1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "mark_sweep.h"
18
19 #include <atomic>
20 #include <functional>
21 #include <numeric>
22 #include <climits>
23 #include <vector>
24
25 #define ATRACE_TAG ATRACE_TAG_DALVIK
26 #include "cutils/trace.h"
27
28 #include "base/bounded_fifo.h"
29 #include "base/logging.h"
30 #include "base/macros.h"
31 #include "base/mutex-inl.h"
32 #include "base/time_utils.h"
33 #include "base/timing_logger.h"
34 #include "gc/accounting/card_table-inl.h"
35 #include "gc/accounting/heap_bitmap-inl.h"
36 #include "gc/accounting/mod_union_table.h"
37 #include "gc/accounting/space_bitmap-inl.h"
38 #include "gc/heap.h"
39 #include "gc/reference_processor.h"
40 #include "gc/space/image_space.h"
41 #include "gc/space/large_object_space.h"
42 #include "gc/space/space-inl.h"
43 #include "mark_sweep-inl.h"
44 #include "mirror/object-inl.h"
45 #include "runtime.h"
46 #include "scoped_thread_state_change.h"
47 #include "thread-inl.h"
48 #include "thread_list.h"
49
50 using ::art::mirror::Object;
51
52 namespace art {
53 namespace gc {
54 namespace collector {
55
56 // Performance options.
57 static constexpr bool kUseRecursiveMark = false;
58 static constexpr bool kUseMarkStackPrefetch = true;
59 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
60 static constexpr bool kPreCleanCards = true;
61
62 // Parallelism options.
63 static constexpr bool kParallelCardScan = true;
64 static constexpr bool kParallelRecursiveMark = true;
65 // Don't attempt to parallelize mark stack processing unless the mark stack is at least n
66 // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
67 // having this can add overhead in ProcessReferences since we may end up doing many calls of
68 // ProcessMarkStack with very small mark stacks.
69 static constexpr size_t kMinimumParallelMarkStackSize = 128;
70 static constexpr bool kParallelProcessMarkStack = true;
71
72 // Profiling and information flags.
73 static constexpr bool kProfileLargeObjects = false;
74 static constexpr bool kMeasureOverhead = false;
75 static constexpr bool kCountTasks = false;
76 static constexpr bool kCountJavaLangRefs = false;
77 static constexpr bool kCountMarkedObjects = false;
78
79 // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
80 static constexpr bool kCheckLocks = kDebugLocking;
81 static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
82
83 // If true, revoke the rosalloc thread-local buffers at the
84 // checkpoint, as opposed to during the pause.
85 static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
86
BindBitmaps()87 void MarkSweep::BindBitmaps() {
88 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
89 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
90 // Mark all of the spaces we never collect as immune.
91 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
92 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
93 CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
94 }
95 }
96 }
97
MarkSweep(Heap * heap,bool is_concurrent,const std::string & name_prefix)98 MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
99 : GarbageCollector(heap,
100 name_prefix +
101 (is_concurrent ? "concurrent mark sweep": "mark sweep")),
102 current_space_bitmap_(nullptr), mark_bitmap_(nullptr), mark_stack_(nullptr),
103 gc_barrier_(new Barrier(0)),
104 mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
105 is_concurrent_(is_concurrent), live_stack_freeze_size_(0) {
106 std::string error_msg;
107 MemMap* mem_map = MemMap::MapAnonymous(
108 "mark sweep sweep array free buffer", nullptr,
109 RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
110 PROT_READ | PROT_WRITE, false, false, &error_msg);
111 CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg;
112 sweep_array_free_buffer_mem_map_.reset(mem_map);
113 }
114
InitializePhase()115 void MarkSweep::InitializePhase() {
116 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
117 mark_stack_ = heap_->GetMarkStack();
118 DCHECK(mark_stack_ != nullptr);
119 immune_region_.Reset();
120 class_count_.StoreRelaxed(0);
121 array_count_.StoreRelaxed(0);
122 other_count_.StoreRelaxed(0);
123 large_object_test_.StoreRelaxed(0);
124 large_object_mark_.StoreRelaxed(0);
125 overhead_time_ .StoreRelaxed(0);
126 work_chunks_created_.StoreRelaxed(0);
127 work_chunks_deleted_.StoreRelaxed(0);
128 reference_count_.StoreRelaxed(0);
129 mark_null_count_.StoreRelaxed(0);
130 mark_immune_count_.StoreRelaxed(0);
131 mark_fastpath_count_.StoreRelaxed(0);
132 mark_slowpath_count_.StoreRelaxed(0);
133 {
134 // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
135 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
136 mark_bitmap_ = heap_->GetMarkBitmap();
137 }
138 if (!GetCurrentIteration()->GetClearSoftReferences()) {
139 // Always clear soft references if a non-sticky collection.
140 GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky);
141 }
142 }
143
RunPhases()144 void MarkSweep::RunPhases() {
145 Thread* self = Thread::Current();
146 InitializePhase();
147 Locks::mutator_lock_->AssertNotHeld(self);
148 if (IsConcurrent()) {
149 GetHeap()->PreGcVerification(this);
150 {
151 ReaderMutexLock mu(self, *Locks::mutator_lock_);
152 MarkingPhase();
153 }
154 ScopedPause pause(this);
155 GetHeap()->PrePauseRosAllocVerification(this);
156 PausePhase();
157 RevokeAllThreadLocalBuffers();
158 } else {
159 ScopedPause pause(this);
160 GetHeap()->PreGcVerificationPaused(this);
161 MarkingPhase();
162 GetHeap()->PrePauseRosAllocVerification(this);
163 PausePhase();
164 RevokeAllThreadLocalBuffers();
165 }
166 {
167 // Sweeping always done concurrently, even for non concurrent mark sweep.
168 ReaderMutexLock mu(self, *Locks::mutator_lock_);
169 ReclaimPhase();
170 }
171 GetHeap()->PostGcVerification(this);
172 FinishPhase();
173 }
174
ProcessReferences(Thread * self)175 void MarkSweep::ProcessReferences(Thread* self) {
176 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
177 GetHeap()->GetReferenceProcessor()->ProcessReferences(
178 true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
179 &HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this);
180 }
181
PausePhase()182 void MarkSweep::PausePhase() {
183 TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings());
184 Thread* self = Thread::Current();
185 Locks::mutator_lock_->AssertExclusiveHeld(self);
186 if (IsConcurrent()) {
187 // Handle the dirty objects if we are a concurrent GC.
