1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_GC_HEAP_H_ 18 #define ART_RUNTIME_GC_HEAP_H_ 19 20 #include <iosfwd> 21 #include <string> 22 #include <unordered_set> 23 #include <vector> 24 25 #include "allocator_type.h" 26 #include "arch/instruction_set.h" 27 #include "atomic.h" 28 #include "base/time_utils.h" 29 #include "base/timing_logger.h" 30 #include "gc/accounting/atomic_stack.h" 31 #include "gc/accounting/card_table.h" 32 #include "gc/accounting/read_barrier_table.h" 33 #include "gc/gc_cause.h" 34 #include "gc/collector/garbage_collector.h" 35 #include "gc/collector/gc_type.h" 36 #include "gc/collector_type.h" 37 #include "gc/space/large_object_space.h" 38 #include "globals.h" 39 #include "jni.h" 40 #include "object_callbacks.h" 41 #include "offsets.h" 42 #include "reference_processor.h" 43 #include "safe_map.h" 44 #include "thread_pool.h" 45 #include "verify_object.h" 46 47 namespace art { 48 49 class ConditionVariable; 50 class Mutex; 51 class StackVisitor; 52 class Thread; 53 class TimingLogger; 54 55 namespace mirror { 56 class Class; 57 class Object; 58 } // namespace mirror 59 60 namespace gc { 61 62 class ReferenceProcessor; 63 class TaskProcessor; 64 65 namespace accounting { 66 class HeapBitmap; 67 class ModUnionTable; 68 class RememberedSet; 69 } // namespace accounting 70 71 namespace collector { 72 class ConcurrentCopying; 73 class GarbageCollector; 74 class MarkCompact; 75 class MarkSweep; 76 class SemiSpace; 77 } // namespace collector 78 79 namespace allocator { 80 class RosAlloc; 81 } // namespace allocator 82 83 namespace space { 84 class AllocSpace; 85 class BumpPointerSpace; 86 class ContinuousMemMapAllocSpace; 87 class DiscontinuousSpace; 88 class DlMallocSpace; 89 class ImageSpace; 90 class LargeObjectSpace; 91 class MallocSpace; 92 class RegionSpace; 93 class RosAllocSpace; 94 class Space; 95 class SpaceTest; 96 class ZygoteSpace; 97 } // namespace space 98 99 class AgeCardVisitor { 100 public: operator()101 uint8_t operator()(uint8_t card) const { 102 if (card == accounting::CardTable::kCardDirty) { 103 return card - 1; 104 } else { 105 return 0; 106 } 107 } 108 }; 109 110 enum HomogeneousSpaceCompactResult { 111 // Success. 112 kSuccess, 113 // Reject due to disabled moving GC. 114 kErrorReject, 115 // System is shutting down. 116 kErrorVMShuttingDown, 117 }; 118 119 // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace 120 static constexpr bool kUseRosAlloc = true; 121 122 // If true, use thread-local allocation stack. 123 static constexpr bool kUseThreadLocalAllocationStack = true; 124 125 // The process state passed in from the activity manager, used to determine when to do trimming 126 // and compaction. 127 enum ProcessState { 128 kProcessStateJankPerceptible = 0, 129 kProcessStateJankImperceptible = 1, 130 }; 131 std::ostream& operator<<(std::ostream& os, const ProcessState& process_state); 132 133 class Heap { 134 public: 135 // If true, measure the total allocation time. 136 static constexpr bool kMeasureAllocationTime = false; 137 static constexpr size_t kDefaultStartingSize = kPageSize; 138 static constexpr size_t kDefaultInitialSize = 2 * MB; 139 static constexpr size_t kDefaultMaximumSize = 256 * MB; 140 static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB; 141 static constexpr size_t kDefaultMaxFree = 2 * MB; 142 static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4; 143 static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5); 144 static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100); 145 static constexpr size_t kDefaultTLABSize = 256 * KB; 146 static constexpr double kDefaultTargetUtilization = 0.5; 147 static constexpr double kDefaultHeapGrowthMultiplier = 2.0; 148 // Primitive arrays larger than this size are put in the large object space. 149 static constexpr size_t kDefaultLargeObjectThreshold = 3 * kPageSize; 150 // Whether or not parallel GC is enabled. If not, then we never create the thread pool. 151 static constexpr bool kDefaultEnableParallelGC = false; 152 153 // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR 154 // since this means that we have to use the slow msync loop in MemMap::MapAnonymous. 155 static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType = 156 USE_ART_LOW_4G_ALLOCATOR ? 157 space::LargeObjectSpaceType::kFreeList 158 : space::LargeObjectSpaceType::kMap; 159 160 // Used so that we don't overflow the allocation time atomic integer. 161 static constexpr size_t kTimeAdjust = 1024; 162 163 // How often we allow heap trimming to happen (nanoseconds). 164 static constexpr uint64_t kHeapTrimWait = MsToNs(5000); 165 // How long we wait after a transition request to perform a collector transition (nanoseconds). 166 static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000); 167 168 // Create a heap with the requested sizes. The possible empty 169 // image_file_names names specify Spaces to load based on 170 // ImageWriter output. 171 explicit Heap(size_t initial_size, size_t growth_limit, size_t min_free, 172 size_t max_free, double target_utilization, 173 double foreground_heap_growth_multiplier, size_t capacity, 174 size_t non_moving_space_capacity, 175 const std::string& original_image_file_name, 176 InstructionSet image_instruction_set, 177 CollectorType foreground_collector_type, CollectorType background_collector_type, 178 space::LargeObjectSpaceType large_object_space_type, size_t large_object_threshold, 179 size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode, 180 size_t long_pause_threshold, size_t long_gc_threshold, 181 bool ignore_max_footprint, bool use_tlab, 182 bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap, 183 bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc, 184 bool verify_post_gc_rosalloc, bool gc_stress_mode, 185 bool use_homogeneous_space_compaction, 186 uint64_t min_interval_homogeneous_space_compaction_by_oom); 187 188 ~Heap(); 189 190 // Allocates and initializes storage for an object instance. 