1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "ssa_liveness_analysis.h"
18
19 #include "base/bit_vector-inl.h"
20 #include "code_generator.h"
21 #include "nodes.h"
22
23 namespace art {
24
Analyze()25 void SsaLivenessAnalysis::Analyze() {
26 LinearizeGraph();
27 NumberInstructions();
28 ComputeLiveness();
29 }
30
IsLoop(HLoopInformation * info)31 static bool IsLoop(HLoopInformation* info) {
32 return info != nullptr;
33 }
34
InSameLoop(HLoopInformation * first_loop,HLoopInformation * second_loop)35 static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
36 return first_loop == second_loop;
37 }
38
IsInnerLoop(HLoopInformation * outer,HLoopInformation * inner)39 static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
40 return (inner != outer)
41 && (inner != nullptr)
42 && (outer != nullptr)
43 && inner->IsIn(*outer);
44 }
45
AddToListForLinearization(GrowableArray<HBasicBlock * > * worklist,HBasicBlock * block)46 static void AddToListForLinearization(GrowableArray<HBasicBlock*>* worklist, HBasicBlock* block) {
47 size_t insert_at = worklist->Size();
48 HLoopInformation* block_loop = block->GetLoopInformation();
49 for (; insert_at > 0; --insert_at) {
50 HBasicBlock* current = worklist->Get(insert_at - 1);
51 HLoopInformation* current_loop = current->GetLoopInformation();
52 if (InSameLoop(block_loop, current_loop)
53 || !IsLoop(current_loop)
54 || IsInnerLoop(current_loop, block_loop)) {
55 // The block can be processed immediately.
56 break;
57 }
58 }
59 worklist->InsertAt(insert_at, block);
60 }
61
LinearizeGraph()62 void SsaLivenessAnalysis::LinearizeGraph() {
63 // Create a reverse post ordering with the following properties:
64 // - Blocks in a loop are consecutive,
65 // - Back-edge is the last block before loop exits.
66
67 // (1): Record the number of forward predecessors for each block. This is to
68 // ensure the resulting order is reverse post order. We could use the
69 // current reverse post order in the graph, but it would require making
70 // order queries to a GrowableArray, which is not the best data structure
71 // for it.
72 GrowableArray<uint32_t> forward_predecessors(graph_->GetArena(), graph_->GetBlocks().Size());
73 forward_predecessors.SetSize(graph_->GetBlocks().Size());
74 for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
75 HBasicBlock* block = it.Current();
76 size_t number_of_forward_predecessors = block->GetPredecessors().Size();
77 if (block->IsLoopHeader()) {
78 number_of_forward_predecessors -= block->GetLoopInformation()->NumberOfBackEdges();
79 }
80 forward_predecessors.Put(block->GetBlockId(), number_of_forward_predecessors);
81 }
82
83 // (2): Following a worklist approach, first start with the entry block, and
84 // iterate over the successors. When all non-back edge predecessors of a
85 // successor block are visited, the successor block is added in the worklist
86 // following an order that satisfies the requirements to build our linear graph.
87 GrowableArray<HBasicBlock*> worklist(graph_->GetArena(), 1);
88 worklist.Add(graph_->GetEntryBlock());
89 do {
90 HBasicBlock* current = worklist.Pop();
91 graph_->linear_order_.Add(current);
92 for (size_t i = 0, e = current->GetSuccessors().Size(); i < e; ++i) {
93 HBasicBlock* successor = current->GetSuccessors().Get(i);
94 int block_id = successor->GetBlockId();
95 size_t number_of_remaining_predecessors = forward_predecessors.Get(block_id);
96 if (number_of_remaining_predecessors == 1) {
97 AddToListForLinearization(&worklist, successor);
98 }
99 forward_predecessors.Put(block_id, number_of_remaining_predecessors - 1);
100 }
101 } while (!worklist.IsEmpty());
102 }
103
NumberInstructions()104 void SsaLivenessAnalysis::NumberInstructions() {
105 int ssa_index = 0;
106 size_t lifetime_position = 0;
107 // Each instruction gets a lifetime position, and a block gets a lifetime
108 // start and end position. Non-phi instructions have a distinct lifetime position than
109 // the block they are in. Phi instructions have the lifetime start of their block as
110 // lifetime position.