188 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
189 // Re-mark root set.
190 ReMarkRoots();
191 // Scan dirty objects, this is only required if we are not doing concurrent GC.
192 RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
193 }
194 {
195 TimingLogger::ScopedTiming t2("SwapStacks", GetTimings());
196 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
197 heap_->SwapStacks(self);
198 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
199 // Need to revoke all the thread local allocation stacks since we just swapped the allocation
200 // stacks and don't want anybody to allocate into the live stack.
201 RevokeAllThreadLocalAllocationStacks(self);
202 }
203 heap_->PreSweepingGcVerification(this);
204 // Disallow new system weaks to prevent a race which occurs when someone adds a new system
205 // weak before we sweep them. Since this new system weak may not be marked, the GC may
206 // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
207 // reference to a string that is about to be swept.
208 Runtime::Current()->DisallowNewSystemWeaks();
209 // Enable the reference processing slow path, needs to be done with mutators paused since there
210 // is no lock in the GetReferent fast path.
211 GetHeap()->GetReferenceProcessor()->EnableSlowPath();
212 }
213
PreCleanCards()214 void MarkSweep::PreCleanCards() {
215 // Don't do this for non concurrent GCs since they don't have any dirty cards.
216 if (kPreCleanCards && IsConcurrent()) {
217 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
218 Thread* self = Thread::Current();
219 CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
220 // Process dirty cards and add dirty cards to mod union tables, also ages cards.
221 heap_->ProcessCards(GetTimings(), false, true, false);
222 // The checkpoint root marking is required to avoid a race condition which occurs if the
223 // following happens during a reference write:
224 // 1. mutator dirties the card (write barrier)
225 // 2. GC ages the card (the above ProcessCards call)
226 // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
227 // 4. mutator writes the value (corresponding to the write barrier in 1.)
228 // This causes the GC to age the card but not necessarily mark the reference which the mutator
229 // wrote into the object stored in the card.
230 // Having the checkpoint fixes this issue since it ensures that the card mark and the
231 // reference write are visible to the GC before the card is scanned (this is due to locks being
232 // acquired / released in the checkpoint code).
233 // The other roots are also marked to help reduce the pause.
234 MarkRootsCheckpoint(self, false);
235 MarkNonThreadRoots();
236 MarkConcurrentRoots(
237 static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
238 // Process the newly aged cards.
239 RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
240 // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
241 // in the next GC.
242 }
243 }
244
RevokeAllThreadLocalAllocationStacks(Thread * self)245 void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
246 if (kUseThreadLocalAllocationStack) {
247 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
248 Locks::mutator_lock_->AssertExclusiveHeld(self);
249 heap_->RevokeAllThreadLocalAllocationStacks(self);
250 }
251 }
252
MarkingPhase()253 void MarkSweep::MarkingPhase() {
254 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
255 Thread* self = Thread::Current();
256 BindBitmaps();
257 FindDefaultSpaceBitmap();
258 // Process dirty cards and add dirty cards to mod union tables.
259 // If the GC type is non sticky, then we just clear the cards instead of ageing them.
260 heap_->ProcessCards(GetTimings(), false, true, GetGcType() != kGcTypeSticky);
261 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
262 MarkRoots(self);
263 MarkReachableObjects();
264 // Pre-clean dirtied cards to reduce pauses.
265 PreCleanCards();
266 }
267
UpdateAndMarkModUnion()268 void MarkSweep::UpdateAndMarkModUnion() {
269 for (const auto& space : heap_->GetContinuousSpaces()) {
270 if (immune_region_.ContainsSpace(space)) {
271 const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
272 "UpdateAndMarkImageModUnionTable";
273 TimingLogger::ScopedTiming t(name, GetTimings());
274 accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
275 CHECK(mod_union_table != nullptr);
276 mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
277 }
278 }
279 }
280
MarkReachableObjects()281 void MarkSweep::MarkReachableObjects() {
282 UpdateAndMarkModUnion();
283 // Recursively mark all the non-image bits set in the mark bitmap.
284 RecursiveMark();
285 }
286
ReclaimPhase()287 void MarkSweep::ReclaimPhase() {
288 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
289 Thread* self = Thread::Current();
290 // Process the references concurrently.
291 ProcessReferences(self);
292 SweepSystemWeaks(self);
293 Runtime::Current()->AllowNewSystemWeaks();
294 {
295 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
296 GetHeap()->RecordFreeRevoke();
297 // Reclaim unmarked objects.
298 Sweep(false);
299 // Swap the live and mark bitmaps for each space which we modified space. This is an
300 // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
301 // bitmaps.
302 SwapBitmaps();
303 // Unbind the live and mark bitmaps.
304 GetHeap()->UnBindBitmaps();
305 }
306 }
307
FindDefaultSpaceBitmap()308 void MarkSweep::FindDefaultSpaceBitmap() {
309 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
310 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
311 accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
312 // We want to have the main space instead of non moving if possible.
313 if (bitmap != nullptr &&
314 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
315 current_space_bitmap_ = bitmap;
316 // If we are not the non moving space exit the loop early since this will be good enough.
317 if (space != heap_->GetNonMovingSpace()) {
318 break;
319 }
320 }
321 }
322 CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n"
323 << heap_->DumpSpaces();
324 }
325
ExpandMarkStack()326 void MarkSweep::ExpandMarkStack() {
327 ResizeMarkStack(mark_stack_->Capacity() * 2);
328 }
329
ResizeMarkStack(size_t new_size)330 void MarkSweep::ResizeMarkStack(size_t new_size) {
331 // Rare case, no need to have Thread::Current be a parameter.
332 if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
333 // Someone else acquired the lock and expanded the mark stack before us.
334 return;
335 }
336 std::vector<StackReference<Object>> temp(mark_stack_->Begin(), mark_stack_->End());
337 CHECK_LE(mark_stack_->Size(), new_size);
338 mark_stack_->Resize(new_size);
339 for (auto& obj : temp) {
340 mark_stack_->PushBack(obj.AsMirrorPtr());
341 }
342 }
343
MarkObjectNonNullParallel(Object * obj)344 inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) {
345 DCHECK(obj != nullptr);
346 if (MarkObjectParallel(obj)) {
347 MutexLock mu(Thread::Current(), mark_stack_lock_);
348 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
349 ExpandMarkStack();
350 }
351 // The object must be pushed on to the mark stack.