191 template <bool kInstrumented, typename PreFenceVisitor> AllocObject(Thread * self,mirror::Class * klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)192 mirror::Object* AllocObject(Thread* self, mirror::Class* klass, size_t num_bytes, 193 const PreFenceVisitor& pre_fence_visitor) 194 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 195 return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes, 196 GetCurrentAllocator(), 197 pre_fence_visitor); 198 } 199 200 template <bool kInstrumented, typename PreFenceVisitor> AllocNonMovableObject(Thread * self,mirror::Class * klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)201 mirror::Object* AllocNonMovableObject(Thread* self, mirror::Class* klass, size_t num_bytes, 202 const PreFenceVisitor& pre_fence_visitor) 203 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { 204 return AllocObjectWithAllocator<kInstrumented, true>(self, klass, num_bytes, 205 GetCurrentNonMovingAllocator(), 206 pre_fence_visitor); 207 } 208 209 template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor> 210 ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator( 211 Thread* self, mirror::Class* klass, size_t byte_count, AllocatorType allocator, 212 const PreFenceVisitor& pre_fence_visitor) 213 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 214 GetCurrentAllocator()215 AllocatorType GetCurrentAllocator() const { 216 return current_allocator_; 217 } 218 GetCurrentNonMovingAllocator()219 AllocatorType GetCurrentNonMovingAllocator() const { 220 return current_non_moving_allocator_; 221 } 222 223 // Visit all of the live objects in the heap. 224 void VisitObjects(ObjectCallback callback, void* arg) 225 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 226 LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 227 void VisitObjectsPaused(ObjectCallback callback, void* arg) 228 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) 229 LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 230 231 void CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) 232 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 233 234 void RegisterNativeAllocation(JNIEnv* env, size_t bytes); 235 void RegisterNativeFree(JNIEnv* env, size_t bytes); 236 237 // Change the allocator, updates entrypoints. 238 void ChangeAllocator(AllocatorType allocator) 239 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) 240 LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_); 241 242 // Transition the garbage collector during runtime, may copy objects from one space to another. 243 void TransitionCollector(CollectorType collector_type); 244 245 // Change the collector to be one of the possible options (MS, CMS, SS). 246 void ChangeCollector(CollectorType collector_type) 247 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 248 249 // The given reference is believed to be to an object in the Java heap, check the soundness of it. 250 // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a 251 // proper lock ordering for it. 252 void VerifyObjectBody(mirror::Object* o) NO_THREAD_SAFETY_ANALYSIS; 253 254 // Check sanity of all live references. 255 void VerifyHeap() LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 256 // Returns how many failures occured. 257 size_t VerifyHeapReferences(bool verify_referents = true) 258 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 259 bool VerifyMissingCardMarks() 260 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 261 262 // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock, 263 // and doesn't abort on error, allowing the caller to report more 264 // meaningful diagnostics. 265 bool IsValidObjectAddress(const mirror::Object* obj) const 266 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 267 268 // Faster alternative to IsHeapAddress since finding if an object is in the large object space is 269 // very slow. 270 bool IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const 271 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 272 273 // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses). 274 // Requires the heap lock to be held. 275 bool IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack = true, 276 bool search_live_stack = true, bool sorted = false) 277 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 278 279 // Returns true if there is any chance that the object (obj) will move. 280 bool IsMovableObject(const mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 281 282 // Enables us to compacting GC until objects are released. 283 void IncrementDisableMovingGC(Thread* self); 284 void DecrementDisableMovingGC(Thread* self); 285 286 // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits. 287 void ClearMarkedObjects() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); 288 289 // Initiates an explicit garbage collection. 290 void CollectGarbage(bool clear_soft_references); 291 292 // Does a concurrent GC, should only be called by the GC daemon thread 293 // through runtime. 294 void ConcurrentGC(Thread* self, bool force_full) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_); 295 296 // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount. 297 // The boolean decides whether to use IsAssignableFrom or == when comparing classes. 298 void CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, 299 uint64_t* counts) 300 LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) 301 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 302 // Implements JDWP RT_Instances. 303 void GetInstances(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances) 304 LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) 305 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 306 // Implements JDWP OR_ReferringObjects. 307 void GetReferringObjects(mirror::Object* o, int32_t max_count, std::vector<mirror::Object*>& referring_objects) 308 LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) 309 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 310 311 // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to 312 // implement dalvik.system.VMRuntime.clearGrowthLimit. 313 void ClearGrowthLimit(); 314 315 // Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces 316 // which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit. 317 void ClampGrowthLimit() LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 318 319 // Target ideal heap utilization ratio, implements 320 // dalvik.system.VMRuntime.getTargetHeapUtilization. GetTargetHeapUtilization()321 double GetTargetHeapUtilization() const { 322 return target_utilization_; 323 } 324 325 // Data structure memory usage tracking. 326 void RegisterGCAllocation(size_t bytes); 327 void RegisterGCDeAllocation(size_t bytes); 328 329 // Set the heap's private space pointers to be the same as the space based on it's type. Public 330 // due to usage by tests. 