1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ssa_liveness_analysis.h"
18 
19 #include "base/bit_vector-inl.h"
20 #include "code_generator.h"
21 #include "nodes.h"
22 
23 namespace art {
24 
Analyze()25 void SsaLivenessAnalysis::Analyze() {
26   LinearizeGraph();
27   NumberInstructions();
28   ComputeLiveness();
29 }
30 
IsLoop(HLoopInformation * info)31 static bool IsLoop(HLoopInformation* info) {
32   return info != nullptr;
33 }
34 
InSameLoop(HLoopInformation * first_loop,HLoopInformation * second_loop)35 static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
36   return first_loop == second_loop;
37 }
38 
IsInnerLoop(HLoopInformation * outer,HLoopInformation * inner)39 static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
40   return (inner != outer)
41       && (inner != nullptr)
42       && (outer != nullptr)
43       && inner->IsIn(*outer);
44 }
45 
AddToListForLinearization(GrowableArray<HBasicBlock * > * worklist,HBasicBlock * block)46 static void AddToListForLinearization(GrowableArray<HBasicBlock*>* worklist, HBasicBlock* block) {
47   size_t insert_at = worklist->Size();
48   HLoopInformation* block_loop = block->GetLoopInformation();
49   for (; insert_at > 0; --insert_at) {
50     HBasicBlock* current = worklist->Get(insert_at - 1);
51     HLoopInformation* current_loop = current->GetLoopInformation();
52     if (InSameLoop(block_loop, current_loop)
53         || !IsLoop(current_loop)
54         || IsInnerLoop(current_loop, block_loop)) {
55       // The block can be processed immediately.
56       break;
57     }
58   }
59   worklist->InsertAt(insert_at, block);
60 }
61 
LinearizeGraph()62 void SsaLivenessAnalysis::LinearizeGraph() {
63   // Create a reverse post ordering with the following properties:
64   // - Blocks in a loop are consecutive,
65   // - Back-edge is the last block before loop exits.
66 
67   // (1): Record the number of forward predecessors for each block. This is to
68   //      ensure the resulting order is reverse post order. We could use the
69   //      current reverse post order in the graph, but it would require making
70   //      order queries to a GrowableArray, which is not the best data structure
71   //      for it.
72   GrowableArray<uint32_t> forward_predecessors(graph_->GetArena(), graph_->GetBlocks().Size());
73   forward_predecessors.SetSize(graph_->GetBlocks().Size());
74   for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
75     HBasicBlock* block = it.Current();
76     size_t number_of_forward_predecessors = block->GetPredecessors().Size();
77     if (block->IsLoopHeader()) {
78       number_of_forward_predecessors -= block->GetLoopInformation()->NumberOfBackEdges();
79     }
80     forward_predecessors.Put(block->GetBlockId(), number_of_forward_predecessors);
81   }
82 
83   // (2): Following a worklist approach, first start with the entry block, and
84   //      iterate over the successors. When all non-back edge predecessors of a
85   //      successor block are visited, the successor block is added in the worklist
86   //      following an order that satisfies the requirements to build our linear graph.
87   GrowableArray<HBasicBlock*> worklist(graph_->GetArena(), 1);
88   worklist.Add(graph_->GetEntryBlock());
89   do {
90     HBasicBlock* current = worklist.Pop();
91     graph_->linear_order_.Add(current);
92     for (size_t i = 0, e = current->GetSuccessors().Size(); i < e; ++i) {
93       HBasicBlock* successor = current->GetSuccessors().Get(i);
94       int block_id = successor->GetBlockId();
95       size_t number_of_remaining_predecessors = forward_predecessors.Get(block_id);
96       if (number_of_remaining_predecessors == 1) {
97         AddToListForLinearization(&worklist, successor);
98       }
99       forward_predecessors.Put(block_id, number_of_remaining_predecessors - 1);
100     }
101   } while (!worklist.IsEmpty());
102 }
103 
NumberInstructions()104 void SsaLivenessAnalysis::NumberInstructions() {
105   int ssa_index = 0;
106   size_t lifetime_position = 0;
107   // Each instruction gets a lifetime position, and a block gets a lifetime
108   // start and end position. Non-phi instructions have a distinct lifetime position than
109   // the block they are in. Phi instructions have the lifetime start of their block as
110   // lifetime position.