352 mark_stack_->PushBack(obj);
353 }
354 }
355
MarkObjectCallback(mirror::Object * obj,void * arg)356 mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) {
357 MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
358 mark_sweep->MarkObject(obj);
359 return obj;
360 }
361
MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object> * ref,void * arg)362 void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
363 reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr());
364 }
365
HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object> * ref,void * arg)366 bool MarkSweep::HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
367 return reinterpret_cast<MarkSweep*>(arg)->IsMarked(ref->AsMirrorPtr());
368 }
369
370 class MarkSweepMarkObjectSlowPath {
371 public:
MarkSweepMarkObjectSlowPath(MarkSweep * mark_sweep,Object * holder=nullptr,MemberOffset offset=MemberOffset (0))372 explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep, Object* holder = nullptr,
373 MemberOffset offset = MemberOffset(0))
374 : mark_sweep_(mark_sweep), holder_(holder), offset_(offset) {
375 }
376
operator ()(const Object * obj) const377 void operator()(const Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
378 if (kProfileLargeObjects) {
379 // TODO: Differentiate between marking and testing somehow.
380 ++mark_sweep_->large_object_test_;
381 ++mark_sweep_->large_object_mark_;
382 }
383 space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
384 if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) ||
385 (kIsDebugBuild && large_object_space != nullptr &&
386 !large_object_space->Contains(obj)))) {
387 LOG(INTERNAL_FATAL) << "Tried to mark " << obj << " not contained by any spaces";
388 if (holder_ != nullptr) {
389 size_t holder_size = holder_->SizeOf();
390 ArtField* field = holder_->FindFieldByOffset(offset_);
391 LOG(INTERNAL_FATAL) << "Field info: "
392 << " holder=" << holder_
393 << " holder is "
394 << (mark_sweep_->GetHeap()->IsLiveObjectLocked(holder_)
395 ? "alive" : "dead")
396 << " holder_size=" << holder_size
397 << " holder_type=" << PrettyTypeOf(holder_)
398 << " offset=" << offset_.Uint32Value()
399 << " field=" << (field != nullptr ? field->GetName() : "nullptr")
400 << " field_type="
401 << (field != nullptr ? field->GetTypeDescriptor() : "")
402 << " first_ref_field_offset="
403 << (holder_->IsClass()
404 ? holder_->AsClass()->GetFirstReferenceStaticFieldOffset(
405 sizeof(void*))
406 : holder_->GetClass()->GetFirstReferenceInstanceFieldOffset())
407 << " num_of_ref_fields="
408 << (holder_->IsClass()
409 ? holder_->AsClass()->NumReferenceStaticFields()
410 : holder_->GetClass()->NumReferenceInstanceFields())
411 << "\n";
412 // Print the memory content of the holder.
413 for (size_t i = 0; i < holder_size / sizeof(uint32_t); ++i) {
414 uint32_t* p = reinterpret_cast<uint32_t*>(holder_);
415 LOG(INTERNAL_FATAL) << &p[i] << ": " << "holder+" << (i * sizeof(uint32_t)) << " = "
416 << std::hex << p[i];
417 }
418 }
419 PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
420 MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
421 {
422 LOG(INTERNAL_FATAL) << "Attempting see if it's a bad root";
423 Thread* self = Thread::Current();
424 if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
425 mark_sweep_->VerifyRoots();
426 } else {
427 const bool heap_bitmap_exclusive_locked =
428 Locks::heap_bitmap_lock_->IsExclusiveHeld(self);
429 if (heap_bitmap_exclusive_locked) {
430 Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
431 }
432 Locks::mutator_lock_->SharedUnlock(self);
433 ThreadList* tl = Runtime::Current()->GetThreadList();
434 tl->SuspendAll(__FUNCTION__);
435 mark_sweep_->VerifyRoots();
436 tl->ResumeAll();
437 Locks::mutator_lock_->SharedLock(self);
438 if (heap_bitmap_exclusive_locked) {
439 Locks::heap_bitmap_lock_->ExclusiveLock(self);
440 }
441 }
442 }
443 LOG(FATAL) << "Can't mark invalid object";
444 }
445 }
446
447 private:
448 MarkSweep* const mark_sweep_;
449 mirror::Object* const holder_;
450 MemberOffset offset_;
451 };
452
MarkObjectNonNull(Object * obj,Object * holder,MemberOffset offset)453 inline void MarkSweep::MarkObjectNonNull(Object* obj, Object* holder, MemberOffset offset) {
454 DCHECK(obj != nullptr);
455 if (kUseBakerOrBrooksReadBarrier) {
456 // Verify all the objects have the correct pointer installed.
457 obj->AssertReadBarrierPointer();
458 }
459 if (immune_region_.ContainsObject(obj)) {
460 if (kCountMarkedObjects) {
461 ++mark_immune_count_;
462 }
463 DCHECK(mark_bitmap_->Test(obj));
464 } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
465 if (kCountMarkedObjects) {
466 ++mark_fastpath_count_;
467 }
468 if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
469 PushOnMarkStack(obj); // This object was not previously marked.
470 }
471 } else {
472 if (kCountMarkedObjects) {
473 ++mark_slowpath_count_;
474 }
475 MarkSweepMarkObjectSlowPath visitor(this, holder, offset);
476 // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
477 // will check again.
478 if (!mark_bitmap_->Set(obj, visitor)) {
479 PushOnMarkStack(obj); // Was not already marked, push.
480 }
481 }
482 }
483
PushOnMarkStack(Object * obj)484 inline void MarkSweep::PushOnMarkStack(Object* obj) {
485 if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
486 // Lock is not needed but is here anyways to please annotalysis.
487 MutexLock mu(Thread::Current(), mark_stack_lock_);
488 ExpandMarkStack();
489 }
490 // The object must be pushed on to the mark stack.
491 mark_stack_->PushBack(obj);
492 }
493
MarkObjectParallel(const Object * obj)494 inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
495 DCHECK(obj != nullptr);
496 if (kUseBakerOrBrooksReadBarrier) {
497 // Verify all the objects have the correct pointer installed.
498 obj->AssertReadBarrierPointer();
499 }
500 if (immune_region_.ContainsObject(obj)) {
501 DCHECK(IsMarked(obj));
502 return false;
503 }
504 // Try to take advantage of locality of references within a space, failing this find the space
505 // the hard way.
506 accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
507 if (LIKELY(object_bitmap->HasAddress(obj))) {
508 return !object_bitmap->AtomicTestAndSet(obj);
509 }
510 MarkSweepMarkObjectSlowPath visitor(this);
511 return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
512 }
513
514 // Used to mark objects when processing the mark stack. If an object is null, it is not marked.