111 //
112 // Because the register allocator will insert moves in the graph, we need
113 // to differentiate between the start and end of an instruction. Adding 2 to
114 // the lifetime position for each instruction ensures the start of an
115 // instruction is different than the end of the previous instruction.
116 for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
117 HBasicBlock* block = it.Current();
118 block->SetLifetimeStart(lifetime_position);
119
120 for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
121 HInstruction* current = inst_it.Current();
122 codegen_->AllocateLocations(current);
123 LocationSummary* locations = current->GetLocations();
124 if (locations != nullptr && locations->Out().IsValid()) {
125 instructions_from_ssa_index_.Add(current);
126 current->SetSsaIndex(ssa_index++);
127 current->SetLiveInterval(
128 LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
129 }
130 current->SetLifetimePosition(lifetime_position);
131 }
132 lifetime_position += 2;
133
134 // Add a null marker to notify we are starting a block.
135 instructions_from_lifetime_position_.Add(nullptr);
136
137 for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
138 inst_it.Advance()) {
139 HInstruction* current = inst_it.Current();
140 codegen_->AllocateLocations(current);
141 LocationSummary* locations = current->GetLocations();
142 if (locations != nullptr && locations->Out().IsValid()) {
143 instructions_from_ssa_index_.Add(current);
144 current->SetSsaIndex(ssa_index++);
145 current->SetLiveInterval(
146 LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
147 }
148 instructions_from_lifetime_position_.Add(current);
149 current->SetLifetimePosition(lifetime_position);
150 lifetime_position += 2;
151 }
152
153 block->SetLifetimeEnd(lifetime_position);
154 }
155 number_of_ssa_values_ = ssa_index;
156 }
157
ComputeLiveness()158 void SsaLivenessAnalysis::ComputeLiveness() {
159 for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
160 HBasicBlock* block = it.Current();
161 block_infos_.Put(
162 block->GetBlockId(),
163 new (graph_->GetArena()) BlockInfo(graph_->GetArena(), *block, number_of_ssa_values_));
164 }
165
166 // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
167 // This method does not handle backward branches for the sets, therefore live_in
168 // and live_out sets are not yet correct.
169 ComputeLiveRanges();
170
171 // Do a fixed point calculation to take into account backward branches,
172 // that will update live_in of loop headers, and therefore live_out and live_in
173 // of blocks in the loop.
174 ComputeLiveInAndLiveOutSets();
175 }
176
ComputeLiveRanges()177 void SsaLivenessAnalysis::ComputeLiveRanges() {
178 // Do a post order visit, adding inputs of instructions live in the block where
179 // that instruction is defined, and killing instructions that are being visited.
180 for (HLinearPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
181 HBasicBlock* block = it.Current();
182
183 BitVector* kill = GetKillSet(*block);
184 BitVector* live_in = GetLiveInSet(*block);
185
186 // Set phi inputs of successors of this block corresponding to this block
187 // as live_in.
188 for (size_t i = 0, e = block->GetSuccessors().Size(); i < e; ++i) {
189 HBasicBlock* successor = block->GetSuccessors().Get(i);
190 live_in->Union(GetLiveInSet(*successor));
191 size_t phi_input_index = successor->GetPredecessorIndexOf(block);
192 for (HInstructionIterator inst_it(successor->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
193 HInstruction* phi = inst_it.Current();
194 HInstruction* input = phi->InputAt(phi_input_index);
195 input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
196 // A phi input whose last user is the phi dies at the end of the predecessor block,
197 // and not at the phi's lifetime position.
198 live_in->SetBit(input->GetSsaIndex());
199 }
200 }
201
202 // Add a range that covers this block to all instructions live_in because of successors.
203 // Instructions defined in this block will have their start of the range adjusted.