331 void SetSpaceAsDefault(space::ContinuousSpace* continuous_space) 332 LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 333 void AddSpace(space::Space* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 334 void RemoveSpace(space::Space* space) LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 335 336 // Set target ideal heap utilization ratio, implements 337 // dalvik.system.VMRuntime.setTargetHeapUtilization. 338 void SetTargetHeapUtilization(float target); 339 340 // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate 341 // from the system. Doesn't allow the space to exceed its growth limit. 342 void SetIdealFootprint(size_t max_allowed_footprint); 343 344 // Blocks the caller until the garbage collector becomes idle and returns the type of GC we 345 // waited for. 346 collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) 347 LOCKS_EXCLUDED(gc_complete_lock_); 348 349 // Update the heap's process state to a new value, may cause compaction to occur. 350 void UpdateProcessState(ProcessState process_state); 351 GetContinuousSpaces()352 const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const { 353 return continuous_spaces_; 354 } 355 GetDiscontinuousSpaces()356 const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const { 357 return discontinuous_spaces_; 358 } 359 GetCurrentGcIteration()360 const collector::Iteration* GetCurrentGcIteration() const { 361 return ¤t_gc_iteration_; 362 } GetCurrentGcIteration()363 collector::Iteration* GetCurrentGcIteration() { 364 return ¤t_gc_iteration_; 365 } 366 367 // Enable verification of object references when the runtime is sufficiently initialized. EnableObjectValidation()368 void EnableObjectValidation() { 369 verify_object_mode_ = kVerifyObjectSupport; 370 if (verify_object_mode_ > kVerifyObjectModeDisabled) { 371 VerifyHeap(); 372 } 373 } 374 375 // Disable object reference verification for image writing. DisableObjectValidation()376 void DisableObjectValidation() { 377 verify_object_mode_ = kVerifyObjectModeDisabled; 378 } 379 380 // Other checks may be performed if we know the heap should be in a sane state. IsObjectValidationEnabled()381 bool IsObjectValidationEnabled() const { 382 return verify_object_mode_ > kVerifyObjectModeDisabled; 383 } 384 385 // Returns true if low memory mode is enabled. IsLowMemoryMode()386 bool IsLowMemoryMode() const { 387 return low_memory_mode_; 388 } 389 390 // Returns the heap growth multiplier, this affects how much we grow the heap after a GC. 391 // Scales heap growth, min free, and max free. 392 double HeapGrowthMultiplier() const; 393 394 // Freed bytes can be negative in cases where we copy objects from a compacted space to a 395 // free-list backed space. 396 void RecordFree(uint64_t freed_objects, int64_t freed_bytes); 397 398 // Record the bytes freed by thread-local buffer revoke. 399 void RecordFreeRevoke(); 400 401 // Must be called if a field of an Object in the heap changes, and before any GC safe-point. 402 // The call is not needed if null is stored in the field. WriteBarrierField(const mirror::Object * dst,MemberOffset,const mirror::Object *)403 ALWAYS_INLINE void WriteBarrierField(const mirror::Object* dst, MemberOffset /*offset*/, 404 const mirror::Object* /*new_value*/) { 405 card_table_->MarkCard(dst); 406 } 407 408 // Write barrier for array operations that update many field positions WriteBarrierArray(const mirror::Object * dst,int,size_t)409 ALWAYS_INLINE void WriteBarrierArray(const mirror::Object* dst, int /*start_offset*/, 410 size_t /*length TODO: element_count or byte_count?*/) { 411 card_table_->MarkCard(dst); 412 } 413 WriteBarrierEveryFieldOf(const mirror::Object * obj)414 ALWAYS_INLINE void WriteBarrierEveryFieldOf(const mirror::Object* obj) { 415 card_table_->MarkCard(obj); 416 } 417 GetCardTable()418 accounting::CardTable* GetCardTable() const { 419 return card_table_.get(); 420 } 421 GetReadBarrierTable()422 accounting::ReadBarrierTable* GetReadBarrierTable() const { 423 return rb_table_.get(); 424 } 425 426 void AddFinalizerReference(Thread* self, mirror::Object** object); 427 428 // Returns the number of bytes currently allocated. GetBytesAllocated()429 size_t GetBytesAllocated() const { 430 return num_bytes_allocated_.LoadSequentiallyConsistent(); 431 } 432 433 // Returns the number of objects currently allocated. 434 size_t GetObjectsAllocated() const LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 435 436 // Returns the total number of objects allocated since the heap was created. 437 uint64_t GetObjectsAllocatedEver() const; 438 439 // Returns the total number of bytes allocated since the heap was created. 440 uint64_t GetBytesAllocatedEver() const; 441 442 // Returns the total number of objects freed since the heap was created. GetObjectsFreedEver()443 uint64_t GetObjectsFreedEver() const { 444 return total_objects_freed_ever_; 445 } 446 447 // Returns the total number of bytes freed since the heap was created. GetBytesFreedEver()448 uint64_t GetBytesFreedEver() const { 449 return total_bytes_freed_ever_; 450 } 451 452 // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can 453 // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx 454 // were specified. Android apps start with a growth limit (small heap size) which is 455 // cleared/extended for large apps. GetMaxMemory()456 size_t GetMaxMemory() const { 457 // There is some race conditions in the allocation code that can cause bytes allocated to 458 // become larger than growth_limit_ in rare cases. 459 return std::max(GetBytesAllocated(), growth_limit_); 460 } 461 462 // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently 463 // consumed by an application. 464 size_t GetTotalMemory() const; 465 466 // Returns approximately how much free memory we have until the next GC happens. GetFreeMemoryUntilGC()467 size_t GetFreeMemoryUntilGC() const { 468 return max_allowed_footprint_ - GetBytesAllocated(); 469 } 470 471 // Returns approximately how much free memory we have until the next OOME happens. GetFreeMemoryUntilOOME()472 size_t GetFreeMemoryUntilOOME() const { 473 return growth_limit_ - GetBytesAllocated(); 474 } 475 476 // Returns how much free memory we have until we need to grow the heap to perform an allocation. 477 // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory. GetFreeMemory()478 size_t GetFreeMemory() const { 479 size_t byte_allocated = num_bytes_allocated_.LoadSequentiallyConsistent(); 480 size_t total_memory = GetTotalMemory(); 481 // Make sure we don't get a negative number. 482 return total_memory - std::min(total_memory, byte_allocated); 483 } 484 485 // get the space that corresponds to an object's address. Current implementation searches all 486 // spaces in turn. If fail_ok is false then failing to find a space will cause an abort. 