MarkObject(Object * obj,Object * holder,MemberOffset offset)515 inline void MarkSweep::MarkObject(Object* obj, Object* holder, MemberOffset offset) {
516 if (obj != nullptr) {
517 MarkObjectNonNull(obj, holder, offset);
518 } else if (kCountMarkedObjects) {
519 ++mark_null_count_;
520 }
521 }
522
523 class VerifyRootMarkedVisitor : public SingleRootVisitor {
524 public:
VerifyRootMarkedVisitor(MarkSweep * collector)525 explicit VerifyRootMarkedVisitor(MarkSweep* collector) : collector_(collector) { }
526
VisitRoot(mirror::Object * root,const RootInfo & info)527 void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
528 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
529 CHECK(collector_->IsMarked(root)) << info.ToString();
530 }
531
532 private:
533 MarkSweep* const collector_;
534 };
535
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)536 void MarkSweep::VisitRoots(mirror::Object*** roots, size_t count,
537 const RootInfo& info ATTRIBUTE_UNUSED) {
538 for (size_t i = 0; i < count; ++i) {
539 MarkObjectNonNull(*roots[i]);
540 }
541 }
542
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)543 void MarkSweep::VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
544 const RootInfo& info ATTRIBUTE_UNUSED) {
545 for (size_t i = 0; i < count; ++i) {
546 MarkObjectNonNull(roots[i]->AsMirrorPtr());
547 }
548 }
549
550 class VerifyRootVisitor : public SingleRootVisitor {
551 public:
VisitRoot(mirror::Object * root,const RootInfo & info)552 void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
553 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
554 // See if the root is on any space bitmap.
555 auto* heap = Runtime::Current()->GetHeap();
556 if (heap->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
557 space::LargeObjectSpace* large_object_space = heap->GetLargeObjectsSpace();
558 if (large_object_space != nullptr && !large_object_space->Contains(root)) {
559 LOG(INTERNAL_FATAL) << "Found invalid root: " << root << " " << info;
560 }
561 }
562 }
563 };
564
VerifyRoots()565 void MarkSweep::VerifyRoots() {
566 VerifyRootVisitor visitor;
567 Runtime::Current()->GetThreadList()->VisitRoots(&visitor);
568 }
569
MarkRoots(Thread * self)570 void MarkSweep::MarkRoots(Thread* self) {
571 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
572 if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
573 // If we exclusively hold the mutator lock, all threads must be suspended.
574 Runtime::Current()->VisitRoots(this);
575 RevokeAllThreadLocalAllocationStacks(self);
576 } else {
577 MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
578 // At this point the live stack should no longer have any mutators which push into it.
579 MarkNonThreadRoots();
580 MarkConcurrentRoots(
581 static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
582 }
583 }
584
MarkNonThreadRoots()585 void MarkSweep::MarkNonThreadRoots() {
586 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
587 Runtime::Current()->VisitNonThreadRoots(this);
588 }
589
MarkConcurrentRoots(VisitRootFlags flags)590 void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
591 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
592 // Visit all runtime roots and clear dirty flags.
593 Runtime::Current()->VisitConcurrentRoots(
594 this, static_cast<VisitRootFlags>(flags | kVisitRootFlagNonMoving));
595 }
596
597 class ScanObjectVisitor {
598 public:
ScanObjectVisitor(MarkSweep * const mark_sweep)599 explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
600 : mark_sweep_(mark_sweep) {}
601
operator ()(Object * obj) const602 void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
603 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
604 if (kCheckLocks) {
605 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
606 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
607 }
608 mark_sweep_->ScanObject(obj);
609 }
610
611 private:
612 MarkSweep* const mark_sweep_;
613 };
614
615 class DelayReferenceReferentVisitor {
616 public:
DelayReferenceReferentVisitor(MarkSweep * collector)617 explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {
618 }
619
operator ()(mirror::Class * klass,mirror::Reference * ref) const620 void operator()(mirror::Class* klass, mirror::Reference* ref) const
621 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
622 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
623 collector_->DelayReferenceReferent(klass, ref);
624 }
625
626 private:
627 MarkSweep* const collector_;
628 };
629
630 template <bool kUseFinger = false>
631 class MarkStackTask : public Task {
632 public:
MarkStackTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,size_t mark_stack_size,StackReference<Object> * mark_stack)633 MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
634 StackReference<Object>* mark_stack)
635 : mark_sweep_(mark_sweep),
636 thread_pool_(thread_pool),
637 mark_stack_pos_(mark_stack_size) {
638 // We may have to copy part of an existing mark stack when another mark stack overflows.
639 if (mark_stack_size != 0) {
640 DCHECK(mark_stack != nullptr);
641 // TODO: Check performance?
642 std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
643 }
644 if (kCountTasks) {
645 ++mark_sweep_->work_chunks_created_;
646 }
647 }
648
649 static const size_t kMaxSize = 1 * KB;
650
651 protected:
652 class MarkObjectParallelVisitor {
653 public:
MarkObjectParallelVisitor(MarkStackTask<kUseFinger> * chunk_task,MarkSweep * mark_sweep)654 explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
655 MarkSweep* mark_sweep) ALWAYS_INLINE
656 : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
657
operator ()(Object * obj,MemberOffset offset,bool) const658 void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE
659 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
660 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
661 if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
662 if (kUseFinger) {
663 std::atomic_thread_fence(std::memory_order_seq_cst);
664 if (reinterpret_cast<uintptr_t>(ref) >=
665 static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) {
666 return;
667 }
668 }
669 chunk_task_->MarkStackPush(ref);
670 }
671 }
672
673 private:
674 MarkStackTask<kUseFinger>* const chunk_task_;
675 MarkSweep* const mark_sweep_;
676 };
677
678 class ScanObjectParallelVisitor {
679 public:
ScanObjectParallelVisitor(MarkStackTask<kUseFinger> * chunk_task)680 explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
681 : chunk_task_(chunk_task) {}
682
683 // No thread safety analysis since multiple threads will use this visitor.
operator ()(Object * obj) const684 void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
685 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
686 MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
687 MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
688 DelayReferenceReferentVisitor ref_visitor(mark_sweep);
689 mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
690 }
691
692 private:
693 MarkStackTask<kUseFinger>* const chunk_task_;
694 };
695
~MarkStackTask()696 virtual ~MarkStackTask() {
697 // Make sure that we have cleared our mark stack.