204 for (uint32_t idx : live_in->Indexes()) {
205 HInstruction* current = instructions_from_ssa_index_.Get(idx);
206 current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
207 }
208
209 for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
210 back_it.Advance()) {
211 HInstruction* current = back_it.Current();
212 if (current->HasSsaIndex()) {
213 // Kill the instruction and shorten its interval.
214 kill->SetBit(current->GetSsaIndex());
215 live_in->ClearBit(current->GetSsaIndex());
216 current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
217 }
218
219 // Process the environment first, because we know their uses come after
220 // or at the same liveness position of inputs.
221 for (HEnvironment* environment = current->GetEnvironment();
222 environment != nullptr;
223 environment = environment->GetParent()) {
224 // Handle environment uses. See statements (b) and (c) of the
225 // SsaLivenessAnalysis.
226 for (size_t i = 0, e = environment->Size(); i < e; ++i) {
227 HInstruction* instruction = environment->GetInstructionAt(i);
228 bool should_be_live = ShouldBeLiveForEnvironment(current, instruction);
229 if (should_be_live) {
230 DCHECK(instruction->HasSsaIndex());
231 live_in->SetBit(instruction->GetSsaIndex());
232 }
233 if (instruction != nullptr) {
234 instruction->GetLiveInterval()->AddUse(
235 current, environment, i, should_be_live);
236 }
237 }
238 }
239
240 // All inputs of an instruction must be live.
241 for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
242 HInstruction* input = current->InputAt(i);
243 // Some instructions 'inline' their inputs, that is they do not need
244 // to be materialized.
245 if (input->HasSsaIndex()) {
246 live_in->SetBit(input->GetSsaIndex());
247 input->GetLiveInterval()->AddUse(current, /* environment */ nullptr, i);
248 }
249 }
250 }
251
252 // Kill phis defined in this block.
253 for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
254 HInstruction* current = inst_it.Current();
255 if (current->HasSsaIndex()) {
256 kill->SetBit(current->GetSsaIndex());
257 live_in->ClearBit(current->GetSsaIndex());
258 LiveInterval* interval = current->GetLiveInterval();
259 DCHECK((interval->GetFirstRange() == nullptr)
260 || (interval->GetStart() == current->GetLifetimePosition()));
261 interval->SetFrom(current->GetLifetimePosition());
262 }
263 }
264
265 if (block->IsLoopHeader()) {
266 size_t last_position = block->GetLoopInformation()->GetLifetimeEnd();
267 // For all live_in instructions at the loop header, we need to create a range
268 // that covers the full loop.
269 for (uint32_t idx : live_in->Indexes()) {
270 HInstruction* current = instructions_from_ssa_index_.Get(idx);
271 current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), last_position);
272 }
273 }
274 }
275 }
276
ComputeLiveInAndLiveOutSets()277 void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
278 bool changed;
279 do {
280 changed = false;
281
282 for (HPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
283 const HBasicBlock& block = *it.Current();
284
285 // The live_in set depends on the kill set (which does not
286 // change in this loop), and the live_out set. If the live_out
287 // set does not change, there is no need to update the live_in set.
288 if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
289 changed = true;
290 }
291 }
292 } while (changed);
293 }
294
UpdateLiveOut(const HBasicBlock & block)295 bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
296 BitVector* live_out = GetLiveOutSet(block);
297 bool changed = false;
298 // The live_out set of a block is the union of live_in sets of its successors.
299 for (size_t i = 0, e = block.GetSuccessors().Size(); i < e; ++i) {
300 HBasicBlock* successor = block.GetSuccessors().Get(i);
301 if (live_out->Union(GetLiveInSet(*successor))) {
302 changed = true;
303 }
304 }
305 return changed;
306 }
307
308
UpdateLiveIn(const HBasicBlock & block)309 bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
310 BitVector* live_out = GetLiveOutSet(block);
311 BitVector* kill = GetKillSet(block);
312 BitVector* live_in = GetLiveInSet(block);
313 // If live_out is updated (because of backward branches), we need to make
314 // sure instructions in live_out are also in live_in, unless they are killed
315 // by this block.