111   //
112   // Because the register allocator will insert moves in the graph, we need
113   // to differentiate between the start and end of an instruction. Adding 2 to
114   // the lifetime position for each instruction ensures the start of an
115   // instruction is different than the end of the previous instruction.
116   for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
117     HBasicBlock* block = it.Current();
118     block->SetLifetimeStart(lifetime_position);
119 
120     for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
121       HInstruction* current = inst_it.Current();
122       codegen_->AllocateLocations(current);
123       LocationSummary* locations = current->GetLocations();
124       if (locations != nullptr && locations->Out().IsValid()) {
125         instructions_from_ssa_index_.Add(current);
126         current->SetSsaIndex(ssa_index++);
127         current->SetLiveInterval(
128             LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
129       }
130       current->SetLifetimePosition(lifetime_position);
131     }
132     lifetime_position += 2;
133 
134     // Add a null marker to notify we are starting a block.
135     instructions_from_lifetime_position_.Add(nullptr);
136 
137     for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
138          inst_it.Advance()) {
139       HInstruction* current = inst_it.Current();
140       codegen_->AllocateLocations(current);
141       LocationSummary* locations = current->GetLocations();
142       if (locations != nullptr && locations->Out().IsValid()) {
143         instructions_from_ssa_index_.Add(current);
144         current->SetSsaIndex(ssa_index++);
145         current->SetLiveInterval(
146             LiveInterval::MakeInterval(graph_->GetArena(), current->GetType(), current));
147       }
148       instructions_from_lifetime_position_.Add(current);
149       current->SetLifetimePosition(lifetime_position);
150       lifetime_position += 2;
151     }
152 
153     block->SetLifetimeEnd(lifetime_position);
154   }
155   number_of_ssa_values_ = ssa_index;
156 }
157 
ComputeLiveness()158 void SsaLivenessAnalysis::ComputeLiveness() {
159   for (HLinearOrderIterator it(*graph_); !it.Done(); it.Advance()) {
160     HBasicBlock* block = it.Current();
161     block_infos_.Put(
162         block->GetBlockId(),
163         new (graph_->GetArena()) BlockInfo(graph_->GetArena(), *block, number_of_ssa_values_));
164   }
165 
166   // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
167   // This method does not handle backward branches for the sets, therefore live_in
168   // and live_out sets are not yet correct.
169   ComputeLiveRanges();
170 
171   // Do a fixed point calculation to take into account backward branches,
172   // that will update live_in of loop headers, and therefore live_out and live_in
173   // of blocks in the loop.
174   ComputeLiveInAndLiveOutSets();
175 }
176 
ComputeLiveRanges()177 void SsaLivenessAnalysis::ComputeLiveRanges() {
178   // Do a post order visit, adding inputs of instructions live in the block where
179   // that instruction is defined, and killing instructions that are being visited.
180   for (HLinearPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
181     HBasicBlock* block = it.Current();
182 
183     BitVector* kill = GetKillSet(*block);
184     BitVector* live_in = GetLiveInSet(*block);
185 
186     // Set phi inputs of successors of this block corresponding to this block
187     // as live_in.
188     for (size_t i = 0, e = block->GetSuccessors().Size(); i < e; ++i) {
189       HBasicBlock* successor = block->GetSuccessors().Get(i);
190       live_in->Union(GetLiveInSet(*successor));
191       size_t phi_input_index = successor->GetPredecessorIndexOf(block);
192       for (HInstructionIterator inst_it(successor->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
193         HInstruction* phi = inst_it.Current();
194         HInstruction* input = phi->InputAt(phi_input_index);
195         input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
196         // A phi input whose last user is the phi dies at the end of the predecessor block,
197         // and not at the phi's lifetime position.
198         live_in->SetBit(input->GetSsaIndex());
199       }
200     }
201 
202     // Add a range that covers this block to all instructions live_in because of successors.