698 DCHECK_EQ(mark_stack_pos_, 0U);
699 if (kCountTasks) {
700 ++mark_sweep_->work_chunks_deleted_;
701 }
702 }
703
704 MarkSweep* const mark_sweep_;
705 ThreadPool* const thread_pool_;
706 // Thread local mark stack for this task.
707 StackReference<Object> mark_stack_[kMaxSize];
708 // Mark stack position.
709 size_t mark_stack_pos_;
710
MarkStackPush(Object * obj)711 ALWAYS_INLINE void MarkStackPush(Object* obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
712 if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
713 // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
714 mark_stack_pos_ /= 2;
715 auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
716 mark_stack_ + mark_stack_pos_);
717 thread_pool_->AddTask(Thread::Current(), task);
718 }
719 DCHECK(obj != nullptr);
720 DCHECK_LT(mark_stack_pos_, kMaxSize);
721 mark_stack_[mark_stack_pos_++].Assign(obj);
722 }
723
Finalize()724 virtual void Finalize() {
725 delete this;
726 }
727
728 // Scans all of the objects
Run(Thread * self)729 virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
730 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
731 UNUSED(self);
732 ScanObjectParallelVisitor visitor(this);
733 // TODO: Tune this.
734 static const size_t kFifoSize = 4;
735 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
736 for (;;) {
737 Object* obj = nullptr;
738 if (kUseMarkStackPrefetch) {
739 while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
740 Object* const mark_stack_obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
741 DCHECK(mark_stack_obj != nullptr);
742 __builtin_prefetch(mark_stack_obj);
743 prefetch_fifo.push_back(mark_stack_obj);
744 }
745 if (UNLIKELY(prefetch_fifo.empty())) {
746 break;
747 }
748 obj = prefetch_fifo.front();
749 prefetch_fifo.pop_front();
750 } else {
751 if (UNLIKELY(mark_stack_pos_ == 0)) {
752 break;
753 }
754 obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
755 }
756 DCHECK(obj != nullptr);
757 visitor(obj);
758 }
759 }
760 };
761
762 class CardScanTask : public MarkStackTask<false> {
763 public:
CardScanTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::ContinuousSpaceBitmap * bitmap,uint8_t * begin,uint8_t * end,uint8_t minimum_age,size_t mark_stack_size,StackReference<Object> * mark_stack_obj,bool clear_card)764 CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
765 accounting::ContinuousSpaceBitmap* bitmap,
766 uint8_t* begin, uint8_t* end, uint8_t minimum_age, size_t mark_stack_size,
767 StackReference<Object>* mark_stack_obj, bool clear_card)
768 : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
769 bitmap_(bitmap),
770 begin_(begin),
771 end_(end),
772 minimum_age_(minimum_age), clear_card_(clear_card) {
773 }
774
775 protected:
776 accounting::ContinuousSpaceBitmap* const bitmap_;
777 uint8_t* const begin_;
778 uint8_t* const end_;
779 const uint8_t minimum_age_;
780 const bool clear_card_;
781
Finalize()782 virtual void Finalize() {
783 delete this;
784 }
785
Run(Thread * self)786 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
787 ScanObjectParallelVisitor visitor(this);
788 accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
789 size_t cards_scanned = clear_card_ ?
790 card_table->Scan<true>(bitmap_, begin_, end_, visitor, minimum_age_) :
791 card_table->Scan<false>(bitmap_, begin_, end_, visitor, minimum_age_);
792 VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
793 << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
794 // Finish by emptying our local mark stack.
795 MarkStackTask::Run(self);
796 }
797 };
798
GetThreadCount(bool paused) const799 size_t MarkSweep::GetThreadCount(bool paused) const {
800 if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
801 return 1;
802 }
803 return (paused ? heap_->GetParallelGCThreadCount() : heap_->GetConcGCThreadCount()) + 1;
804 }
805
ScanGrayObjects(bool paused,uint8_t minimum_age)806 void MarkSweep::ScanGrayObjects(bool paused, uint8_t minimum_age) {
807 accounting::CardTable* card_table = GetHeap()->GetCardTable();
808 ThreadPool* thread_pool = GetHeap()->GetThreadPool();
809 size_t thread_count = GetThreadCount(paused);
810 // The parallel version with only one thread is faster for card scanning, TODO: fix.
811 if (kParallelCardScan && thread_count > 1) {
812 Thread* self = Thread::Current();
813 // Can't have a different split for each space since multiple spaces can have their cards being
814 // scanned at the same time.
815 TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__,
816 GetTimings());
817 // Try to take some of the mark stack since we can pass this off to the worker tasks.
818 StackReference<Object>* mark_stack_begin = mark_stack_->Begin();
819 StackReference<Object>* mark_stack_end = mark_stack_->End();
820 const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
821 // Estimated number of work tasks we will create.
822 const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
823 DCHECK_NE(mark_stack_tasks, 0U);
824 const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
825 mark_stack_size / mark_stack_tasks + 1);
826 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
827 if (space->GetMarkBitmap() == nullptr) {
828 continue;
829 }
830 uint8_t* card_begin = space->Begin();
831 uint8_t* card_end = space->End();
832 // Align up the end address. For example, the image space's end
833 // may not be card-size-aligned.
834 card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
835 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
836 DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
837 // Calculate how many bytes of heap we will scan,
838 const size_t address_range = card_end - card_begin;
839 // Calculate how much address range each task gets.
840 const size_t card_delta = RoundUp(address_range / thread_count + 1,
841 accounting::CardTable::kCardSize);
842 // If paused and the space is neither zygote nor image space, we could clear the dirty
843 // cards to avoid accumulating them to increase card scanning load in the following GC
844 // cycles. We need to keep dirty cards of image space and zygote space in order to track
845 // references to the other spaces.
846 bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
847 // Create the worker tasks for this space.
848 while (card_begin != card_end) {
849 // Add a range of cards.
850 size_t addr_remaining = card_end - card_begin;
851 size_t card_increment = std::min(card_delta, addr_remaining);
852 // Take from the back of the mark stack.
853 size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
854 size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
855 mark_stack_end -= mark_stack_increment;
856 mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
857 DCHECK_EQ(mark_stack_end, mark_stack_->End());
858 // Add the new task to the thread pool.