487 // TODO: consider using faster data structure like binary tree. 488 space::ContinuousSpace* FindContinuousSpaceFromObject(const mirror::Object*, bool fail_ok) const; 489 space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(const mirror::Object*, 490 bool fail_ok) const; 491 space::Space* FindSpaceFromObject(const mirror::Object*, bool fail_ok) const; 492 493 void DumpForSigQuit(std::ostream& os); 494 495 // Do a pending collector transition. 496 void DoPendingCollectorTransition(); 497 498 // Deflate monitors, ... and trim the spaces. 499 void Trim(Thread* self) LOCKS_EXCLUDED(gc_complete_lock_); 500 501 void RevokeThreadLocalBuffers(Thread* thread); 502 void RevokeRosAllocThreadLocalBuffers(Thread* thread); 503 void RevokeAllThreadLocalBuffers(); 504 void AssertThreadLocalBuffersAreRevoked(Thread* thread); 505 void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); 506 void RosAllocVerification(TimingLogger* timings, const char* name) 507 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 508 GetLiveBitmap()509 accounting::HeapBitmap* GetLiveBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 510 return live_bitmap_.get(); 511 } 512 GetMarkBitmap()513 accounting::HeapBitmap* GetMarkBitmap() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 514 return mark_bitmap_.get(); 515 } 516 GetLiveStack()517 accounting::ObjectStack* GetLiveStack() SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) { 518 return live_stack_.get(); 519 } 520 521 void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS; 522 523 // Mark and empty stack. 524 void FlushAllocStack() 525 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 526 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); 527 528 // Revoke all the thread-local allocation stacks. 529 void RevokeAllThreadLocalAllocationStacks(Thread* self) 530 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) 531 LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_, Locks::thread_list_lock_); 532 533 // Mark all the objects in the allocation stack in the specified bitmap. 534 // TODO: Refactor? 535 void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1, 536 accounting::SpaceBitmap<kObjectAlignment>* bitmap2, 537 accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects, 538 accounting::ObjectStack* stack) 539 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 540 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); 541 542 // Mark the specified allocation stack as live. 543 void MarkAllocStackAsLive(accounting::ObjectStack* stack) 544 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 545 EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); 546 547 // Unbind any bound bitmaps. 548 void UnBindBitmaps() EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); 549 550 // DEPRECATED: Should remove in "near" future when support for multiple image spaces is added. 551 // Assumes there is only one image space. 552 space::ImageSpace* GetImageSpace() const; 553 554 // Permenantly disable moving garbage collection. 555 void DisableMovingGc(); 556 GetDlMallocSpace()557 space::DlMallocSpace* GetDlMallocSpace() const { 558 return dlmalloc_space_; 559 } 560 GetRosAllocSpace()561 space::RosAllocSpace* GetRosAllocSpace() const { 562 return rosalloc_space_; 563 } 564 565 // Return the corresponding rosalloc space. 566 space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const; 567 GetNonMovingSpace()568 space::MallocSpace* GetNonMovingSpace() const { 569 return non_moving_space_; 570 } 571 GetLargeObjectsSpace()572 space::LargeObjectSpace* GetLargeObjectsSpace() const { 573 return large_object_space_; 574 } 575 576 // Returns the free list space that may contain movable objects (the 577 // one that's not the non-moving space), either rosalloc_space_ or 578 // dlmalloc_space_. GetPrimaryFreeListSpace()579 space::MallocSpace* GetPrimaryFreeListSpace() { 580 if (kUseRosAlloc) { 581 DCHECK(rosalloc_space_ != nullptr); 582 // reinterpret_cast is necessary as the space class hierarchy 583 // isn't known (#included) yet here. 584 return reinterpret_cast<space::MallocSpace*>(rosalloc_space_); 585 } else { 586 DCHECK(dlmalloc_space_ != nullptr); 587 return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_); 588 } 589 } 590 591 std::string DumpSpaces() const WARN_UNUSED; 592 void DumpSpaces(std::ostream& stream) const; 593 594 // Dump object should only be used by the signal handler. 595 void DumpObject(std::ostream& stream, mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS; 596 // Safe version of pretty type of which check to make sure objects are heap addresses. 597 std::string SafeGetClassDescriptor(mirror::Class* klass) NO_THREAD_SAFETY_ANALYSIS; 598 std::string SafePrettyTypeOf(mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS; 599 600 // GC performance measuring 601 void DumpGcPerformanceInfo(std::ostream& os); 602 void ResetGcPerformanceInfo(); 603 604 // Returns true if we currently care about pause times. CareAboutPauseTimes()605 bool CareAboutPauseTimes() const { 606 return process_state_ == kProcessStateJankPerceptible; 607 } 608 609 // Thread pool. 610 void CreateThreadPool(); 611 void DeleteThreadPool(); GetThreadPool()612 ThreadPool* GetThreadPool() { 613 return thread_pool_.get(); 614 } GetParallelGCThreadCount()615 size_t GetParallelGCThreadCount() const { 616 return parallel_gc_threads_; 617 } GetConcGCThreadCount()618 size_t GetConcGCThreadCount() const { 619 return conc_gc_threads_; 620 } 621 accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space); 622 void AddModUnionTable(accounting::ModUnionTable* mod_union_table); 623 624 accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space); 625 void AddRememberedSet(accounting::RememberedSet* remembered_set); 626 // Also deletes the remebered set. 627 void RemoveRememberedSet(space::Space* space); 628 629 bool IsCompilingBoot() const; 630 bool HasImageSpace() const; 631 GetReferenceProcessor()632 ReferenceProcessor* GetReferenceProcessor() { 633 return &reference_processor_; 634 } GetTaskProcessor()635 TaskProcessor* GetTaskProcessor() { 636 return task_processor_.get(); 637 } 638 HasZygoteSpace()639 bool HasZygoteSpace() const { 640 return zygote_space_ != nullptr; 641 } 642 ConcurrentCopyingCollector()643 collector::ConcurrentCopying* ConcurrentCopyingCollector() { 644 return concurrent_copying_collector_; 645 } 646 CurrentCollectorType()647 