203     // Instructions defined in this block will have their start of the range adjusted.
204     for (uint32_t idx : live_in->Indexes()) {
205       HInstruction* current = instructions_from_ssa_index_.Get(idx);
206       current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
207     }
208 
209     for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
210          back_it.Advance()) {
211       HInstruction* current = back_it.Current();
212       if (current->HasSsaIndex()) {
213         // Kill the instruction and shorten its interval.
214         kill->SetBit(current->GetSsaIndex());
215         live_in->ClearBit(current->GetSsaIndex());
216         current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
217       }
218 
219       // Process the environment first, because we know their uses come after
220       // or at the same liveness position of inputs.
221       for (HEnvironment* environment = current->GetEnvironment();
222            environment != nullptr;
223            environment = environment->GetParent()) {
224         // Handle environment uses. See statements (b) and (c) of the
225         // SsaLivenessAnalysis.
226         for (size_t i = 0, e = environment->Size(); i < e; ++i) {
227           HInstruction* instruction = environment->GetInstructionAt(i);
228           bool should_be_live = ShouldBeLiveForEnvironment(current, instruction);
229           if (should_be_live) {
230             DCHECK(instruction->HasSsaIndex());
231             live_in->SetBit(instruction->GetSsaIndex());
232           }
233           if (instruction != nullptr) {
234             instruction->GetLiveInterval()->AddUse(
235                 current, environment, i, should_be_live);
236           }
237         }
238       }
239 
240       // All inputs of an instruction must be live.
241       for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
242         HInstruction* input = current->InputAt(i);
243         // Some instructions 'inline' their inputs, that is they do not need
244         // to be materialized.
245         if (input->HasSsaIndex()) {
246           live_in->SetBit(input->GetSsaIndex());
247           input->GetLiveInterval()->AddUse(current, /* environment */ nullptr, i);
248         }
249       }
250     }
251 
252     // Kill phis defined in this block.
253     for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
254       HInstruction* current = inst_it.Current();
255       if (current->HasSsaIndex()) {
256         kill->SetBit(current->GetSsaIndex());
257         live_in->ClearBit(current->GetSsaIndex());
258         LiveInterval* interval = current->GetLiveInterval();
259         DCHECK((interval->GetFirstRange() == nullptr)
260                || (interval->GetStart() == current->GetLifetimePosition()));
261         interval->SetFrom(current->GetLifetimePosition());
262       }
263     }
264 
265     if (block->IsLoopHeader()) {
266       size_t last_position = block->GetLoopInformation()->GetLifetimeEnd();
267       // For all live_in instructions at the loop header, we need to create a range
268       // that covers the full loop.
269       for (uint32_t idx : live_in->Indexes()) {
270         HInstruction* current = instructions_from_ssa_index_.Get(idx);
271         current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), last_position);
272       }
273     }
274   }
275 }
276 
ComputeLiveInAndLiveOutSets()277 void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
278   bool changed;
279   do {
280     changed = false;
281 
282     for (HPostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
283       const HBasicBlock& block = *it.Current();
284 
285       // The live_in set depends on the kill set (which does not
286       // change in this loop), and the live_out set.  If the live_out
287       // set does not change, there is no need to update the live_in set.
288       if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
289         changed = true;
290       }
291     }
292   } while (changed);
293 }
294 
UpdateLiveOut(const HBasicBlock & block)295 bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
296   BitVector* live_out = GetLiveOutSet(block);
297   bool changed = false;
298   // The live_out set of a block is the union of live_in sets of its successors.
299   for (size_t i = 0, e = block.GetSuccessors().Size(); i < e; ++i) {
300     HBasicBlock* successor = block.GetSuccessors().Get(i);
301     if (live_out->Union(GetLiveInSet(*successor))) {
302       changed = true;
303     }
304   }
305   return changed;
306 }
307 
308 
UpdateLiveIn(const HBasicBlock & block)309 bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
310   BitVector* live_out = GetLiveOutSet(block);
311   BitVector* kill = GetKillSet(block);
312   BitVector* live_in = GetLiveInSet(block);
313   // If live_out is updated (because of backward branches), we need to make
314   // sure instructions in live_out are also in live_in, unless they are killed
315   // by this block.