859 auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
860 card_begin + card_increment, minimum_age,
861 mark_stack_increment, mark_stack_end, clear_card);
862 thread_pool->AddTask(self, task);
863 card_begin += card_increment;
864 }
865 }
866
867 // Note: the card scan below may dirty new cards (and scan them)
868 // as a side effect when a Reference object is encountered and
869 // queued during the marking. See b/11465268.
870 thread_pool->SetMaxActiveWorkers(thread_count - 1);
871 thread_pool->StartWorkers(self);
872 thread_pool->Wait(self, true, true);
873 thread_pool->StopWorkers(self);
874 } else {
875 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
876 if (space->GetMarkBitmap() != nullptr) {
877 // Image spaces are handled properly since live == marked for them.
878 const char* name = nullptr;
879 switch (space->GetGcRetentionPolicy()) {
880 case space::kGcRetentionPolicyNeverCollect:
881 name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects";
882 break;
883 case space::kGcRetentionPolicyFullCollect:
884 name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects";
885 break;
886 case space::kGcRetentionPolicyAlwaysCollect:
887 name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects";
888 break;
889 default:
890 LOG(FATAL) << "Unreachable";
891 UNREACHABLE();
892 }
893 TimingLogger::ScopedTiming t(name, GetTimings());
894 ScanObjectVisitor visitor(this);
895 bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
896 if (clear_card) {
897 card_table->Scan<true>(space->GetMarkBitmap(), space->Begin(), space->End(), visitor,
898 minimum_age);
899 } else {
900 card_table->Scan<false>(space->GetMarkBitmap(), space->Begin(), space->End(), visitor,
901 minimum_age);
902 }
903 }
904 }
905 }
906 }
907
908 class RecursiveMarkTask : public MarkStackTask<false> {
909 public:
RecursiveMarkTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::ContinuousSpaceBitmap * bitmap,uintptr_t begin,uintptr_t end)910 RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
911 accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
912 : MarkStackTask<false>(thread_pool, mark_sweep, 0, nullptr), bitmap_(bitmap), begin_(begin),
913 end_(end) {
914 }
915
916 protected:
917 accounting::ContinuousSpaceBitmap* const bitmap_;
918 const uintptr_t begin_;
919 const uintptr_t end_;
920
Finalize()921 virtual void Finalize() {
922 delete this;
923 }
924
925 // Scans all of the objects
Run(Thread * self)926 virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
927 ScanObjectParallelVisitor visitor(this);
928 bitmap_->VisitMarkedRange(begin_, end_, visitor);
929 // Finish by emptying our local mark stack.
930 MarkStackTask::Run(self);
931 }
932 };
933
934 // Populates the mark stack based on the set of marked objects and
935 // recursively marks until the mark stack is emptied.
RecursiveMark()936 void MarkSweep::RecursiveMark() {
937 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
938 // RecursiveMark will build the lists of known instances of the Reference classes. See
939 // DelayReferenceReferent for details.
940 if (kUseRecursiveMark) {
941 const bool partial = GetGcType() == kGcTypePartial;
942 ScanObjectVisitor scan_visitor(this);
943 auto* self = Thread::Current();
944 ThreadPool* thread_pool = heap_->GetThreadPool();
945 size_t thread_count = GetThreadCount(false);
946 const bool parallel = kParallelRecursiveMark && thread_count > 1;
947 mark_stack_->Reset();
948 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
949 if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
950 (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
951 current_space_bitmap_ = space->GetMarkBitmap();
952 if (current_space_bitmap_ == nullptr) {
953 continue;
954 }
955 if (parallel) {
956 // We will use the mark stack the future.
957 // CHECK(mark_stack_->IsEmpty());
958 // This function does not handle heap end increasing, so we must use the space end.
959 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
960 uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
961 atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue());
962
963 // Create a few worker tasks.
964 const size_t n = thread_count * 2;
965 while (begin != end) {
966 uintptr_t start = begin;
967 uintptr_t delta = (end - begin) / n;
968 delta = RoundUp(delta, KB);
969 if (delta < 16 * KB) delta = end - begin;
970 begin += delta;
971 auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start,
972 begin);
973 thread_pool->AddTask(self, task);
974 }
975 thread_pool->SetMaxActiveWorkers(thread_count - 1);
976 thread_pool->StartWorkers(self);
977 thread_pool->Wait(self, true, true);
978 thread_pool->StopWorkers(self);
979 } else {
980 // This function does not handle heap end increasing, so we must use the space end.
981 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
982 uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
983 current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
984 }
985 }
986 }
987 }
988 ProcessMarkStack(false);
989 }
990
IsMarkedCallback(mirror::Object * object,void * arg)991 mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
992 if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
993 return object;
994 }
995 return nullptr;
996 }
997
RecursiveMarkDirtyObjects(bool paused,uint8_t minimum_age)998 void MarkSweep::RecursiveMarkDirtyObjects(bool paused, uint8_t minimum_age) {
999 ScanGrayObjects(paused, minimum_age);
1000 ProcessMarkStack(paused);
1001 }
1002
ReMarkRoots()1003 void MarkSweep::ReMarkRoots() {
1004 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1005 Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1006 Runtime::Current()->VisitRoots(this, static_cast<VisitRootFlags>(
1007 kVisitRootFlagNewRoots | kVisitRootFlagStopLoggingNewRoots | kVisitRootFlagClearRootLog));
1008 if (kVerifyRootsMarked) {
1009 TimingLogger::ScopedTiming t2("(Paused)VerifyRoots", GetTimings());
1010 VerifyRootMarkedVisitor visitor(this);
1011 Runtime::Current()->VisitRoots(&visitor);
1012 }
1013 }
1014
SweepSystemWeaks(Thread * self)1015 void MarkSweep::SweepSystemWeaks(Thread* self) {
1016 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1017 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1018 Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
1019 }
1020
VerifySystemWeakIsLiveCallback(Object * obj,void * arg)1021 mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
1022 reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
1023 // We don't actually want to sweep the object, so lets return "marked"
1024 return obj;
1025 }
1026
VerifyIsLive(const Object * obj)1027 void MarkSweep::VerifyIsLive(const Object* obj) {
1028 if (!heap_->GetLiveBitmap()->Test(obj)) {
1029 // TODO: Consider live stack? Has this code bitrotted?
1030 CHECK(!heap_->allocation_stack_->Contains(obj))
1031 << "Found dead object " << obj << "\n" << heap_->DumpSpaces();
1032 }
1033 }
1034
VerifySystemWeaks()1035 void MarkSweep::VerifySystemWeaks() {
1036 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1037 // Verify system weaks, uses a special object visitor which returns the input object.
