3614 bool IsVolatile() const { return field_info_.IsVolatile(); }
3615
GetValue()3616 HInstruction* GetValue() const { return InputAt(1); }
3617
3618 DECLARE_INSTRUCTION(StaticFieldSet);
3619
3620 private:
3621 const FieldInfo field_info_;
3622
3623 DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
3624 };
3625
3626 // Implement the move-exception DEX instruction.
3627 class HLoadException : public HExpression<0> {
3628 public:
HLoadException()3629 HLoadException() : HExpression(Primitive::kPrimNot, SideEffects::None()) {}
3630
3631 DECLARE_INSTRUCTION(LoadException);
3632
3633 private:
3634 DISALLOW_COPY_AND_ASSIGN(HLoadException);
3635 };
3636
3637 class HThrow : public HTemplateInstruction<1> {
3638 public:
HThrow(HInstruction * exception,uint32_t dex_pc)3639 HThrow(HInstruction* exception, uint32_t dex_pc)
3640 : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {
3641 SetRawInputAt(0, exception);
3642 }
3643
IsControlFlow()3644 bool IsControlFlow() const OVERRIDE { return true; }
3645
NeedsEnvironment()3646 bool NeedsEnvironment() const OVERRIDE { return true; }
3647
CanThrow()3648 bool CanThrow() const OVERRIDE { return true; }
3649
GetDexPc()3650 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3651
3652 DECLARE_INSTRUCTION(Throw);
3653
3654 private:
3655 const uint32_t dex_pc_;
3656
3657 DISALLOW_COPY_AND_ASSIGN(HThrow);
3658 };
3659
3660 class HInstanceOf : public HExpression<2> {
3661 public:
HInstanceOf(HInstruction * object,HLoadClass * constant,bool class_is_final,uint32_t dex_pc)3662 HInstanceOf(HInstruction* object,
3663 HLoadClass* constant,
3664 bool class_is_final,
3665 uint32_t dex_pc)
3666 : HExpression(Primitive::kPrimBoolean, SideEffects::None()),
3667 class_is_final_(class_is_final),
3668 must_do_null_check_(true),
3669 dex_pc_(dex_pc) {
3670 SetRawInputAt(0, object);
3671 SetRawInputAt(1, constant);
3672 }
3673
CanBeMoved()3674 bool CanBeMoved() const OVERRIDE { return true; }
3675
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)3676 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3677 return true;
3678 }
3679
NeedsEnvironment()3680 bool NeedsEnvironment() const OVERRIDE {
3681 return false;
3682 }
3683
GetDexPc()3684 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3685
IsClassFinal()3686 bool IsClassFinal() const { return class_is_final_; }
3687
3688 // Used only in code generation.
MustDoNullCheck()3689 bool MustDoNullCheck() const { return must_do_null_check_; }
ClearMustDoNullCheck()3690 void ClearMustDoNullCheck() { must_do_null_check_ = false; }
3691
3692 DECLARE_INSTRUCTION(InstanceOf);
3693
3694 private:
3695 const bool class_is_final_;
3696 bool must_do_null_check_;
3697 const uint32_t dex_pc_;
3698
3699 DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
3700 };
3701
3702 class HBoundType : public HExpression<1> {
3703 public:
HBoundType(HInstruction * input,ReferenceTypeInfo bound_type)3704 HBoundType(HInstruction* input, ReferenceTypeInfo bound_type)
3705 : HExpression(Primitive::kPrimNot, SideEffects::None()),
3706 bound_type_(bound_type) {
3707 DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
3708 SetRawInputAt(0, input);
3709 }
3710
GetBoundType()3711 const ReferenceTypeInfo& GetBoundType() const { return bound_type_; }
3712
CanBeNull()3713 bool CanBeNull() const OVERRIDE {
3714 // `null instanceof ClassX` always return false so we can't be null.
3715 return false;
3716 }
3717
3718 DECLARE_INSTRUCTION(BoundType);
3719
3720 private:
3721 // Encodes the most upper class that this instruction can have. In other words
3722 // it is always the case that GetBoundType().IsSupertypeOf(GetReferenceType()).