CollectorType CurrentCollectorType() { 648 return collector_type_; 649 } 650 IsGcConcurrentAndMoving()651 bool IsGcConcurrentAndMoving() const { 652 if (IsGcConcurrent() && IsMovingGc(collector_type_)) { 653 // Assume no transition when a concurrent moving collector is used. 654 DCHECK_EQ(collector_type_, foreground_collector_type_); 655 DCHECK_EQ(foreground_collector_type_, background_collector_type_) 656 << "Assume no transition such that collector_type_ won't change"; 657 return true; 658 } 659 return false; 660 } 661 IsMovingGCDisabled(Thread * self)662 bool IsMovingGCDisabled(Thread* self) { 663 MutexLock mu(self, *gc_complete_lock_); 664 return disable_moving_gc_count_ > 0; 665 } 666 667 // Request an asynchronous trim. 668 void RequestTrim(Thread* self) LOCKS_EXCLUDED(pending_task_lock_); 669 670 // Request asynchronous GC. 671 void RequestConcurrentGC(Thread* self, bool force_full) LOCKS_EXCLUDED(pending_task_lock_); 672 673 // Whether or not we may use a garbage collector, used so that we only create collectors we need. 674 bool MayUseCollector(CollectorType type) const; 675 676 // Used by tests to reduce timinig-dependent flakiness in OOME behavior. SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval)677 void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) { 678 min_interval_homogeneous_space_compaction_by_oom_ = interval; 679 } 680 681 // Helpers for android.os.Debug.getRuntimeStat(). 682 uint64_t GetGcCount() const; 683 uint64_t GetGcTime() const; 684 uint64_t GetBlockingGcCount() const; 685 uint64_t GetBlockingGcTime() const; 686 void DumpGcCountRateHistogram(std::ostream& os) const; 687 void DumpBlockingGcCountRateHistogram(std::ostream& os) const; 688 689 private: 690 class ConcurrentGCTask; 691 class CollectorTransitionTask; 692 class HeapTrimTask; 693 694 // Compact source space to target space. Returns the collector used. 695 collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space, 696 space::ContinuousMemMapAllocSpace* source_space, 697 GcCause gc_cause) 698 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 699 700 void LogGC(GcCause gc_cause, collector::GarbageCollector* collector); 701 void FinishGC(Thread* self, collector::GcType gc_type) LOCKS_EXCLUDED(gc_complete_lock_); 702 703 // Create a mem map with a preferred base address. 704 static MemMap* MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin, 705 size_t capacity, std::string* out_error_str); 706 SupportHSpaceCompaction()707 bool SupportHSpaceCompaction() const { 708 // Returns true if we can do hspace compaction 709 return main_space_backup_ != nullptr; 710 } 711 AllocatorHasAllocationStack(AllocatorType allocator_type)712 static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) { 713 return 714 allocator_type != kAllocatorTypeBumpPointer && 715 allocator_type != kAllocatorTypeTLAB && 716 allocator_type != kAllocatorTypeRegion && 717 allocator_type != kAllocatorTypeRegionTLAB; 718 } AllocatorMayHaveConcurrentGC(AllocatorType allocator_type)719 static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) { 720 return 721 allocator_type != kAllocatorTypeBumpPointer && 722 allocator_type != kAllocatorTypeTLAB; 723 } IsMovingGc(CollectorType collector_type)724 static bool IsMovingGc(CollectorType collector_type) { 725 return collector_type == kCollectorTypeSS || collector_type == kCollectorTypeGSS || 726 collector_type == kCollectorTypeCC || collector_type == kCollectorTypeMC || 727 collector_type == kCollectorTypeHomogeneousSpaceCompact; 728 } 729 bool ShouldAllocLargeObject(mirror::Class* c, size_t byte_count) const 730 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 731 ALWAYS_INLINE void CheckConcurrentGC(Thread* self, size_t new_num_bytes_allocated, 732 mirror::Object** obj) 733 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 734 GetMarkStack()735 accounting::ObjectStack* GetMarkStack() { 736 return mark_stack_.get(); 737 } 738 739 // We don't force this to be inlined since it is a slow path. 740 template <bool kInstrumented, typename PreFenceVisitor> 741 mirror::Object* AllocLargeObject(Thread* self, mirror::Class** klass, size_t byte_count, 742 const PreFenceVisitor& pre_fence_visitor) 743 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 744 745 // Handles Allocate()'s slow allocation path with GC involved after 746 // an initial allocation attempt failed. 747 mirror::Object* AllocateInternalWithGc(Thread* self, AllocatorType allocator, size_t num_bytes, 748 size_t* bytes_allocated, size_t* usable_size, 749 size_t* bytes_tl_bulk_allocated, 750 mirror::Class** klass) 751 LOCKS_EXCLUDED(Locks::thread_suspend_count_lock_) 752 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 753 754 // Allocate into a specific space. 755 mirror::Object* AllocateInto(Thread* self, space::AllocSpace* space, mirror::Class* c, 756 size_t bytes) 757 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 758 759 // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the 760 // wrong space. 761 void SwapSemiSpaces() EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 762 763 // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so 764 // that the switch statement is constant optimized in the entrypoints. 765 template <const bool kInstrumented, const bool kGrow> 766 ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, AllocatorType allocator_type, 767 size_t alloc_size, size_t* bytes_allocated, 768 size_t* usable_size, 769 size_t* bytes_tl_bulk_allocated) 770 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 771 772 void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) 773 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 774 775 template <bool kGrow> 776 ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, size_t alloc_size); 777 778 // Returns true if the address passed in is within the address range of a continuous space. 779 bool IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const 780 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 781 782 // Run the finalizers. If timeout is non zero, then we use the VMRuntime version. 