1038 Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
1039 }
1040
1041 class CheckpointMarkThreadRoots : public Closure, public RootVisitor {
1042 public:
CheckpointMarkThreadRoots(MarkSweep * mark_sweep,bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)1043 explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
1044 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
1045 : mark_sweep_(mark_sweep),
1046 revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
1047 revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1048 }
1049
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1050 void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
1051 OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1052 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1053 for (size_t i = 0; i < count; ++i) {
1054 mark_sweep_->MarkObjectNonNullParallel(*roots[i]);
1055 }
1056 }
1057
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1058 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
1059 const RootInfo& info ATTRIBUTE_UNUSED)
1060 OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1061 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1062 for (size_t i = 0; i < count; ++i) {
1063 mark_sweep_->MarkObjectNonNullParallel(roots[i]->AsMirrorPtr());
1064 }
1065 }
1066
Run(Thread * thread)1067 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1068 ATRACE_BEGIN("Marking thread roots");
1069 // Note: self is not necessarily equal to thread since thread may be suspended.
1070 Thread* const self = Thread::Current();
1071 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1072 << thread->GetState() << " thread " << thread << " self " << self;
1073 thread->VisitRoots(this);
1074 ATRACE_END();
1075 if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
1076 ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers");
1077 mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
1078 ATRACE_END();
1079 }
1080 // If thread is a running mutator, then act on behalf of the garbage collector.
1081 // See the code in ThreadList::RunCheckpoint.
1082 if (thread->GetState() == kRunnable) {
1083 mark_sweep_->GetBarrier().Pass(self);
1084 }
1085 }
1086
1087 private:
1088 MarkSweep* const mark_sweep_;
1089 const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
1090 };
1091
MarkRootsCheckpoint(Thread * self,bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)1092 void MarkSweep::MarkRootsCheckpoint(Thread* self,
1093 bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1094 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1095 CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
1096 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1097 // Request the check point is run on all threads returning a count of the threads that must
1098 // run through the barrier including self.
1099 size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1100 // Release locks then wait for all mutator threads to pass the barrier.
1101 // If there are no threads to wait which implys that all the checkpoint functions are finished,
1102 // then no need to release locks.
1103 if (barrier_count == 0) {
1104 return;
1105 }
1106 Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1107 Locks::mutator_lock_->SharedUnlock(self);
1108 {
1109 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1110 gc_barrier_->Increment(self, barrier_count);
1111 }
1112 Locks::mutator_lock_->SharedLock(self);
1113 Locks::heap_bitmap_lock_->ExclusiveLock(self);
1114 }
1115
SweepArray(accounting::ObjectStack * allocations,bool swap_bitmaps)1116 void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1117 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1118 Thread* self = Thread::Current();
1119 mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
1120 sweep_array_free_buffer_mem_map_->BaseBegin());
1121 size_t chunk_free_pos = 0;
1122 ObjectBytePair freed;
1123 ObjectBytePair freed_los;
1124 // How many objects are left in the array, modified after each space is swept.
1125 StackReference<Object>* objects = allocations->Begin();
1126 size_t count = allocations->Size();
1127 // Change the order to ensure that the non-moving space last swept as an optimization.
1128 std::vector<space::ContinuousSpace*> sweep_spaces;
1129 space::ContinuousSpace* non_moving_space = nullptr;
1130 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1131 if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) &&
1132 space->GetLiveBitmap() != nullptr) {
1133 if (space == heap_->GetNonMovingSpace()) {
1134 non_moving_space = space;
1135 } else {
1136 sweep_spaces.push_back(space);
1137 }
1138 }
1139 }
1140 // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1141 // the other alloc spaces as an optimization.
1142 if (non_moving_space != nullptr) {
1143 sweep_spaces.push_back(non_moving_space);
1144 }
1145 // Start by sweeping the continuous spaces.
1146 for (space::ContinuousSpace* space : sweep_spaces) {
1147 space::AllocSpace* alloc_space = space->AsAllocSpace();
1148 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1149 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1150 if (swap_bitmaps) {
1151 std::swap(live_bitmap, mark_bitmap);
1152 }
1153 StackReference<Object>* out = objects;
1154 for (size_t i = 0; i < count; ++i) {
1155 Object* const obj = objects[i].AsMirrorPtr();
1156 if (kUseThreadLocalAllocationStack && obj == nullptr) {
1157 continue;
1158 }
1159 if (space->HasAddress(obj)) {
1160 // This object is in the space, remove it from the array and add it to the sweep buffer
1161 // if needed.
1162 if (!mark_bitmap->Test(obj)) {
1163 if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1164 TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1165 freed.objects += chunk_free_pos;
1166 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1167 chunk_free_pos = 0;
1168 }
1169 chunk_free_buffer[chunk_free_pos++] = obj;
1170 }
1171 } else {
1172 (out++)->Assign(obj);
1173 }
1174 }
1175 if (chunk_free_pos > 0) {
1176 TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1177 freed.objects += chunk_free_pos;
1178 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1179 chunk_free_pos = 0;
1180 }
1181 // All of the references which space contained are no longer in the allocation stack, update
1182 // the count.
1183 count = out - objects;
1184 }
1185 // Handle the large object space.
1186 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1187 if (large_object_space != nullptr) {
1188 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
1189 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
1190 if (swap_bitmaps) {
1191 std::swap(large_live_objects, large_mark_objects);
1192 }
1193 for (size_t i = 0; i < count; ++i) {
1194 Object* const obj = objects[i].AsMirrorPtr();
1195 // Handle large objects.
1196 if (kUseThreadLocalAllocationStack && obj == nullptr) {
1197 continue;
1198 }
1199 if (!large_mark_objects->Test(obj)) {
1200 ++freed_los.objects;
1201 freed_los.bytes += large_object_space->Free(self, obj);
1202 }
1203 }
1204 }
1205 {
1206 TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
1207 RecordFree(freed);
1208 RecordFreeLOS(freed_los);
1209 t2.NewTiming("ResetStack");
1210 allocations->Reset();
1211 }
1212 sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero();
1213 }
1214
Sweep(bool swap_bitmaps)1215 void MarkSweep::Sweep(bool swap_bitmaps) {
1216 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1217 // Ensure that nobody inserted items in the live stack after we swapped the stacks.
1218 CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
1219 {
1220 TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings());
1221 // Mark everything allocated since the last as GC live so that we can sweep concurrently,
1222 // knowing that new allocations won't be marked as live.