3723 // It is used to bound the type in cases like `if (x instanceof ClassX) {}`
3724 const ReferenceTypeInfo bound_type_;
3725
3726 DISALLOW_COPY_AND_ASSIGN(HBoundType);
3727 };
3728
3729 class HCheckCast : public HTemplateInstruction<2> {
3730 public:
HCheckCast(HInstruction * object,HLoadClass * constant,bool class_is_final,uint32_t dex_pc)3731 HCheckCast(HInstruction* object,
3732 HLoadClass* constant,
3733 bool class_is_final,
3734 uint32_t dex_pc)
3735 : HTemplateInstruction(SideEffects::None()),
3736 class_is_final_(class_is_final),
3737 must_do_null_check_(true),
3738 dex_pc_(dex_pc) {
3739 SetRawInputAt(0, object);
3740 SetRawInputAt(1, constant);
3741 }
3742
CanBeMoved()3743 bool CanBeMoved() const OVERRIDE { return true; }
3744
InstructionDataEquals(HInstruction * other ATTRIBUTE_UNUSED)3745 bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3746 return true;
3747 }
3748
NeedsEnvironment()3749 bool NeedsEnvironment() const OVERRIDE {
3750 // Instruction may throw a CheckCastError.
3751 return true;
3752 }
3753
CanThrow()3754 bool CanThrow() const OVERRIDE { return true; }
3755
MustDoNullCheck()3756 bool MustDoNullCheck() const { return must_do_null_check_; }
ClearMustDoNullCheck()3757 void ClearMustDoNullCheck() { must_do_null_check_ = false; }
3758
GetDexPc()3759 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3760
IsClassFinal()3761 bool IsClassFinal() const { return class_is_final_; }
3762
3763 DECLARE_INSTRUCTION(CheckCast);
3764
3765 private:
3766 const bool class_is_final_;
3767 bool must_do_null_check_;
3768 const uint32_t dex_pc_;
3769
3770 DISALLOW_COPY_AND_ASSIGN(HCheckCast);
3771 };
3772
3773 class HMemoryBarrier : public HTemplateInstruction<0> {
3774 public:
HMemoryBarrier(MemBarrierKind barrier_kind)3775 explicit HMemoryBarrier(MemBarrierKind barrier_kind)
3776 : HTemplateInstruction(SideEffects::None()),
3777 barrier_kind_(barrier_kind) {}
3778
GetBarrierKind()3779 MemBarrierKind GetBarrierKind() { return barrier_kind_; }
3780
3781 DECLARE_INSTRUCTION(MemoryBarrier);
3782
3783 private:
3784 const MemBarrierKind barrier_kind_;
3785
3786 DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
3787 };
3788
3789 class HMonitorOperation : public HTemplateInstruction<1> {
3790 public:
3791 enum OperationKind {
3792 kEnter,
3793 kExit,
3794 };
3795
HMonitorOperation(HInstruction * object,OperationKind kind,uint32_t dex_pc)3796 HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
3797 : HTemplateInstruction(SideEffects::None()), kind_(kind), dex_pc_(dex_pc) {
3798 SetRawInputAt(0, object);
3799 }
3800
3801 // Instruction may throw a Java exception, so we need an environment.
NeedsEnvironment()3802 bool NeedsEnvironment() const OVERRIDE { return true; }
CanThrow()3803 bool CanThrow() const OVERRIDE { return true; }
3804
GetDexPc()3805 uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3806
IsEnter()3807 bool IsEnter() const { return kind_ == kEnter; }
3808
3809 DECLARE_INSTRUCTION(MonitorOperation);
3810
3811 private:
3812 const OperationKind kind_;
3813 const uint32_t dex_pc_;
3814
3815 private:
3816 DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
3817 };
3818
3819 class MoveOperands : public ArenaObject<kArenaAllocMisc> {
3820 public:
MoveOperands(Location source,Location destination,Primitive::Type type,HInstruction * instruction)3821 MoveOperands(Location source,
3822 Location destination,
3823 Primitive::Type type,
3824 HInstruction* instruction)
3825 : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
3826
GetSource()3827 Location GetSource() const { return source_; }
GetDestination()3828 Location GetDestination() const { return destination_; }
3829
SetSource(Location value)3830 void SetSource(Location value) { source_ = value; }
SetDestination(Location value)3831 void SetDestination(Location value) { destination_ = value; }
3832
3833 // The parallel move resolver marks moves as "in-progress" by clearing the
3834 // destination (but not the source).