316   return live_in->UnionIfNotIn(live_out, kill);
317 }
318 
RegisterOrLowRegister(Location location)319 static int RegisterOrLowRegister(Location location) {
320   return location.IsPair() ? location.low() : location.reg();
321 }
322 
FindFirstRegisterHint(size_t * free_until,const SsaLivenessAnalysis & liveness) const323 int LiveInterval::FindFirstRegisterHint(size_t* free_until,
324                                         const SsaLivenessAnalysis& liveness) const {
325   DCHECK(!IsHighInterval());
326   if (IsTemp()) return kNoRegister;
327 
328   if (GetParent() == this && defined_by_ != nullptr) {
329     // This is the first interval for the instruction. Try to find
330     // a register based on its definition.
331     DCHECK_EQ(defined_by_->GetLiveInterval(), this);
332     int hint = FindHintAtDefinition();
333     if (hint != kNoRegister && free_until[hint] > GetStart()) {
334       return hint;
335     }
336   }
337 
338   if (IsSplit() && liveness.IsAtBlockBoundary(GetStart() / 2)) {
339     // If the start of this interval is at a block boundary, we look at the
340     // location of the interval in blocks preceding the block this interval
341     // starts at. If one location is a register we return it as a hint. This
342     // will avoid a move between the two blocks.
343     HBasicBlock* block = liveness.GetBlockFromPosition(GetStart() / 2);
344     for (size_t i = 0; i < block->GetPredecessors().Size(); ++i) {
345       size_t position = block->GetPredecessors().Get(i)->GetLifetimeEnd() - 1;
346       // We know positions above GetStart() do not have a location yet.
347       if (position < GetStart()) {
348         LiveInterval* existing = GetParent()->GetSiblingAt(position);
349         if (existing != nullptr
350             && existing->HasRegister()
351             && (free_until[existing->GetRegister()] > GetStart())) {
352           return existing->GetRegister();
353         }
354       }
355     }
356   }
357 
358   UsePosition* use = first_use_;
359   size_t start = GetStart();
360   size_t end = GetEnd();
361   while (use != nullptr && use->GetPosition() <= end) {
362     size_t use_position = use->GetPosition();
363     if (use_position >= start && !use->IsSynthesized()) {
364       HInstruction* user = use->GetUser();
365       size_t input_index = use->GetInputIndex();
366       if (user->IsPhi()) {
367         // If the phi has a register, try to use the same.
368         Location phi_location = user->GetLiveInterval()->ToLocation();
369         if (phi_location.IsRegisterKind()) {
370           DCHECK(SameRegisterKind(phi_location));
371           int reg = RegisterOrLowRegister(phi_location);
372           if (free_until[reg] >= use_position) {
373             return reg;
374           }
375         }
376         const GrowableArray<HBasicBlock*>& predecessors = user->GetBlock()->GetPredecessors();
377         // If the instruction dies at the phi assignment, we can try having the
378         // same register.
379         if (end == predecessors.Get(input_index)->GetLifetimeEnd()) {
380           for (size_t i = 0, e = user->InputCount(); i < e; ++i) {
381             if (i == input_index) {
382               continue;
383             }
384             HInstruction* input = user->InputAt(i);
385             Location location = input->GetLiveInterval()->GetLocationAt(
386                 predecessors.Get(i)->GetLifetimeEnd() - 1);
387             if (location.IsRegisterKind()) {
388               int reg = RegisterOrLowRegister(location);
389               if (free_until[reg] >= use_position) {
390                 return reg;
391               }
392             }
393           }
394         }
395       } else {
396         // If the instruction is expected in a register, try to use it.
397         LocationSummary* locations = user->GetLocations();
398         Location expected = locations->InAt(use->GetInputIndex());
399         // We use the user's lifetime position - 1 (and not `use_position`) because the
400         // register is blocked at the beginning of the user.