316 return live_in->UnionIfNotIn(live_out, kill);
317 }
318
RegisterOrLowRegister(Location location)319 static int RegisterOrLowRegister(Location location) {
320 return location.IsPair() ? location.low() : location.reg();
321 }
322
FindFirstRegisterHint(size_t * free_until,const SsaLivenessAnalysis & liveness) const323 int LiveInterval::FindFirstRegisterHint(size_t* free_until,
324 const SsaLivenessAnalysis& liveness) const {
325 DCHECK(!IsHighInterval());
326 if (IsTemp()) return kNoRegister;
327
328 if (GetParent() == this && defined_by_ != nullptr) {
329 // This is the first interval for the instruction. Try to find
330 // a register based on its definition.
331 DCHECK_EQ(defined_by_->GetLiveInterval(), this);
332 int hint = FindHintAtDefinition();
333 if (hint != kNoRegister && free_until[hint] > GetStart()) {
334 return hint;
335 }
336 }
337
338 if (IsSplit() && liveness.IsAtBlockBoundary(GetStart() / 2)) {
339 // If the start of this interval is at a block boundary, we look at the
340 // location of the interval in blocks preceding the block this interval
341 // starts at. If one location is a register we return it as a hint. This
342 // will avoid a move between the two blocks.
343 HBasicBlock* block = liveness.GetBlockFromPosition(GetStart() / 2);
344 for (size_t i = 0; i < block->GetPredecessors().Size(); ++i) {
345 size_t position = block->GetPredecessors().Get(i)->GetLifetimeEnd() - 1;
346 // We know positions above GetStart() do not have a location yet.
347 if (position < GetStart()) {
348 LiveInterval* existing = GetParent()->GetSiblingAt(position);
349 if (existing != nullptr
350 && existing->HasRegister()
351 && (free_until[existing->GetRegister()] > GetStart())) {
352 return existing->GetRegister();
353 }
354 }
355 }
356 }
357
358 UsePosition* use = first_use_;
359 size_t start = GetStart();
360 size_t end = GetEnd();
361 while (use != nullptr && use->GetPosition() <= end) {
362 size_t use_position = use->GetPosition();
363 if (use_position >= start && !use->IsSynthesized()) {
364 HInstruction* user = use->GetUser();
365 size_t input_index = use->GetInputIndex();
366 if (user->IsPhi()) {
367 // If the phi has a register, try to use the same.
368 Location phi_location = user->GetLiveInterval()->ToLocation();
369 if (phi_location.IsRegisterKind()) {
370 DCHECK(SameRegisterKind(phi_location));
371 int reg = RegisterOrLowRegister(phi_location);
372 if (free_until[reg] >= use_position) {
373 return reg;
374 }
375 }
376 const GrowableArray<HBasicBlock*>& predecessors = user->GetBlock()->GetPredecessors();
377 // If the instruction dies at the phi assignment, we can try having the
378 // same register.
379 if (end == predecessors.Get(input_index)->GetLifetimeEnd()) {
380 for (size_t i = 0, e = user->InputCount(); i < e; ++i) {
381 if (i == input_index) {
382 continue;
383 }
384 HInstruction* input = user->InputAt(i);
385 Location location = input->GetLiveInterval()->GetLocationAt(
386 predecessors.Get(i)->GetLifetimeEnd() - 1);
387 if (location.IsRegisterKind()) {
388 int reg = RegisterOrLowRegister(location);
389 if (free_until[reg] >= use_position) {
390 return reg;
391 }
392 }
393 }
394 }
395 } else {
396 // If the instruction is expected in a register, try to use it.
397 LocationSummary* locations = user->GetLocations();
398 Location expected = locations->InAt(use->GetInputIndex());
399 // We use the user's lifetime position - 1 (and not `use_position`) because the
400 // register is blocked at the beginning of the user.