MarkPending()3835 Location MarkPending() {
3836 DCHECK(!IsPending());
3837 Location dest = destination_;
3838 destination_ = Location::NoLocation();
3839 return dest;
3840 }
3841
ClearPending(Location dest)3842 void ClearPending(Location dest) {
3843 DCHECK(IsPending());
3844 destination_ = dest;
3845 }
3846
IsPending()3847 bool IsPending() const {
3848 DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
3849 return destination_.IsInvalid() && !source_.IsInvalid();
3850 }
3851
3852 // True if this blocks a move from the given location.
Blocks(Location loc)3853 bool Blocks(Location loc) const {
3854 return !IsEliminated() && source_.OverlapsWith(loc);
3855 }
3856
3857 // A move is redundant if it's been eliminated, if its source and
3858 // destination are the same, or if its destination is unneeded.
IsRedundant()3859 bool IsRedundant() const {
3860 return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
3861 }
3862
3863 // We clear both operands to indicate move that's been eliminated.
Eliminate()3864 void Eliminate() {
3865 source_ = destination_ = Location::NoLocation();
3866 }
3867
IsEliminated()3868 bool IsEliminated() const {
3869 DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
3870 return source_.IsInvalid();
3871 }
3872
GetType()3873 Primitive::Type GetType() const { return type_; }
3874
Is64BitMove()3875 bool Is64BitMove() const {
3876 return Primitive::Is64BitType(type_);
3877 }
3878
GetInstruction()3879 HInstruction* GetInstruction() const { return instruction_; }
3880
3881 private:
3882 Location source_;
3883 Location destination_;
3884 // The type this move is for.
3885 Primitive::Type type_;
3886 // The instruction this move is assocatied with. Null when this move is
3887 // for moving an input in the expected locations of user (including a phi user).
3888 // This is only used in debug mode, to ensure we do not connect interval siblings
3889 // in the same parallel move.
3890 HInstruction* instruction_;
3891 };
3892
3893 static constexpr size_t kDefaultNumberOfMoves = 4;
3894
3895 class HParallelMove : public HTemplateInstruction<0> {
3896 public:
HParallelMove(ArenaAllocator * arena)3897 explicit HParallelMove(ArenaAllocator* arena)
3898 : HTemplateInstruction(SideEffects::None()), moves_(arena, kDefaultNumberOfMoves) {}
3899
AddMove(Location source,Location destination,Primitive::Type type,HInstruction * instruction)3900 void AddMove(Location source,
3901 Location destination,
3902 Primitive::Type type,
3903 HInstruction* instruction) {
3904 DCHECK(source.IsValid());
3905 DCHECK(destination.IsValid());
3906 if (kIsDebugBuild) {
3907 if (instruction != nullptr) {
3908 for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
3909 if (moves_.Get(i).GetInstruction() == instruction) {
3910 // Special case the situation where the move is for the spill slot
3911 // of the instruction.