1223 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1224 heap_->MarkAllocStackAsLive(live_stack);
1225 live_stack->Reset();
1226 DCHECK(mark_stack_->IsEmpty());
1227 }
1228 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1229 if (space->IsContinuousMemMapAllocSpace()) {
1230 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1231 TimingLogger::ScopedTiming split(
1232 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", GetTimings());
1233 RecordFree(alloc_space->Sweep(swap_bitmaps));
1234 }
1235 }
1236 SweepLargeObjects(swap_bitmaps);
1237 }
1238
SweepLargeObjects(bool swap_bitmaps)1239 void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1240 space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace();
1241 if (los != nullptr) {
1242 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
1243 RecordFreeLOS(los->Sweep(swap_bitmaps));
1244 }
1245 }
1246
1247 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been
1248 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * ref)1249 void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
1250 if (kCountJavaLangRefs) {
1251 ++reference_count_;
1252 }
1253 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, &HeapReferenceMarkedCallback,
1254 this);
1255 }
1256
1257 class MarkObjectVisitor {
1258 public:
MarkObjectVisitor(MarkSweep * const mark_sweep)1259 explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {
1260 }
1261
operator ()(Object * obj,MemberOffset offset,bool) const1262 void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
1263 ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1264 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1265 if (kCheckLocks) {
1266 Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1267 Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1268 }
1269 mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset), obj, offset);
1270 }
1271
1272 private:
1273 MarkSweep* const mark_sweep_;
1274 };
1275
1276 // Scans an object reference. Determines the type of the reference
1277 // and dispatches to a specialized scanning routine.
ScanObject(Object * obj)1278 void MarkSweep::ScanObject(Object* obj) {
1279 MarkObjectVisitor mark_visitor(this);
1280 DelayReferenceReferentVisitor ref_visitor(this);
1281 ScanObjectVisit(obj, mark_visitor, ref_visitor);
1282 }
1283
ProcessMarkStackCallback(void * arg)1284 void MarkSweep::ProcessMarkStackCallback(void* arg) {
1285 reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(false);
1286 }
1287
ProcessMarkStackParallel(size_t thread_count)1288 void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1289 Thread* self = Thread::Current();
1290 ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1291 const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1292 static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1293 CHECK_GT(chunk_size, 0U);
1294 // Split the current mark stack up into work tasks.
1295 for (auto* it = mark_stack_->Begin(), *end = mark_stack_->End(); it < end; ) {
1296 const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1297 thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1298 it += delta;
1299 }
1300 thread_pool->SetMaxActiveWorkers(thread_count - 1);
1301 thread_pool->StartWorkers(self);
1302 thread_pool->Wait(self, true, true);
1303 thread_pool->StopWorkers(self);
1304 mark_stack_->Reset();
1305 CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(),
1306 work_chunks_deleted_.LoadSequentiallyConsistent())
1307 << " some of the work chunks were leaked";
1308 }
1309
1310 // Scan anything that's on the mark stack.
ProcessMarkStack(bool paused)1311 void MarkSweep::ProcessMarkStack(bool paused) {
1312 TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings());
1313 size_t thread_count = GetThreadCount(paused);
1314 if (kParallelProcessMarkStack && thread_count > 1 &&
1315 mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1316 ProcessMarkStackParallel(thread_count);
1317 } else {
1318 // TODO: Tune this.
1319 static const size_t kFifoSize = 4;
1320 BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1321 for (;;) {
1322 Object* obj = nullptr;
1323 if (kUseMarkStackPrefetch) {
1324 while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1325 Object* mark_stack_obj = mark_stack_->PopBack();
1326 DCHECK(mark_stack_obj != nullptr);
1327 __builtin_prefetch(mark_stack_obj);
1328 prefetch_fifo.push_back(mark_stack_obj);
1329 }
1330 if (prefetch_fifo.empty()) {
1331 break;
1332 }
1333 obj = prefetch_fifo.front();
1334 prefetch_fifo.pop_front();
1335 } else {
1336 if (mark_stack_->IsEmpty()) {
1337 break;
1338 }
1339 obj = mark_stack_->PopBack();
1340 }
1341 DCHECK(obj != nullptr);
1342 ScanObject(obj);
1343 }
1344 }
1345 }
1346
IsMarked(const Object * object) const1347 inline bool MarkSweep::IsMarked(const Object* object) const {
1348 if (immune_region_.ContainsObject(object)) {
1349 return true;
1350 }
1351 if (current_space_bitmap_->HasAddress(object)) {
1352 return current_space_bitmap_->Test(object);
1353 }
1354 return mark_bitmap_->Test(object);
1355 }
1356
FinishPhase()1357 void MarkSweep::FinishPhase() {
1358 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1359 if (kCountScannedTypes) {
1360 VLOG(gc) << "MarkSweep scanned classes=" << class_count_.LoadRelaxed()
1361 << " arrays=" << array_count_.LoadRelaxed() << " other=" << other_count_.LoadRelaxed();
1362 }
1363 if (kCountTasks) {
1364 VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed();
1365 }
1366 if (kMeasureOverhead) {
1367 VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed());
1368 }
1369 if (kProfileLargeObjects) {
1370 VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed()
1371 << " marked " << large_object_mark_.LoadRelaxed();
1372 }
1373 if (kCountJavaLangRefs) {
1374 VLOG(gc) << "References scanned " << reference_count_.LoadRelaxed();
1375 }
1376 if (kCountMarkedObjects) {
1377 VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed()
1378 << " immune=" << mark_immune_count_.LoadRelaxed()
1379 << " fastpath=" << mark_fastpath_count_.LoadRelaxed()
1380 << " slowpath=" << mark_slowpath_count_.LoadRelaxed();
1381 }
1382 CHECK(mark_stack_->IsEmpty()); // Ensure that the mark stack is empty.
1383 mark_stack_->Reset();
1384 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1385 heap_->ClearMarkedObjects();
1386 }
1387
RevokeAllThreadLocalBuffers()1388 void MarkSweep::RevokeAllThreadLocalBuffers() {
1389 if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1390 // If concurrent, rosalloc thread-local buffers are revoked at the
1391 // thread checkpoint. Bump pointer space thread-local buffers must
1392 // not be in use.
1393 GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1394 } else {
1395 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1396 GetHeap()->RevokeAllThreadLocalBuffers();
1397 }
1398 }
1399
1400 } // namespace collector
1401 } // namespace gc
1402 } // namespace art
1403