783 void RunFinalization(JNIEnv* env, uint64_t timeout); 784 785 // Blocks the caller until the garbage collector becomes idle and returns the type of GC we 786 // waited for. 787 collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self) 788 EXCLUSIVE_LOCKS_REQUIRED(gc_complete_lock_); 789 790 void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) 791 LOCKS_EXCLUDED(pending_task_lock_); 792 793 void RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, mirror::Object** obj) 794 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 795 bool IsGCRequestPending() const; 796 797 // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns 798 // which type of Gc was actually ran. 799 collector::GcType CollectGarbageInternal(collector::GcType gc_plan, GcCause gc_cause, 800 bool clear_soft_references) 801 LOCKS_EXCLUDED(gc_complete_lock_, 802 Locks::heap_bitmap_lock_, 803 Locks::thread_suspend_count_lock_); 804 805 void PreGcVerification(collector::GarbageCollector* gc) 806 LOCKS_EXCLUDED(Locks::mutator_lock_); 807 void PreGcVerificationPaused(collector::GarbageCollector* gc) 808 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 809 void PrePauseRosAllocVerification(collector::GarbageCollector* gc) 810 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 811 void PreSweepingGcVerification(collector::GarbageCollector* gc) 812 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) 813 LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 814 void PostGcVerification(collector::GarbageCollector* gc) 815 LOCKS_EXCLUDED(Locks::mutator_lock_); 816 void PostGcVerificationPaused(collector::GarbageCollector* gc) 817 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_); 818 819 // Update the watermark for the native allocated bytes based on the current number of native 820 // bytes allocated and the target utilization ratio. 821 void UpdateMaxNativeFootprint(); 822 823 // Find a collector based on GC type. 824 collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type); 825 826 // Create a new alloc space and compact default alloc space to it. 827 HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact(); 828 829 // Create the main free list malloc space, either a RosAlloc space or DlMalloc space. 830 void CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit, 831 size_t capacity); 832 833 // Create a malloc space based on a mem map. Does not set the space as default. 834 space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size, 835 size_t growth_limit, size_t capacity, 836 const char* name, bool can_move_objects); 837 838 // Given the current contents of the alloc space, increase the allowed heap footprint to match 839 // the target utilization ratio. This should only be called immediately after a full garbage 840 // collection. bytes_allocated_before_gc is used to measure bytes / second for the period which 841 // the GC was run. 842 void GrowForUtilization(collector::GarbageCollector* collector_ran, 843 uint64_t bytes_allocated_before_gc = 0); 844 845 size_t GetPercentFree(); 846 847 static void VerificationCallback(mirror::Object* obj, void* arg) 848 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_); 849 850 // Swap the allocation stack with the live stack. 851 void SwapStacks(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 852 853 // Clear cards and update the mod union table. When process_alloc_space_cards is true, 854 // if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do 855 // not process the alloc space if process_alloc_space_cards is false. 856 void ProcessCards(TimingLogger* timings, bool use_rem_sets, bool process_alloc_space_cards, 857 bool clear_alloc_space_cards); 858 859 // Push an object onto the allocation stack. 860 void PushOnAllocationStack(Thread* self, mirror::Object** obj) 861 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 862 void PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) 863 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 864 void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, mirror::Object** obj) 865 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 866 867 void ClearConcurrentGCRequest(); 868 void ClearPendingTrim(Thread* self) LOCKS_EXCLUDED(pending_task_lock_); 869 void ClearPendingCollectorTransition(Thread* self) LOCKS_EXCLUDED(pending_task_lock_); 870 871 // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark 872 // sweep GC, false for other GC types. IsGcConcurrent()873 bool IsGcConcurrent() const ALWAYS_INLINE { 874 return collector_type_ == kCollectorTypeCMS || collector_type_ == kCollectorTypeCC; 875 } 876 877 // Trim the managed and native spaces by releasing unused memory back to the OS. 878 void TrimSpaces(Thread* self) LOCKS_EXCLUDED(gc_complete_lock_); 879 880 // Trim 0 pages at the end of reference tables. 881 void TrimIndirectReferenceTables(Thread* self); 882 883 void VisitObjectsInternal(ObjectCallback callback, void* arg) 884 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) 885 LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 886 void VisitObjectsInternalRegionSpace(ObjectCallback callback, void* arg) 887 EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) 888 LOCKS_EXCLUDED(Locks::heap_bitmap_lock_); 889 890 void UpdateGcCountRateHistograms() EXCLUSIVE_LOCKS_REQUIRED(gc_complete_lock_); 891 892 // GC stress mode attempts to do one GC per unique backtrace. 893 void CheckGcStressMode(Thread* self, mirror::Object** obj) 894 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); 895 896 // All-known continuous spaces, where objects lie within fixed bounds. 897 std::vector<space::ContinuousSpace*> continuous_spaces_; 898 899 // All-known discontinuous spaces, where objects may be placed throughout virtual memory. 900 std::vector<space::DiscontinuousSpace*> discontinuous_spaces_; 901 902 // All-known alloc spaces, where objects may be or have been allocated. 903 std::vector<space::AllocSpace*> alloc_spaces_; 904 905 // A space where non-movable objects are allocated, when compaction is enabled it contains 906 // Classes, ArtMethods, ArtFields, and non moving objects. 907 space::MallocSpace* non_moving_space_; 908 909 // Space which we use for the kAllocatorTypeROSAlloc. 910 space::RosAllocSpace* rosalloc_space_; 911 912 // Space which we use for the kAllocatorTypeDlMalloc. 913 space::DlMallocSpace* dlmalloc_space_; 914 915 // The main space is the space which the GC copies to and from on process state updates. This 916 // space is typically either the dlmalloc_space_ or the rosalloc_space_. 917 space::MallocSpace* main_space_; 918 919 // The large object space we are currently allocating into. 920 space::LargeObjectSpace* large_object_space_; 921 922 // The card table, dirtied by the write barrier. 923 std::unique_ptr<accounting::CardTable> card_table_; 924 925 std::unique_ptr<accounting::ReadBarrierTable> rb_table_; 926 927 // A mod-union table remembers all of the references from the it's space to other spaces. 