3912 if ((GetPrevious() == instruction)
3913 || ((GetPrevious() == nullptr)
3914 && instruction->IsPhi()
3915 && instruction->GetBlock() == GetBlock())) {
3916 DCHECK_NE(destination.GetKind(), moves_.Get(i).GetDestination().GetKind())
3917 << "Doing parallel moves for the same instruction.";
3918 } else {
3919 DCHECK(false) << "Doing parallel moves for the same instruction.";
3920 }
3921 }
3922 }
3923 }
3924 for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
3925 DCHECK(!destination.OverlapsWith(moves_.Get(i).GetDestination()))
3926 << "Overlapped destination for two moves in a parallel move.";
3927 }
3928 }
3929 moves_.Add(MoveOperands(source, destination, type, instruction));
3930 }
3931
MoveOperandsAt(size_t index)3932 MoveOperands* MoveOperandsAt(size_t index) const {
3933 return moves_.GetRawStorage() + index;
3934 }
3935
NumMoves()3936 size_t NumMoves() const { return moves_.Size(); }
3937
3938 DECLARE_INSTRUCTION(ParallelMove);
3939
3940 private:
3941 GrowableArray<MoveOperands> moves_;
3942
3943 DISALLOW_COPY_AND_ASSIGN(HParallelMove);
3944 };
3945
3946 class HGraphVisitor : public ValueObject {
3947 public:
HGraphVisitor(HGraph * graph)3948 explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
~HGraphVisitor()3949 virtual ~HGraphVisitor() {}
3950
VisitInstruction(HInstruction * instruction)3951 virtual void VisitInstruction(HInstruction* instruction) { UNUSED(instruction); }
3952 virtual void VisitBasicBlock(HBasicBlock* block);
3953
3954 // Visit the graph following basic block insertion order.
3955 void VisitInsertionOrder();
3956
3957 // Visit the graph following dominator tree reverse post-order.
3958 void VisitReversePostOrder();
3959
GetGraph()3960 HGraph* GetGraph() const { return graph_; }
3961
3962 // Visit functions for instruction classes.
3963 #define DECLARE_VISIT_INSTRUCTION(name, super) \
3964 virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
3965
3966 FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
3967
3968 #undef DECLARE_VISIT_INSTRUCTION
3969
3970 private:
3971 HGraph* const graph_;
3972
3973 DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
3974 };
3975
3976 class HGraphDelegateVisitor : public HGraphVisitor {
3977 public:
HGraphDelegateVisitor(HGraph * graph)3978 explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
~HGraphDelegateVisitor()3979 virtual ~HGraphDelegateVisitor() {}
3980
3981 // Visit functions that delegate to to super class.
3982 #define DECLARE_VISIT_INSTRUCTION(name, super) \
3983 void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
3984
3985 FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
3986
3987 #undef DECLARE_VISIT_INSTRUCTION
3988
3989 private:
3990 DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
3991 };
3992
3993 class HInsertionOrderIterator : public ValueObject {
3994 public:
HInsertionOrderIterator(const HGraph & graph)3995 explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
3996
Done()3997 bool Done() const { return index_ == graph_.GetBlocks().Size(); }
Current()3998 HBasicBlock* Current() const { return graph_.GetBlocks().Get(index_); }
Advance()3999 void Advance() { ++index_; }
4000
4001 private:
4002 const HGraph& graph_;
4003 size_t index_;
4004
4005 DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
4006 };
4007
4008 class HReversePostOrderIterator : public ValueObject {
4009 public:
HReversePostOrderIterator(const HGraph & graph)4010 explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
4011 // Check that reverse post order of the graph has been built.
4012 DCHECK(!graph.GetReversePostOrder().IsEmpty());
4013 }
4014
Done()4015 bool Done() const { return index_ == graph_.GetReversePostOrder().Size(); }
Current()4016 HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_); }
Advance()4017 void Advance() { ++index_; }
4018
4019 private:
4020 const HGraph& graph_;
4021 size_t index_;
4022
4023 DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
4024 };
4025
4026 class HPostOrderIterator : public ValueObject {
4027 public:
HPostOrderIterator(const HGraph & graph)4028 explicit HPostOrderIterator(const HGraph& graph)
4029 : graph_(graph), index_(graph_.GetReversePostOrder().Size()) {
4030 // Check that reverse post order of the graph has been built.