401         size_t position = user->GetLifetimePosition() - 1;
402         if (expected.IsRegisterKind()) {
403           DCHECK(SameRegisterKind(expected));
404           int reg = RegisterOrLowRegister(expected);
405           if (free_until[reg] >= position) {
406             return reg;
407           }
408         }
409       }
410     }
411     use = use->GetNext();
412   }
413 
414   return kNoRegister;
415 }
416 
FindHintAtDefinition() const417 int LiveInterval::FindHintAtDefinition() const {
418   if (defined_by_->IsPhi()) {
419     // Try to use the same register as one of the inputs.
420     const GrowableArray<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
421     for (size_t i = 0, e = defined_by_->InputCount(); i < e; ++i) {
422       HInstruction* input = defined_by_->InputAt(i);
423       size_t end = predecessors.Get(i)->GetLifetimeEnd();
424       LiveInterval* input_interval = input->GetLiveInterval()->GetSiblingAt(end - 1);
425       if (input_interval->GetEnd() == end) {
426         // If the input dies at the end of the predecessor, we know its register can
427         // be reused.
428         Location input_location = input_interval->ToLocation();
429         if (input_location.IsRegisterKind()) {
430           DCHECK(SameRegisterKind(input_location));
431           return RegisterOrLowRegister(input_location);
432         }
433       }
434     }
435   } else {
436     LocationSummary* locations = GetDefinedBy()->GetLocations();
437     Location out = locations->Out();
438     if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
439       // Try to use the same register as the first input.
440       LiveInterval* input_interval =
441           GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetSiblingAt(GetStart() - 1);
442       if (input_interval->GetEnd() == GetStart()) {
443         // If the input dies at the start of this instruction, we know its register can
444         // be reused.
445         Location location = input_interval->ToLocation();
446         if (location.IsRegisterKind()) {
447           DCHECK(SameRegisterKind(location));
448           return RegisterOrLowRegister(location);
449         }
450       }
451     }
452   }
453   return kNoRegister;
454 }
455 
SameRegisterKind(Location other) const456 bool LiveInterval::SameRegisterKind(Location other) const {
457   if (IsFloatingPoint()) {
458     if (IsLowInterval() || IsHighInterval()) {
459       return other.IsFpuRegisterPair();
460     } else {
461       return other.IsFpuRegister();
462     }
463   } else {
464     if (IsLowInterval() || IsHighInterval()) {
465       return other.IsRegisterPair();
466     } else {
467       return other.IsRegister();
468     }
469   }
470 }
471 
NeedsTwoSpillSlots() const472 bool LiveInterval::NeedsTwoSpillSlots() const {
473   return type_ == Primitive::kPrimLong || type_ == Primitive::kPrimDouble;
474 }
475 
ToLocation() const476 Location LiveInterval::ToLocation() const {
477   DCHECK(!IsHighInterval());
478   if (HasRegister()) {
479     if (IsFloatingPoint()) {
480       if (HasHighInterval()) {
481         return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
482       } else {
483         return Location::FpuRegisterLocation(GetRegister());
484       }
485     } else {
486       if (HasHighInterval()) {
487         return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
488       } else {
489         return Location::RegisterLocation(GetRegister());
490       }
491     }
492   } else {
493     HInstruction* defined_by = GetParent()->GetDefinedBy();
494     if (defined_by->IsConstant()) {
495       return defined_by->GetLocations()->Out();
496     } else if (GetParent()->HasSpillSlot()) {
497       if (NeedsTwoSpillSlots()) {
498         return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
499       } else {
500         return Location::StackSlot(GetParent()->GetSpillSlot());
501       }
502     } else {
503       return Location();
504     }
505   }
506 }
507 
GetLocationAt(size_t position)508 Location LiveInterval::GetLocationAt(size_t position) {
509   LiveInterval* sibling = GetSiblingAt(position);
510   DCHECK(sibling != nullptr);
511   return sibling->ToLocation();
512 }
513 
GetSiblingAt(size_t position)514 LiveInterval* LiveInterval::GetSiblingAt(size_t position) {
515   LiveInterval* current = this;
516   while (current != nullptr && !current->IsDefinedAt(position)) {
517     current = current->GetNextSibling();
518   }
519   return current;
520 }
521 
522 }  // namespace art
523