928 AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap> 929 mod_union_tables_; 930 931 // A remembered set remembers all of the references from the it's space to the target space. 932 AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap> 933 remembered_sets_; 934 935 // The current collector type. 936 CollectorType collector_type_; 937 // Which collector we use when the app is in the foreground. 938 CollectorType foreground_collector_type_; 939 // Which collector we will use when the app is notified of a transition to background. 940 CollectorType background_collector_type_; 941 // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_. 942 CollectorType desired_collector_type_; 943 944 // Lock which guards pending tasks. 945 Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 946 947 // How many GC threads we may use for paused parts of garbage collection. 948 const size_t parallel_gc_threads_; 949 950 // How many GC threads we may use for unpaused parts of garbage collection. 951 const size_t conc_gc_threads_; 952 953 // Boolean for if we are in low memory mode. 954 const bool low_memory_mode_; 955 956 // If we get a pause longer than long pause log threshold, then we print out the GC after it 957 // finishes. 958 const size_t long_pause_log_threshold_; 959 960 // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes. 961 const size_t long_gc_log_threshold_; 962 963 // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is 964 // useful for benchmarking since it reduces time spent in GC to a low %. 965 const bool ignore_max_footprint_; 966 967 // Lock which guards zygote space creation. 968 Mutex zygote_creation_lock_; 969 970 // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before 971 // zygote space creation. 972 space::ZygoteSpace* zygote_space_; 973 974 // Minimum allocation size of large object. 975 size_t large_object_threshold_; 976 977 // Guards access to the state of GC, associated conditional variable is used to signal when a GC 978 // completes. 979 Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 980 std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_); 981 982 // Reference processor; 983 ReferenceProcessor reference_processor_; 984 985 // Task processor, proxies heap trim requests to the daemon threads. 986 std::unique_ptr<TaskProcessor> task_processor_; 987 988 // True while the garbage collector is running. 989 volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_); 990 991 // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on. 992 volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_); 993 collector::GcType next_gc_type_; 994 995 // Maximum size that the heap can reach. 996 size_t capacity_; 997 998 // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap 999 // programs it is "cleared" making it the same as capacity. 1000 size_t growth_limit_; 1001 1002 // When the number of bytes allocated exceeds the footprint TryAllocate returns null indicating 1003 // a GC should be triggered. 1004 size_t max_allowed_footprint_; 1005 1006 // The watermark at which a concurrent GC is requested by registerNativeAllocation. 1007 size_t native_footprint_gc_watermark_; 1008 1009 // Whether or not we need to run finalizers in the next native allocation. 1010 bool native_need_to_run_finalization_; 1011 1012 // Whether or not we currently care about pause times. 1013 ProcessState process_state_; 1014 1015 // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that 1016 // it completes ahead of an allocation failing. 1017 size_t concurrent_start_bytes_; 1018 1019 // Since the heap was created, how many bytes have been freed. 1020 uint64_t total_bytes_freed_ever_; 1021 1022 // Since the heap was created, how many objects have been freed. 1023 uint64_t total_objects_freed_ever_; 1024 1025 // Number of bytes allocated. Adjusted after each allocation and free. 1026 Atomic<size_t> num_bytes_allocated_; 1027 1028 // Bytes which are allocated and managed by native code but still need to be accounted for. 1029 Atomic<size_t> native_bytes_allocated_; 1030 1031 // Number of bytes freed by thread local buffer revokes. This will 1032 // cancel out the ahead-of-time bulk counting of bytes allocated in 1033 // rosalloc thread-local buffers. It is temporarily accumulated 1034 // here to be subtracted from num_bytes_allocated_ later at the next 1035 // GC. 1036 Atomic<size_t> num_bytes_freed_revoke_; 1037 1038 // Info related to the current or previous GC iteration. 1039 collector::Iteration current_gc_iteration_; 1040 1041 // Heap verification flags. 1042 const bool verify_missing_card_marks_; 1043 const bool verify_system_weaks_; 1044 const bool verify_pre_gc_heap_; 1045 const bool verify_pre_sweeping_heap_; 1046 const bool verify_post_gc_heap_; 1047 const bool verify_mod_union_table_; 1048 bool verify_pre_gc_rosalloc_; 1049 bool verify_pre_sweeping_rosalloc_; 1050 bool verify_post_gc_rosalloc_; 1051 const bool gc_stress_mode_; 1052 1053 // RAII that temporarily disables the rosalloc verification during 1054 // the zygote fork. 1055 class ScopedDisableRosAllocVerification { 1056 private: 1057 Heap* const heap_; 1058 const bool orig_verify_pre_gc_; 1059 const bool orig_verify_pre_sweeping_; 1060 const bool orig_verify_post_gc_; 1061 1062 public: ScopedDisableRosAllocVerification(Heap * heap)1063 explicit ScopedDisableRosAllocVerification(Heap* heap) 1064 : heap_(heap), 1065 orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_), 1066 orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_), 1067 orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) { 1068 heap_->verify_pre_gc_rosalloc_ = false; 1069 heap_->verify_pre_sweeping_rosalloc_ = false; 1070 heap_->verify_post_gc_rosalloc_ = false; 1071 } ~ScopedDisableRosAllocVerification()1072 ~ScopedDisableRosAllocVerification() { 1073 heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_; 1074 heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_; 1075 heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_; 1076 } 1077 }; 1078 1079 // Parallel GC data structures. 1080 std::unique_ptr<ThreadPool> thread_pool_; 1081 1082 // Estimated allocation rate (bytes / second). Computed between the time of the last GC cycle 1083 // and the start of the current one. 1084 uint64_t allocation_rate_; 1085 1086 // For a GC cycle, a bitmap that is set corresponding to the 1087 std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); 1088 std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); 1089 1090 // Mark stack that we reuse to avoid re-allocating the mark stack. 