4031 DCHECK(!graph.GetReversePostOrder().IsEmpty());
4032 }
4033
Done()4034 bool Done() const { return index_ == 0; }
Current()4035 HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_ - 1); }
Advance()4036 void Advance() { --index_; }
4037
4038 private:
4039 const HGraph& graph_;
4040 size_t index_;
4041
4042 DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
4043 };
4044
4045 class HLinearPostOrderIterator : public ValueObject {
4046 public:
HLinearPostOrderIterator(const HGraph & graph)4047 explicit HLinearPostOrderIterator(const HGraph& graph)
4048 : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().Size()) {}
4049
Done()4050 bool Done() const { return index_ == 0; }
4051
Current()4052 HBasicBlock* Current() const { return order_.Get(index_ -1); }
4053
Advance()4054 void Advance() {
4055 --index_;
4056 DCHECK_GE(index_, 0U);
4057 }
4058
4059 private:
4060 const GrowableArray<HBasicBlock*>& order_;
4061 size_t index_;
4062
4063 DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
4064 };
4065
4066 class HLinearOrderIterator : public ValueObject {
4067 public:
HLinearOrderIterator(const HGraph & graph)4068 explicit HLinearOrderIterator(const HGraph& graph)
4069 : order_(graph.GetLinearOrder()), index_(0) {}
4070
Done()4071 bool Done() const { return index_ == order_.Size(); }
Current()4072 HBasicBlock* Current() const { return order_.Get(index_); }
Advance()4073 void Advance() { ++index_; }
4074
4075 private:
4076 const GrowableArray<HBasicBlock*>& order_;
4077 size_t index_;
4078
4079 DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
4080 };
4081
4082 // Iterator over the blocks that art part of the loop. Includes blocks part
4083 // of an inner loop. The order in which the blocks are iterated is on their
4084 // block id.
4085 class HBlocksInLoopIterator : public ValueObject {
4086 public:
HBlocksInLoopIterator(const HLoopInformation & info)4087 explicit HBlocksInLoopIterator(const HLoopInformation& info)
4088 : blocks_in_loop_(info.GetBlocks()),
4089 blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
4090 index_(0) {
4091 if (!blocks_in_loop_.IsBitSet(index_)) {
4092 Advance();
4093 }
4094 }
4095
Done()4096 bool Done() const { return index_ == blocks_.Size(); }
Current()4097 HBasicBlock* Current() const { return blocks_.Get(index_); }
Advance()4098 void Advance() {
4099 ++index_;
4100 for (size_t e = blocks_.Size(); index_ < e; ++index_) {
4101 if (blocks_in_loop_.IsBitSet(index_)) {
4102 break;
4103 }
4104 }
4105 }
4106
4107 private:
4108 const BitVector& blocks_in_loop_;
4109 const GrowableArray<HBasicBlock*>& blocks_;
4110 size_t index_;
4111
4112 DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
4113 };
4114
4115 // Iterator over the blocks that art part of the loop. Includes blocks part
4116 // of an inner loop. The order in which the blocks are iterated is reverse
4117 // post order.
4118 class HBlocksInLoopReversePostOrderIterator : public ValueObject {
4119 public:
HBlocksInLoopReversePostOrderIterator(const HLoopInformation & info)4120 explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
4121 : blocks_in_loop_(info.GetBlocks()),
4122 blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
4123 index_(0) {
4124 if (!blocks_in_loop_.IsBitSet(blocks_.Get(index_)->GetBlockId())) {
4125 Advance();
4126 }
4127 }
4128
Done()4129 bool Done() const { return index_ == blocks_.Size(); }
Current()4130 HBasicBlock* Current() const { return blocks_.Get(index_); }
Advance()4131 void Advance() {
4132 ++index_;
4133 for (size_t e = blocks_.Size(); index_ < e; ++index_) {
4134 if (blocks_in_loop_.IsBitSet(blocks_.Get(index_)->GetBlockId())) {
4135 break;
4136 }
4137 }
4138 }
4139
4140 private:
4141 const BitVector& blocks_in_loop_;
4142 const GrowableArray<HBasicBlock*>& blocks_;
4143 size_t index_;
4144
4145 DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
4146 };
4147
Int64FromConstant(HConstant * constant)4148 inline int64_t Int64FromConstant(HConstant* constant) {
4149 DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
4150 return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
4151 : constant->AsLongConstant()->GetValue();
4152 }
4153
4154 } // namespace art
4155
4156 #endif // ART_COMPILER_OPTIMIZING_NODES_H_
4157