401 size_t position = user->GetLifetimePosition() - 1;
402 if (expected.IsRegisterKind()) {
403 DCHECK(SameRegisterKind(expected));
404 int reg = RegisterOrLowRegister(expected);
405 if (free_until[reg] >= position) {
406 return reg;
407 }
408 }
409 }
410 }
411 use = use->GetNext();
412 }
413
414 return kNoRegister;
415 }
416
FindHintAtDefinition() const417 int LiveInterval::FindHintAtDefinition() const {
418 if (defined_by_->IsPhi()) {
419 // Try to use the same register as one of the inputs.
420 const GrowableArray<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
421 for (size_t i = 0, e = defined_by_->InputCount(); i < e; ++i) {
422 HInstruction* input = defined_by_->InputAt(i);
423 size_t end = predecessors.Get(i)->GetLifetimeEnd();
424 LiveInterval* input_interval = input->GetLiveInterval()->GetSiblingAt(end - 1);
425 if (input_interval->GetEnd() == end) {
426 // If the input dies at the end of the predecessor, we know its register can
427 // be reused.
428 Location input_location = input_interval->ToLocation();
429 if (input_location.IsRegisterKind()) {
430 DCHECK(SameRegisterKind(input_location));
431 return RegisterOrLowRegister(input_location);
432 }
433 }
434 }
435 } else {
436 LocationSummary* locations = GetDefinedBy()->GetLocations();
437 Location out = locations->Out();
438 if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
439 // Try to use the same register as the first input.
440 LiveInterval* input_interval =
441 GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetSiblingAt(GetStart() - 1);
442 if (input_interval->GetEnd() == GetStart()) {
443 // If the input dies at the start of this instruction, we know its register can
444 // be reused.
445 Location location = input_interval->ToLocation();
446 if (location.IsRegisterKind()) {
447 DCHECK(SameRegisterKind(location));
448 return RegisterOrLowRegister(location);
449 }
450 }
451 }
452 }
453 return kNoRegister;
454 }
455
SameRegisterKind(Location other) const456 bool LiveInterval::SameRegisterKind(Location other) const {
457 if (IsFloatingPoint()) {
458 if (IsLowInterval() || IsHighInterval()) {
459 return other.IsFpuRegisterPair();
460 } else {
461 return other.IsFpuRegister();
462 }
463 } else {
464 if (IsLowInterval() || IsHighInterval()) {
465 return other.IsRegisterPair();
466 } else {
467 return other.IsRegister();
468 }
469 }
470 }
471
NeedsTwoSpillSlots() const472 bool LiveInterval::NeedsTwoSpillSlots() const {
473 return type_ == Primitive::kPrimLong || type_ == Primitive::kPrimDouble;
474 }
475
ToLocation() const476 Location LiveInterval::ToLocation() const {
477 DCHECK(!IsHighInterval());
478 if (HasRegister()) {
479 if (IsFloatingPoint()) {
480 if (HasHighInterval()) {
481 return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
482 } else {
483 return Location::FpuRegisterLocation(GetRegister());
484 }
485 } else {
486 if (HasHighInterval()) {
487 return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
488 } else {
489 return Location::RegisterLocation(GetRegister());
490 }
491 }
492 } else {
493 HInstruction* defined_by = GetParent()->GetDefinedBy();
494 if (defined_by->IsConstant()) {
495 return defined_by->GetLocations()->Out();
496 } else if (GetParent()->HasSpillSlot()) {
497 if (NeedsTwoSpillSlots()) {
498 return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
499 } else {
500 return Location::StackSlot(GetParent()->GetSpillSlot());
501 }
502 } else {
503 return Location();
504 }
505 }
506 }
507
GetLocationAt(size_t position)508 Location LiveInterval::GetLocationAt(size_t position) {
509 LiveInterval* sibling = GetSiblingAt(position);
510 DCHECK(sibling != nullptr);
511 return sibling->ToLocation();
512 }
513
GetSiblingAt(size_t position)514 LiveInterval* LiveInterval::GetSiblingAt(size_t position) {
515 LiveInterval* current = this;
516 while (current != nullptr && !current->IsDefinedAt(position)) {
517 current = current->GetNextSibling();
518 }
519 return current;
520 }
521
522 } // namespace art
523