1091 std::unique_ptr<accounting::ObjectStack> mark_stack_; 1092 1093 // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us 1094 // to use the live bitmap as the old mark bitmap. 1095 const size_t max_allocation_stack_size_; 1096 std::unique_ptr<accounting::ObjectStack> allocation_stack_; 1097 1098 // Second allocation stack so that we can process allocation with the heap unlocked. 1099 std::unique_ptr<accounting::ObjectStack> live_stack_; 1100 1101 // Allocator type. 1102 AllocatorType current_allocator_; 1103 const AllocatorType current_non_moving_allocator_; 1104 1105 // Which GCs we run in order when we an allocation fails. 1106 std::vector<collector::GcType> gc_plan_; 1107 1108 // Bump pointer spaces. 1109 space::BumpPointerSpace* bump_pointer_space_; 1110 // Temp space is the space which the semispace collector copies to. 1111 space::BumpPointerSpace* temp_space_; 1112 1113 space::RegionSpace* region_space_; 1114 1115 // Minimum free guarantees that you always have at least min_free_ free bytes after growing for 1116 // utilization, regardless of target utilization ratio. 1117 size_t min_free_; 1118 1119 // The ideal maximum free size, when we grow the heap for utilization. 1120 size_t max_free_; 1121 1122 // Target ideal heap utilization ratio 1123 double target_utilization_; 1124 1125 // How much more we grow the heap when we are a foreground app instead of background. 1126 double foreground_heap_growth_multiplier_; 1127 1128 // Total time which mutators are paused or waiting for GC to complete. 1129 uint64_t total_wait_time_; 1130 1131 // Total number of objects allocated in microseconds. 1132 AtomicInteger total_allocation_time_; 1133 1134 // The current state of heap verification, may be enabled or disabled. 1135 VerifyObjectMode verify_object_mode_; 1136 1137 // Compacting GC disable count, prevents compacting GC from running iff > 0. 1138 size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_); 1139 1140 std::vector<collector::GarbageCollector*> garbage_collectors_; 1141 collector::SemiSpace* semi_space_collector_; 1142 collector::MarkCompact* mark_compact_collector_; 1143 collector::ConcurrentCopying* concurrent_copying_collector_; 1144 1145 const bool running_on_valgrind_; 1146 const bool use_tlab_; 1147 1148 // Pointer to the space which becomes the new main space when we do homogeneous space compaction. 1149 // Use unique_ptr since the space is only added during the homogeneous compaction phase. 1150 std::unique_ptr<space::MallocSpace> main_space_backup_; 1151 1152 // Minimal interval allowed between two homogeneous space compactions caused by OOM. 1153 uint64_t min_interval_homogeneous_space_compaction_by_oom_; 1154 1155 // Times of the last homogeneous space compaction caused by OOM. 1156 uint64_t last_time_homogeneous_space_compaction_by_oom_; 1157 1158 // Saved OOMs by homogeneous space compaction. 1159 Atomic<size_t> count_delayed_oom_; 1160 1161 // Count for requested homogeneous space compaction. 1162 Atomic<size_t> count_requested_homogeneous_space_compaction_; 1163 1164 // Count for ignored homogeneous space compaction. 1165 Atomic<size_t> count_ignored_homogeneous_space_compaction_; 1166 1167 // Count for performed homogeneous space compaction. 1168 Atomic<size_t> count_performed_homogeneous_space_compaction_; 1169 1170 // Whether or not a concurrent GC is pending. 1171 Atomic<bool> concurrent_gc_pending_; 1172 1173 // Active tasks which we can modify (change target time, desired collector type, etc..). 1174 CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_); 1175 HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_); 1176 1177 // Whether or not we use homogeneous space compaction to avoid OOM errors. 1178 bool use_homogeneous_space_compaction_for_oom_; 1179 1180 // True if the currently running collection has made some thread wait. 1181 bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_); 1182 // The number of blocking GC runs. 1183 uint64_t blocking_gc_count_; 1184 // The total duration of blocking GC runs. 1185 uint64_t blocking_gc_time_; 1186 // The duration of the window for the GC count rate histograms. 1187 static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000); // 10s. 1188 // The last time when the GC count rate histograms were updated. 1189 // This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s). 1190 uint64_t last_update_time_gc_count_rate_histograms_; 1191 // The running count of GC runs in the last window. 1192 uint64_t gc_count_last_window_; 1193 // The running count of blocking GC runs in the last window. 1194 uint64_t blocking_gc_count_last_window_; 1195 // The maximum number of buckets in the GC count rate histograms. 1196 static constexpr size_t kGcCountRateMaxBucketCount = 200; 1197 // The histogram of the number of GC invocations per window duration. 1198 Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_); 1199 // The histogram of the number of blocking GC invocations per window duration. 1200 Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_); 1201 1202 // GC stress related data structures. 1203 Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1204 // Debugging variables, seen backtraces vs unique backtraces. 1205 Atomic<uint64_t> seen_backtrace_count_; 1206 Atomic<uint64_t> unique_backtrace_count_; 1207 // Stack trace hashes that we already saw, 1208 std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_); 1209 1210 friend class CollectorTransitionTask; 1211 friend class collector::GarbageCollector; 1212 friend class collector::MarkCompact; 1213 friend class collector::ConcurrentCopying; 1214 friend class collector::MarkSweep; 1215 friend class collector::SemiSpace; 1216 friend class ReferenceQueue; 1217 friend class VerifyReferenceCardVisitor; 1218 friend class VerifyReferenceVisitor; 1219 friend class VerifyObjectVisitor; 1220 friend class ScopedHeapFill; 1221 friend class space::SpaceTest; 1222 1223 class AllocationTimer { 1224 public: 1225 ALWAYS_INLINE AllocationTimer(Heap* heap, mirror::Object** allocated_obj_ptr); 1226 ALWAYS_INLINE ~AllocationTimer(); 1227 private: 1228 Heap* const heap_; 1229 mirror::Object** allocated_obj_ptr_; 1230 const uint64_t allocation_start_time_; 1231 1232 DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationTimer); 1233 }; 1234 1235 DISALLOW_IMPLICIT_CONSTRUCTORS(Heap); 1236 }; 1237 1238 } // namespace gc 1239 } // namespace art 1240 1241 #endif // ART_RUNTIME_GC_HEAP_H_ 1242